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Abstract. We consider Sturm–Liouville problem with one integral type nonlocal
boundary condition depending on three parameters γ (multiplier in nonlocal condi-
tion), ξ1, ξ2 ([ξ1, ξ2] is a domain of integration). The distribution of zeroes, poles,
and constant eigenvalue points of Complex Characteristic Function is presented. We
investigate how Spectrum Curves depend on the parameters of nonlocal boundary
conditions. In this paper we describe the behaviour of Spectrum Curves and classify
critical points of Complex-Real Characteristic function. Phase Trajectories of critical
points in Phase Space of the parameters ξ1, ξ2 are investigated. We present the results
of modelling and computational analysis and illustrate those results with graphs.

Keywords: Sturm–Liouville problem, characteristic function, spectrum curves, critical

point, integral boundary condition.

AMS Subject Classification: 34B24, 34B09, 34B15.

1 Introduction

While applying mathematical modelling to various phenomena of physics [8,10],
biology and ecology [14] there often arise problems with non-classical boundary
conditions, which relate the values of unknown function on the boundary and
inside of the given domain. Boundary conditions of such type are called nonlocal
boundary conditions (NBC). Differential problems with nonlocal conditions are
quite a widely investigated area of mathematics. Differential problems with
nonlocal conditions are not yet completely and properly investigated, as it is a
wide research area.
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The first paper, devoted to the second-order partial differential equations
with nonlocal integral conditions goes back to Cannon [3]. The problems with
NBCs were investigated for parabolic equations [11,12], for elliptic equations [2],
and for hyperbolic equations [9].

Investigations of the spectrum structure is rather important for the analy-
sis of the existence and uniqueness of the solutions of differential and discrete
problems, for finding solutions of finite difference scheme (FDS) using iterative
methods, for the stability analysis of difference schemes of nonstationary equa-
tions. Some necessary and sufficient existence and uniqueness conditions for
solving stationary differential and discrete problems were obtained in [5,6,28].
Investigation of the spectrum and other similar problems for differential equa-
tions with nonlocal Bitsadze–Samarskii or multipoint boundary conditions are
analyzed in papers [23,24,27], and integral conditions in [15]. The newest and
most relevant articles are presented in a review [29]. Green’s functions for the
discrete the second order problem with NBC were investigated in [16,22].

We investigate critical points of Characteristic Function (CF) and calculate
the behavior real and complex parts of a spectrum. In [1] WKB (Wentzel–
Kramers–Brillouin) analysis of PT -symmetric Sturm–Liouville problems were
considered. The novelty is that a PT eigenvalue problem on a infinite domain
typically exhibits a sequence of critical points at which pairs of eigenvalues cease
to be real and become complex conjugates of one another. WKB analysis is used
to calculate the asymptotic behaviors of the real eigenvalues and the locations of
the critical points. WKB method is a method for finding approximate solutions
to linear differential equations with spatially varying coefficients. It is typically
used for a semiclassical calculation in quantum mechanics.

B. Chanane in paper [4] use the regularized sampling method introduced
recently to compute the eigenvalues of Sturm–Liouville problems with nonlocal
conditions

−y′′ + q(x)y = λy, x ∈ [0, 1], χ0(y) = 0, χ1(y) = 0,

where q ∈ L1 and χ0 and χ1 are continuous linear functionals defined by

χ0(y) =

∫ 1

0

[y(t)dψ1(t) + y′(t)dψ2(t)], χ1(y) =

∫ 1

0

[y(t)dφ1(t) + y′(t)dφ2(t)]

and ψ1, ψ2, φ1 and φ2 are functions of bounded variations. Integration is in
the sense of Riemann–Stieltjes. Two numerical examples have been presented
to illustrate the effectiveness of the method and comparisons have been made
with the exact eigenvalues.

In this paper we investigate special case (q = 0) of this problem with one
integral NBC, and functionals defined by the formulas

y(0) = 0, y(1) = γ

∫ ξ2

ξ1

y(t) dt,

with parameters γ ∈ R and ξ ∈ Sξ := {(ξ1, ξ2) ∈ [0, 1]2, ξ1 6 ξ2}. The

cases ξ = (0, 1) and ξ = (1/4, 3/4) were investigated in [7]. Such problem
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has been investigated in [13,17] and some new results were obtained. We note
that in [13] complex eigenvalues are investigated only for special cases of ξ
with rational components. In our paper we are extending those investigations.
Our main goal is to investigate the influence of parameters γ, ξ1, ξ2 for the
spectrum of Sturm–Liouville problem and a behavior of the critical points of
Complex-Real Characteristic Function (CF). CF method was described in [30]
for problem with one Bitsadze–Samarskii type NBC. Critical points of the
CF are important for investigation of multiple eigenvalues. These points are
connected with bifurcations points in Phase Space Sξ of parameter ξ = (ξ1, ξ2).

The limit cases (ξ = (0, ξ) and ξ = (ξ, 1), ξ ∈ [0, 1]), were investigated in
[20, 25]. The special case ξ = (ξ, 1 − ξ), ξ ∈ [0, 1/2]), is presented in [26].
Real CF and real critical points were studied for problems with one two-points
NBC [19]. Negative critical points for problems with two-point or integral
NBC’s with one parameter ξ were investigated in paper [21], too.

2 Problem formulation

Let us analyze the Sturm–Liouville problem (SLP)

−u′′ = λu, t ∈ (0, 1), (2.1)

λ ∈ Cλ := C, with one classical boundary condition

u(0) = 0, (2.2)

and another integral type NBC:

u(1) = γ

∫ ξ2

ξ1

u(t) dt (2.3)

with parameters γ ∈ R, ξ = (ξ1, ξ2) ∈ Sξ.

For the case γ = 0 (classical one) eigenvalues are well known:

λk = (kπ)2, vk(t) = sin(kπt), k ∈ N,

where N := {1, 2, 3, . . .}. Note that the same classical problem is obtained in
the limit case ξ1 = ξ2.

We use notation πN := {πk : k ∈ N}, No for odd, Ne for even, and Q for
rational numbers. Notation gcd(n;m) defines the greatest common divisor of
two integers n and m.

If λ = 0, then all the functions u(t) = Cu0(t), where u0(t) := t, satisfy the
equation (2.1)–(2.2). By substituting this solution into NBC (2.3) we derive,
that the nontrivial solution (C 6= 0) exists if 1 = γ(ξ22 − ξ21)/2. So, eigenvalue
λ = 0 exists if and only if γ = 2/(ξ22 − ξ21).

In the case λ 6= 0 we define entire function uq(t) := sin(qt)/q. Functions
u(t) = Cuq(t) satisfy equation (2.1) with λ = q2, q 6= 0, and boundary condition
(2.2). If q = x+ ıy ∈ Cq := {q ∈ C : x = 0, y > 0 or x > 0}, then a map λ = q2

is a bijection between Cq and Cλ. Note, that q = 0 corresponds to λ = 0 in
this bijection and u0 = lim

q→0
uq(x).
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(a) • – zero (γ = 0); ◦ – pole (b) • γ = −17 (c) • γ = +17

Figure 1. A part of the spectrum for SLP (2.1)–(2.3), ξ = (0.32, 0.61).

Remark 1. We use a scaled variable q := q/π for plotting the graphs of functions
defined on Cq. The spectrum coincides with N for such variable in the classical
case γ = 0, i.e. qk = k, k ∈ N. We use the same notation for corresponding
points and functions in both domains Cq and Cq.

A nontrivial solution of the problem (2.1)–(2.3) exists if q is a root of the
equation

uq(1) = γ

∫ ξ2

ξ1

uq(t)dt. (2.4)

For NBC (2.3) we introduce two entire functions

Z(z) :=
sin z

z
; Pξ(z) := 2

sin(z(ξ1 + ξ2)/2)

z
· sin(z(ξ2 − ξ1)/2)

z
.

Zeroes of these functions are important for description of the spectrum. Zeroes
of the function Z(q), q ∈ Cq, coincide with eigenvalue points in the classical
case γ = 0. We can rewrite equality (2.4) in the form:

Z(q) = γPξ(q), q ∈ Cq. (2.5)

In Figure 1, one can see the roots (not all) of this equation for γ = −17, 0,+17
in the case ξ = (0.32, 0.61). There exist complex roots for γ = −17,+17.

We define the constant eigenvalue as the eigenvalue that does not depend
on parameter γ. For any constant eigenvalue λ = q2 there exists the constant
eigenvalue point (CE point) q ∈ Cq [30]. For NBC (2.3) we can find CE points
as solutions of the following system

Z(q) = 0, Pξ(q) = 0,

i.e. CE point c ∈ πN and Pξ(c) = 0. The notation C is used for the set of all
CE points.

If q 6∈ πN, i.e. Z(q) 6= 0, and q satisfies equation Pξ(q) = 0, then the
equality (2.5) is not valid for all γ and such point q is a pole point. Notation
of the pole point is connected with meromorphic function

γc(z) =
Z(z)

Pξ(z)
, z ∈ C. (2.6)

Math. Model. Anal., 20(6):802–818, 2015.
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9 108765432

-1

19 201817161514131211 2121 22 230

1

1 9 108765432

-1

19 201817161514131211 2121 22 230

1

1

(a) • – zero; ◦ – pole; • – CE point; •◦ – critical point.
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(b) Real CF

-critical point

(c) projection Complex-Real CF onto Cq .

Figure 2. Zeroes, poles, CE points for SLP (2.1)–(2.3), ξ = (8/21, 20/21).

This function is obtained by expressing γ from equation (2.5). If the denom-
inator has a zero at z = p and the numerator does not, then the value of the
function will be infinite and we have a pole. If both parts have a zero at z = p,
then one must compare the multiplicities of these zeroes. For our problem all
zeroes zk = πk, k ∈ N of function Z(z) are simple and positive if z ∈ Cq. It
follows that function Pξ(z) = 2P 1

ξ (z)P 2
ξ (z), where

P 1
ξ (z) := sin(z(ξ1 + ξ2)/2)/z, P 2

ξ (z) := sin(z(ξ2 − ξ1)/2)/z. (2.7)

Zeroes of the functions P 1
ξ , P 2

ξ in the domain Cq are simple and positive, too.
So, zeroes of function Pξ can be simple or the second order. The restriction
of meromorphic function γc on Cq we call Complex Characteristic Function
(Complex CF) [30]. We define the value of this function at point p, Pξ(p) = 0

as a limit γc(p) := limq→p Z(q)/Pξ(q). This limit is finite γc(p) = Z′(p)
P ′
ξ
(p) 6= 0

(removable singularity) if p ∈ πN is the first order zero of function Pξ and limit
is infinite (function γc has the first order pole) if p ∈ πN is the second order
zero of function Pξ or p 6∈ πN. For example, in Figure 2(a) we see such points
in the case ξ = (8/21, 20/21).

All nonconstant eigenvalues (which depend on the parameter γ) are γ-
points of Complex-Real Characteristic Function (Complex-Real CF) [30]. In
Figure 3(a) one can see a Complex-Real CF graph in the case ξ = (0.32, 0.61).
Complex-Real CF γ(q) is the restriction of function γc(q) on a set N γ := {q ∈
Cq : Imγc(q) = 0}. Real CF γ(q) is defined on the domain {q ∈ Cq : λ = q2 ∈ R}
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(a) Complex-Real CF (b) Spectrum Domain (c) Real CF

Figure 3. CF for ξ = (0.32, 0.61) and its projections.

and describes only real eigenvalues (λ = q2, where q = x, x ≥ 0 and q = yı,
y ≥ 0). We plot the graph of Real CF for positive eigenvalue points x > 0 in the
right half plane and y > 0 in the left half plane. The γ-axis corresponds to point
q = 0. One can see the Real CF graph in Figure 2(b) for ξ = (8/21, 20/21) and
in Figure 3(c) for ξ = (0.32, 0.61). In the case ξ = (8/21, 20/21) the vertical
lines are added at the CE points.

Spectrum Domain is the set N = N γ ∪ C. Function γc has real values
on N except pole points. Example of the Spectrum Domain one can see in
Figure 3(b). We also add the eigenvalue points (γ = −17, 0,+17) from Figure 1
and pole points (γ = ∞). Eigenvalue points for γ ∈ R are in this domain
only. Spectrum Domain is symmetric with respect the real axis for Re q > 0.
Complex-Real CF γ(q) describes the value of the parameter γ at point q ∈ N γ

(see Figure 3(a)) such that there exists the eigenvalue λ = q2. For each γ0 ∈ R
a set N (γ0) := γ−1(γ0) is the set of all eigenvalue points for nonconstant
eigenvalues. So, Spectrum Domain N = ∪γ∈RN (γ)∪C. For example, N (0)∪C
corresponds to a spectrum for the classical case. If q ∈ N γ and γ′c(q) 6= 0
(q is not a critical point of CF) then N (γ) is continuous parametric curve
N : R → Cq and we can add arrow on this curve. The arrows indicate the
direction in which γ is increasing (from −∞ to +∞). So, eigenvalues point
is moving along this curve when parameter γ is increasing. If γ = 0 then
the eigenvalue points are q = zk = πk, k ∈ πN. So, we can numerate the
part of N (γ) for this point by the classical case Nk(0) = zk, k ∈ N. For
every CE point cj = πj we define Nj = {cj}, i.e. every such Nj has one
point only (see Figure 2(c), Figure 3(b)). We call every Nk, k ∈ N, as a
Spectrum Curve. Spectrum DomainN is a countable union of Spectrum Curves
Nk. Different Spectrum Curves may have a common point. For example, CE
point may be on other Nk or few Spectrum Curves are intersect at the critical
point b. If p1 and p2 are two neighbouring poles of the Complex–Real CF and
γ′(x) 6= 0, x ∈ (p1, p2), then exist zk ∈ (p1, p2) and Nk = (p1, p2). If there
exists b ∈ (p1, p2) such that γ′(b) = 0, then b is a critical point of real CF, such
that eigenvalue point leaves or enters the real axis symmetrically [30]. In some
sense, two eigenspectrum points “intersect” at the critical point q = b and after
that turn right (we observe the “right hand” rule). For the γ → ±∞ Spectrum
Curve Nk(γ) approaches a pole point or a point xk ± ı∞. Pole point does not
belong to N , and we can interpret pole as a point where Nk can change the

Math. Model. Anal., 20(6):802–818, 2015.
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(a) ξ = (
√

2/5, 3
√

2/5),
p121 = p12 = p21

(b) ξ = ( 2
√
2−1
4

, 2
√
2+1
4

),

p21 = c11

(c) ξ = (1/6, 5/6),
c13 = c22 = c121

Figure 4. Real CF and CE for different ξ values.

index k to k1. For the investigation of the Spectrum Curves we must know
zeroes, poles and CE point of CF.

3 Zeroes, poles and constant eigenvalues points of the
Complex Characteristic Function

We use notation: ξ = ξ1/ξ2, ξ+ = ξ1 + ξ2, ξ− = ξ2 − ξ1.
All zeroes of the functions Z, P 1

ξ , P 2
ξ (see (2.7)) in Cq are simple (of the

first order), real and positive:

zk = kπ, k ∈ N, p1k = 2
ξ+
kπ, k ∈ N, p2k = 2

ξ−
kπ, k ∈ N. (3.1)

We denote the corresponding sets of points as Z, Z1
ξ , Z2

ξ . Then a set Zξ =

Z1
ξ + Z2

ξ + Z12
ξ describes all zeroes of the function Pξ, where Z1

ξ := Z1
ξ r Z12

ξ

and Z2
ξ := Z2

ξ r Z12
ξ are two families of the first order zeroes, Z12

ξ := Z1
ξ ∩ Z2

ξ

is family of the second order zeroes. If ξ 6∈ Q, then the second order zeroes do
not exist, i.e. Z12

ξ = ∅. If ξ = m/n ∈ Q, where m, n ∈ N, then a set Z12
ξ

describes the second order zeroes:

p12k = 2n/(ξ2dp)kπ = 2m/(ξ1dp)kπ, k ∈ N, dp = gcd(n−m;n+m). (3.2)

If ξ ∈ Q then ξ1, ξ2 ∈ Q or ξ1, ξ2 6∈ Q. If ξ 6∈ Q then ξ1 6∈ Q or ξ2 6∈ Q, or both
ξ1, ξ2 6∈ Q .

For (real) CF we consider the following sets: a set of poles Pξ := P1
ξ +P2

ξ +

P12
ξ , where P1

ξ := Z1
ξ r Z and P2

ξ := Z2
ξ r Z are two families of the poles of

the first order, a set of the second order poles P12
ξ := Z12

ξ rZ; a set of the CE

points Cξ := C1ξ + C2ξ + C12ξ , where C1ξ := Z1
ξ ∩ Z and C2ξ := Z2

ξ ∩ Z are sets of

the points with removable singularity, C12ξ := Z12
ξ ∩ Z is the set of the points

with the first order pole, too; a set of zeroes Zξ := Z r Cξ.

Remark 2. The sets P1
ξ , P2

ξ , P12
ξ , C1ξ , C2ξ , C12ξ , Zξ points have form qk = αk,

k ∈ N, α > 1, or can be empty. So, nonempty sets are described by the first
point (k = 1). Since π < p11 < p21 ≤ p121 , the set Zξ 6= ∅. We note, that
2π < p21, too.
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Table 1. Zeroes, poles and CE points of CF (special cases), m, l,m1,m2, n1, n2 ∈ N. “+”
means that the set above is nonempty, “−” means that the set above is empty.

Case Example Poles CE points Remarks

subcase ξ = (ξ1, ξ2) P1
ξ P

2
ξ P

12
ξ C1ξ C

2
ξ C

12
ξ Zξ

ξ ∈ Q, ξ1, ξ2 6∈ Q, l > 1:

ξ 6= l−1
l+1

(√
2

20
,
√
2

5

)
+ + + − − − + p21 < p121

ξ = l−1
l+1

(√
2
5
, 3
√
2

5

)
+ − + − − − + p21 = p121

ξ 6∈ Q, l > 1, m > 2:

ξ+, ξ− 6∈ Q
(

1
2
,
√
2

2

)
;
(√

2
2
,
√
3

2

)
+ + − − − − + p11 < p21

ξ+ ∈ Q, ξ+ 6= 2
l
, ξ− 6∈ Q

(
3−
√

2
8

, 3+
√
2

8

)
+ + − + − − + p11 < c11

ξ− ∈ Q, ξ− 6= 2
m

, ξ+ 6∈ Q
(

5
√

2−7
24

, 5
√
2+7
24

)
+ + − − + − + p21 < c21

ξ+ = 2
l
, ξ− 6∈ Q

(
2−
√
2

4
, 2+
√
2

4

)
− + − + − − + p11 = c11

ξ− = 2
m

, ξ+ 6∈ Q
(

2
√
2−1
4

, 2
√

2+1
4

)
+ − − − + − + p21 = c21

ξ1 = m1/n1, ξ2 = m2/n2 ∈ Q
(a)–(d) pk1 < ck1 , k = 1, 2, 12, pk1 < p121 , k = 1, 2, (m)–(q) n = n1 = n2 = m1 +m2:

(a)
(

8
21
, 20
21

)
+ + + + + + + c11, c

2
1 < c121

(b)
(
10
27
, 25
27

)
+ + + − + + + c21 < c11 = c121

(c)
(

2
25
, 18
25

)
+ + + + − + + c11 < c21 = c121

(d)
(

6
17
, 15
17

)
+ + + − − + + c11 = c21 = c121

(e)
(

4
11
, 10
11

)
+ + − − − + + p121 = c121 ,

p11 < c11 = c21

(f)
(
4
9
, 8
9

)
+ − + + − + + p21 = p121 ,

p11 < c11 < c121

(g)
(
2
7
, 6
7

)
+ − + − − + + p21 = p121 ,

p11 < c11 = c121

(h)
(

5
12
, 11
12

)
+ − − + + + + p21 = c21 < c121 ,

p11 < c11

(i)
(
1
2
, 5
6

)
+ − − + − + + p21 = c21 = c121 ,

p11 < c11 < c121

(k)
(
1
5
, 13
15

)
+ − − − + + + p21 = c21 < c121 ,

c11 = c121

(l)
(
1
5
, 3
5

)
+ − − − − + + p21 = c121 = c11

(m)
(

1
10
, 9
10

)
− + − + + + + p11 = c11,

(n)
(
1
7
, 6
7

)
− + − + − + + p11 = c11,

p21 < c21 = c121

(p)
(
1
6
, 5
6

)
− − − + + + + p11 = c11,

c11 < c21 = p21

(q)
(
1
4
, 3
4

)
− − − + − + + p11 = c11,

p21 = c121

Math. Model. Anal., 20(6):802–818, 2015.
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(a) real part (b) image part

Figure 5. The first order pole.

(a) real part

9

(b) image part

Figure 6. The second order pole.

The case ξ = m/n ∈ Q, ξ1, ξ2 6∈ Q. In this case ξ+, ξ− 6∈ Q, i.e. Cξ = ∅.
So, CF has two families of the first order poles in P1

ξ and P2
ξ , respectively, and

the second order poles in P12
ξ (see formulae (3.1)–(3.2) for calculation p1k, p2k,

p12k ). Note, that P2
ξ = ∅ for ξ = (l − 1)/(l + 1), 1 < l ∈ N. In this special case

p21 = p121 (see Figure 4(a) and Table 1).
The case ξ 6∈ Q. In this case at least one number ξ+ or ξ− is irrational (and

at least one number ξ1 or ξ2 is irrational). If ξ+ 6∈ Q and ξ− 6∈ Q then CF has
two families of the first order poles P1

ξ and P2
ξ , respectively, and P12

ξ = Cξ = ∅.

If ξ+ = m+/n+ ∈ Q then C1ξ 6= ∅:

c1k = p1m+/d1k
= z2n+/d1k = 2n+/d1kπ, k ∈ N, d1 = gcd(2n+;m+). (3.3)

If ξ− = m−/n− ∈ Q then C2ξ 6= ∅:

c2k = p2m−/d2k = z2n−/d2k = 2n−/d2kπ, k ∈ N, d2 = gcd(2n−;m−). (3.4)

CF has removable singularities in these CE points (there is one family of such
points) and the first order poles in the set P1

ξ + P2
ξ . The set P1

ξ = ∅ for

ξ+ = 2/l, 1 < l ∈ N, because p11 = c11. The set P2
ξ = ∅ for ξ− = 2/m,

2 < m ∈ N, because p21 = c21 (see Figure 4(b) and Table 1).
The case ξ1 = m1/n1, ξ2 = m2/n2 ∈ Q. In this case n± = n1n2, m+ =

m2n1 + m1n2, m− = m2n1 − m1n2, m = m1n2, n = m2n1. So, we can use
expressions (3.1)–(3.4) and get formulae for poles and CE points (k ∈ N)

p1k =
2n1n2kπ

m+
, p2k =

2n1n2kπ

m−
, p12k =

2n1n2kπ

gcd(m−;m+)
,

c1k =
2n1n2kπ

gcd(2n±;m+)
, c2k =

2n1n2kπ

gcd(2n±;m−)
, c12k =

2n1n2kπ

gcd(2n±;m+;m−)

of the sets P1
ξ + P12

ξ + C1ξ + C12ξ , P2
ξ + P12

ξ + C2ξ + C12ξ , P12
ξ + C12ξ , C1ξ + C12ξ ,

C2ξ + C12ξ , C12ξ , respectively. The set C12ξ 6= ∅ for all ξ. P1
ξ = ∅ for p11 = c11;

P2
ξ = ∅ for p21 = p121 or p21 = c21 or p21 = c121 ; P12

ξ = ∅ for p121 = c121 or p11 = c11
or p21 = c21; C1ξ = ∅ for c11 = c121 ; C2ξ = ∅ for c21 = c121 ; C12ξ = ∅ for c21 = c11 (see
Table 1).

Some information on the first or the second order poles can be presented as
contour lines of the functions (z−10)−1 and (z−10)−2. Real CF in neighbour-
hood of the first order pole are shown in Figure 5 and Figure 6. In this case
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Figure 7. Real CF.
A neighbourhood of
the first order pole.

(a) Real CF

0 0.5-0.5-1 1

(b) complex part (c) 3D view

Figure 8. A neighbourhood of the second order pole.

there are two Spectrum Curves N1 and N2 on the real axis (see Figure 5(b)).
In the neighbourhood of the first order pole there exist only real eigenvalues
(see Figure 7). The Spectrum Curves N1, N2 and the Complex–Real CF in
neighbourhood of the second order poles are presented in Figure 6(b) and Fig-
ure 8.

We have two families C1ξ and C2ξ of CE points (these eigenvalues do not exist
if ξ1, ξ2 6∈ Q, but ξ ∈ Q). The dependence CE points on NBC parameters ξ1
and ξ2 are presented in Figure 9. The CE points of the first family C1ξ are
in the lines ξ1 + ξ2 = 2k/l, l ∈ N r {1}, which are perpendicular to the line
ξ2 = ξ1 (see Figure 9(a)). The CE points of the second family C2ξ are in the
lines ξ2 − ξ1 = 2k/l, l ∈ N r {1, 2}, which are parallel to the line ξ2 = ξ1 (see
Figure 9(b)). Notation lk or lk near the line show that the CE point is c1k = πl or
c2k = πl, accordingly. The intersection points of the CE lines from the different
families with the same number l give the set C12ξ (see Figure 9(c)). We have

the first order pole p11 or p21 in the lines ξ1 +ξ2 = 2π/p11 or ξ2−ξ1 = 2π/p21, too.
The double pole is in the line ξ2 = n/m ·ξ1 (see Figure 9(c), m = 1, n = 3). We
analyze two points in Phase Space Sξ: A = (1/6, 5/6) and B = (1/4, 3/4). The
point A corresponds situation without poles (p11 = c11, p21 = c21, see Table 1 and
Figure 4(c)), point B corresponds situation with first order pole in CE point. If
ξ is moving across line (A2, A4) or (A1, A3) then at the CE point the complex
part of Spectrum Curve is arising or disappearing in Cq (see Figure 9(d)). In
this case the complex part of the Spectrum Curve is between two critical points.
We have the same situation near point B (see Figure 9(e), B0 → B1 → B2).
At the point B3 two the first order poles create the second order pole and the
complex part of the Spectrum Curve is between a critical point and this pole.
All complex parts of the Spectrum Curve are disappeared in the point B.

4 Critical points

If γ
′

c(b) = 0, b ∈ Cq, then we have a critical point b of the Complex CF,
and value γc(b) is a critical value of the Complex CF [18, 21]. Critical points
of the Complex CF are saddle points of this function. For Real CF critical
points can be a half-saddle point (x = 0), or maximum, minimum point or
inflection (saddle) points. At the critical point the Spectrum Curves change
the direction. If the Complex–Real CF at the critical point b ∈ Cq satisfies

Math. Model. Anal., 20(6):802–818, 2015.
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Figure 9. CE points (ck = πk, k = 1, . . . , 5) in Phase Space Sξ and Spectrum

Curves in the points A and B and in their neighbourhood.

γ
′

c(b) = 0, . . . , γkc (b) = 0, γ
(k+1)
c (b) 6= 0, then b is called the k-order critical

point. At this point Spectrum Curves change direction and the angle between
old and the new direction is π

k+1 (as we note in Section 1, the Spectrum Curve
turn to the right).

4.1 The first order critical points

For SLP (2.1)–(2.3) there exist two types the first order critical points. The
first type critical point appears for b ∈ Cq, b2 ∈ R. In this case, multiple
eigenvalue is real (usually double or triple, where the critical point coincide
with CE point). The first order real critical point b ∈ Cq can be find from the
following equation:

γ′(b; ξ) = 0, b2 ∈ R.

CF in the neighbourhood of the first order real critical point is presented in
Figure 10. Real critical point of CF exists in the typical situations : 1) between
two zeroes do not exist pole, 2) between two poles do not exist zero. For SLP
(2.1)–(2.3) all the first order real critical points are positive.
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(a) Real CF (b) Spectrum Curves (c) 3D view

Figure 10. The first order real critical point, ξ = (0.2, 0.75).
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Figure 11. The first order complex critical point C, ξ = (0.39893, 0.73649 . . . ).

The first order complex critical point b = x + ıy ∈ Cq can be calculated
solving the system of equations:

Im γ(b; ξ) = 0, Re γ′(b; ξ) = 0, Im γ′(b; ξ) = 0, b2 /∈ R.

Spectrum Domain is symmetrical and we have pair complex critical points.
The solution of this system is a curve in Phase Space Sξ. Two trajectories of
the such complex critical points are presented in Figure 11(a). The Spectrum
Domain for ξ = (0.39893, 0.73649...) with complex critical point is presented in
Figure 11(b). Every point of the trajectory in Sξ has similar Spectrum Curves
in the neighbourhood of a critical point. If Phase Point moves across this
trajectory, then the view of the Spectrum Curves are qualitative different (see
Figure 11(a),(c), points A and B). In this example (see Figure 11(b), point C)
we have the both cases the first order critical points: b1, b2, b3 are real critical
points and b−, b+ are pair complex critical points. This example shows that
Spectrum Curve N5 approach infinity (the point A) or pole (the points C and
B) for γ → +∞. The gap between two trajectories (points C1 and C2) we
explain later on.

Math. Model. Anal., 20(6):802–818, 2015.
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A=( 591)0.35266;0.85

B=( )0.35266;0.85611

C

3

2 4

3

4

B

A

C

(a)

C

(b)

A

B

(c)

Figure 12. The second order critical point C, ξ = (0.35266, 0.85601 . . . ).
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Figure 13. The second order critical point C, ξ = (0.11625, 0.616239 . . . ),
A = (0.11625, 0.616238 . . . ), B = (0.11625, 0.616240 . . . ), C1 = (0.15454 . . . , 0.64970 . . . ),

C2 = (0.07331 . . . , 0.57495 . . . ).

4.2 The second order and the third order critical points

The second order critical point appears when two the first order real critical
points coincide in the same point b. The second order critical point can be
found from the following equation:

γ′(b; ξ) = 0, γ′′(b; ξ) = 0, b2 ∈ R.

For SLP (2.1)–(2.3) all the second order real critical points are positive. Two
trajectories of such the second order critical points in Phase Space are shown in
Figure 12(a) and Figure 13(a). In the Figure 12(b) and Figure 13(b) Spectrum
Curves are presented in the point C which is on corresponding trajectory of
the second order critical point and in Figure 12(c) and Figure 13(c) we can see
Spectrum Curves in the Phase Points A and B near this trajectory. Points C1

and C2 in Figure 13(a) are the same as in Figure 11(a). So, the gap between
Phase Points C1 and C2 is the part of the second order critical point trajectory.

Numerical calculations show that such gaps exist for ξ1 + ξ2 / 1 (see Fig-
ure 11(a), Figure 13(a), Figure 14(a)). The gap boundary points C1 and C2
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Figure 14. The third order critical point C1, ξ = (0.17122 . . . , 0.83250 . . . )

are the third order critical points and they can be found from the system:

γ′(b; ξ) = 0, γ′′(b; ξ) = 0, γ′′′(b; ξ) = 0, b2 ∈ R.

The views of Spectrum Curves in point C1 and in the neighbourhood of this
third order critical point are presented in Figure 14(b)–(c). At this point the
trajectory of the second order critical point change direction and pair the first
order complex critical points come real (y = 0 and positive).

If ξ1+ξ2 ' 1 (see Figure 12(a), Figure 15(a)) then a trajectory of the second
order critical point is “smooth” curve. This trajectory intersects with the first
order complex critical point trajectory without the third order critical points,
i.e. pair complex critical points do not reach the real axis. Typical Spectrum
Curves are presented in Figure 15(c).

The general behaviour the second and the third order trajectories Phase
Space is more complicated. For small x three trajectories are shown in Fig-
ure 15(b). The second order trajectories leave points ξ = (1/3, 1/3), (1/2, 1/2),
(2/3, 2/3) for x = 3, 2, 3, accordingly. All these trajectories approach Phase
Point ξ = (0, 1). There is no the second order critical point for integral NBC
with ξ2 = 1 or ξ1 = 0. Trajectories of the first order complex critical points
start at points ξ = (0, b) and move towards a point which corresponds to the
third order critical point and after “gap” these trajectories approach Phase
Point ξ = (1, 1).

5 Conclusions

In this paper the spectrum for Sturm–Liouville problem with one integral NBC
depending on two parameters was investigated.

Qualitative view of the Spectrum Curves with respect to parameters ξ1 and
ξ2 in integral BC, the location of the zeroes, poles and CE points of the CF is
very important for investigation. In this article we find all such points in the
case SLP (2.1)–(2.3).

Critical points of CF are important for investigation of complex eigenvalues
and Spectrum Curves in the complex plane. We find trajectories of the first
order complex critical points and the second order (real) critical points. Such

Math. Model. Anal., 20(6):802–818, 2015.
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Figure 15. The trajectories of the third order and the second order critical points and
Spectrum Curves, A = (0.3526 . . . , 0.8560 . . . ), B = (0, 3600 . . . , 0.8601 . . . ),

C = (0.4491 . . . , 0.8771 . . . ), D = (0.3660 . . . , 0.8660 . . . ), E = (0.3603 . . . , 0.8603 . . . ).

trajectories can be found only numerically. In this article we describe how
Spectrum Curves vary on parameters ξ1 and ξ2. We investigate the first order
real and complex critical points, trajectories of the first order complex critical
points and the second order critical points in the Phase Space Sξ, find location
of the third order critical points. Some interesting properties of Spectrum
Curves were found.

Investigation of the Spectrum Curves gives useful information about the
spectrum for problems with NBC.
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