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Abstract. Wave interaction with a vertical elastic plate in presence of undulating
bottom topography is considered, assuming linear theory and utilizing simple pertur-
bation analysis. First order correction to the velocity potential corresponding to the
problem of scattering by a vertical elastic plate submerged in a fluid with a uniform
bottom is obtained by invoking the Green’s integral theorem in a suitable manner.
With sinusoidal undulation at the bottom, the first-order transmission coefficient (T1)
vanishes identically. Behaviour of the first order reflection coefficient (R1) depending
on the plate length, ripple number, ripple amplitude and flexural rigidity of the plate
is depicted graphically. Also, the resonant nature of the first order reflection is ob-
served at a particular value of the ratio of surface wavelength to that of the bottom
undulations. The net reflection coefficient due to the joint effect of the plate and
the bottom undulation is also presented for different flexural rigidity of the plate.
When the rigidity parameter is made sufficiently large, the results for R1 reduce to
the known results for a surface piercing rigid plate in water with bottom undulation.

Keywords: bottom undulation, vertical elastic plate, perturbation analysis, first-order

reflection.

AMS Subject Classification: 76B15.

1 Introduction

Waves traveling over a seabed with uniform finite depth experience no reflec-
tion when there is no obstacle. However, if surface waves are incident on a
region with irregular bottom topography, the reflection and transmission phe-
nomena of waves will take place. The problems of analysing wave motion in
the presence of bottom deformation have gained considerable attention from
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many researchers all over the world due to their importance in understanding
the wave energy distribution near coastal regions. Some naturally occurring
bottom obstacles are shore-parallel bars, sand ripples etc. which create ob-
structions to shoreline erosion by dissipating incident wave energy.

Although the exact forms/expressions of the reflection and transmission co-
efficients are difficult to obtain analytically, they can be estimated numerically.
In relevant literature, we find that several mathematical techniques have been
adopted to examine the effects of different bed-forms. One such method is based
on the mapping of the actual fluid domain into some simpler ones, normally into
a uniform strip (e.g. Kreisel [10], Roseau [25], Fitz-Gerald [7]). But such map-
pings are not convenient for arbitrary bottom variations. A numerical method
based on integral equation formulation was applied by Newman [20], Miles [17]
for simple topographic variation, such as step changes in depth. Davies [5]
examined the problem of the interaction between surface waves and a patch of
sinusoidal ripples in the bottom on the basis of linear perturbation theory fol-
lowed by an application of Fourier transform technique. In his work, Davies [5]
obtained the reflection and transmission coefficients for the ‘far-field’ and ob-
served an oscillatory nature along with the resonance of the reflection. Later
an extensive set of laboratory observations presented by Davies and Hearther-
shaw [6] confirmed the theoretical predictions made by Davies [5]. Staziker et
al. [26] presented a mathematical method based on Green’s function theory
and a variational approach to study the problems of waves scattering by local
bed elevation of arbitrary shapes.

There exists a class of problems dealing with small bottom deformations
or slightly curved thin barriers which cannot be solved exactly but can be
formulated by adding small correction terms to the mathematical solution of
an exactly solvable problem. Perturbation analysis can be employed to deal
with such problems. Perturbation analysis leads to an illustration in terms
of a formal power series to get the required solution. We can see the use of
perturbation technique in the work of several researchers. In the context of bot-
tom undulations, Maiti and Mandal [12] investigated the scattering of incident
waves in an ice-covered two-layer fluid. Banerjea et al. [1] used perturbation
technique to study the effect of bottom undulation on the waves generated
by an oscillating line source submerged beneath an ice-covered surface. Using
regular perturbation analysis, Panda et al. [22] studied the flow problems in
three layer fluid associated with small undulation at the bottom. Effect of
the bottom undulations in a channel consisting of two immiscible fluids was
considered by Mohapatra and Bora [19]. Later, Mohapatra [18] examined the
effect of surface tension on the problem of wave scattering by bottom undula-
tion in a two-layer fluid. Panda and Martha [21] considered a similar problem
in presence of permeable bottom.

Apart from studying the sole effect of bottom undulation, it may be interest-
ing as well as useful sometimes to investigate the joint effect of obstacles/surface
discontinuity and bottom undulation. Since the bottom of an ocean is rarely of
uniform depth throughout, it is worthwhile to study the effect of bottom undu-
lation on wave-structure interaction problems for addressing realistic physical
situations. Whenever uneven bottom is present, it causes wave transformation
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through the reflection of incoming waves and other phenomena like wave re-
fraction and shoaling. Thus it is important to consider bottom undulations for
modeling barriers. Again, the elastic plate has its own importance in construct-
ing breakwaters due to longevity and cost-effectiveness. Also, the mathematical
modelling becomes challenging when the propagating waves interact with the
barrier as well as with the bottom undulations. These have motivated us to in-
vestigate the joint effect of the submerged vertical elastic plate and the bottom
undulations. In literature, we can find some papers which study the combined
effects of different types of obstacles and bottom undulations. Mandal and
Gayen [14] employed perturbation analysis to investigate the problem of wave
scattering by a surface-piercing barrier in presence of undulating bottom. Rak-
shit and Banerjea [24] used a similar perturbation technique to study the effect
of small bottom undulation on the waves generated by rolling vertical plate
either partially immersed or fully submerged in water. Again, Mandal and
De [13] investigated the problem of wave scattering by bottom undulation in
presence of a surface discontinuity. Choudhary and Martha [4] extended the
work of Mandal and Gayen [14] for two different barrier configurations and
included the graphs for hydrodynamic force and moment with respect to plate
length.

In the context of linear water wave theory, wave interaction with submerged
elastic plates is not a well studied topic. Meylan [16] investigated the problem
of wave scattering by surface piercing vertical elastic plate to study the na-
ture of the reflection and transmission. Peter and Meylan [23] used eigenfunc-
tion expansion to handle the time-dependent version of Meylan’s [16] problem.
Chakraborty et al. [2] presented a hypersingular integral equation technique to
study the problem of wave scattering by a thin vertical elastic plate. Kundu et
al. [11] used the method of Chakraborty et al. [2] to investigate the scattering
problem in presence of an elastic plate with arbitrary inclinations.

In the present paper, we employ the aforesaid perturbation method to study
the problem of wave scattering by a submerged vertical elastic plate in presence
of undulating bottom of the domain. Application of the perturbation method
produces boundary value problems (BVPs) for the potential functions of order
zero and one respectively. The first problem (henceforth denoted as BVP-0)
is related to the problem of wave scattering by a vertical elastic plate in uni-
form finite depth. The second boundary value problem (BVP-1) represents the
radiation problem in water of uniform finite depth and involves the solution
of BVP-0 in its bottom condition. Without solving BVP-1 explicitly, using
Green’s integral theorem the first order reflection and transmission coefficients
can be represented in terms of the shape function (describing the bottom undu-
lation) and the solution of BVP-0. The expression of the first order reflection
coefficient (R1) involves a particular form of the normal derivative of the ze-
roth order potential function. To find that we use a predefined mathematical
technique based on the applications of the Green’s function, Green’s integral
theorem and an expansion-collocation method (cf. Chakraborty et al. [2]). On
the other hand, the first order transmission coefficient (T1) vanishes identically
with the assumption of symmetry of sinusoidal undulations at the bottom.
Finally, |R1| is depicted graphically for several values of the flexural rigidity,
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barrier depth, ripples’ amplitude and ripple numbers. From these results, and
from the depicted values of the first-order corrections to the zeroth order reflec-
tion coefficient (R0 + εR1) with respect to the dimensionless wave number, one
can understand the joint effect of a vertical elastic plate and the undulating
bottom topography on the propagation of surface waves. Graphical representa-
tion of |R1| with respect to the ratio of incident wavelength and the wavelength
associated with bottom undulation is given. This gives a clear idea about the
resonant nature of the first order reflection coefficient near a particular value of
the above mentioned ratio. The results for |R1| are verified in two ways, one by
comparing the known results for a surface piercing rigid plate to those for an
elastic plate with sufficiently large rigidity; another by comparing the existing
results for the sole effect of bottom undulations to those for a negligible length
of the elastic plate.

2 Mathematical formulation

A two-dimensional potential flow is considered in the water domain of finite
depth. In the corresponding Cartesian coordinate system y = 0 represents the
undisturbed free surface and the positive y-axis is taken vertically downwards
(see Figure 1). The bottom of the domain has a small undulation which is
described by y = h + εc(x). Here the continuous and bounded function c(x)
indicates the shape of the undulation and is thus non-zero within the interval of
x-axis where the undulation is present. Beyond this interval, c(x) is identically
equal to zero. The dimensionless parameter ε(� 1) represents the smallness
of the irregularity at the bottom of the water domain. The vertical elastic
plate occupies the region x = 0, l1 < y < l2. It is assumed that the motion is

h

l2

l1

y = 0

y

inc

ref trans

1

Figure 1. Physical representation of the problem.

irrotational, time harmonic and the fluid is inviscid and incompressible. Again,
considering the linear water wave theory the velocity potential can be expressed
as Re{φ(x, y)e−iσt} (cf. [3]) where σ is the angular frequency. Then the complex
valued potential function φ(x, y) satisfies

∂2φ

∂x2
+
∂2φ

∂y2
= 0 in the fluid region, (2.1)

Kφ+ φy = 0 on y = 0,−∞ < x <∞ (2.2)
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with K = σ2/g (g is acceleration due to gravity),

∂φ

∂n
= 0 on y = h+ εc(x), (2.3)

n denoting the normal direction at any point of the undulating bottom. We
should also specify the edge condition

∇φ ∼ O(r−1/2) as r → 0, (2.4)

r indicating the distance of an arbitrary point in the water region from either
end of the elastic plate and the radiation conditions

φ(x, y)→
{

(eik0x +Re−ik0x)ψ0(y) as x→ −∞,
T eik0xψ0(y) as x→∞. (2.5)

Here ψ0(y) = N−10 cosh k0(h− y), N0 = [(2k0h+ sinh 2k0h)/(4k0h)]1/2 and k0
is the real positive root of k tanh kh = K. In equation (2.5), R and T represent
the reflection and transmission coefficients respectively.

The condition on the elastic plate is given by (cf. [16])

D
d4φx
dy4

−mKφx = K(φ− − φ+) on x = 0, l1 < y < l2. (2.6)

Here φ− = φ(0−, y) and φ+ = φ(0+, y) denote the potentials on the left and

the right sides of the plate. D = Eh′3

12ρ(1−ν2)g is the stiffness of the elastic

plate, E represents the Young’s modulus, ν denotes the Poisson’s ratio. Again,
m = ρ′/ρh′, ρ and ρ′ are the densities of water and plate material, h′ is its
negligible thickness. Also, when the top end of the plate is clamped and the
bottom end is free then the end conditions are given by

dφx
dy

= 0 = φx at y = l1 and
d2φx
dy2

= 0 =
d3φx
dy3

at y = l2.

3 Method of solution

To implement the solution procedure as described in Section 1 we observe that
the bottom condition (2.3) can be expressed as (cf. [14])

∂φ

∂y
− ε d

dx

{
c(x)

∂φ(x, h)

∂x

}
+O(ε2) = 0 on y = h. (3.1)

The form of the above approximation (3.1) and the smallness of the parameter ε
indicate that the potential function and the constants R and T can be expanded
as

φ(x, y; ε) = φ0 + εφ1 +O(ε2), R(ε) = R0 + εR1 +O(ε2),

T (ε) = T0 + εT1 +O(ε2). (3.2)

Math. Model. Anal., 25(3):323–337, 2020.
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Substituting the above expansions in (2.1)–(2.2), (2.4)–(2.6), (3.1) and equating
the coefficients of ε up to first order terms we find that φ0 and φ1 satisfy two
boundary value problems namely BVP-0 for φ0 and BVP-1 for φ1.

BVP-0 (for the function φ0(x, y)):

∂2φ0
∂x2

+
∂2φ0
∂y2

= 0 in 0 < y < h, −∞ < x <∞,

Kφ0 +
∂φ0
∂y

= 0 on y = 0, −∞ < x <∞,

∂φ0
∂y

= 0 on y = h, (3.3)

D
d4φ0x
dy4

−mKφ0x = K(φ−0 − φ+0 ) on x = 0, l1 < y < l2,

∇φ0 ∼ O(r−1/2) as r → 0,

φ0(x, y)→
{

(eik0x +R0e−ik0x)ψ0(y) as x→ −∞,
T0eik0xψ0(y) as x→∞.

BVP-1 (for the function φ1(x, y)):

∂2φ1
∂x2

+
∂2φ1
∂y2

= 0 in 0 < y < h,−∞ < x <∞,

Kφ1 +
∂φ1
∂y

= 0 on y = 0, −∞ < x <∞,

∂φ1
∂y

=
d

dx
{c(x)φ0x} on y = h,

D
d4φ1x
dy4

−mKφ1x = K(φ−1 − φ+1 ) on x = 0, l1 < y < l2,

∇φ1 ∼ O(r−1/2) as r → 0, φ1(x, y)→
{
R1e−ik0xψ0(y) as x→ −∞,
T1eik0xψ0(y) as x→∞.

y = 0

y

(−X, 0)

(−X,h)

(X, 0)

(X,h)

1

Figure 2. Contour for application of Green’s integral theorem.

The solution of BVP-1 depends on the solution of BVP-0. It is interesting
to note that the values of R1 and T1 can be found without solving for φ1 and
simply using integrals involving c(x) and φ0x as determined in equations (3.4)
and (3.5). This can be achieved by applying Green’s integral theorem on the
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potential functions φ0(x, y) and φ1(x, y) over the region bounded externally by
the lines

y=0,−X≤x≤X;x=−X, 0 ≤ y ≤ h; y = h,−X ≤ x ≤ X;x = X, 0 ≤ y ≤ h;

and internally by a contour enclosing the submerged elastic plate (see Figure 2).

Considering the limit X →∞ and shrinking the contour enclosing the plate
we determine R1 as

2ik0R1h =

∫ ∞
−∞

c(x)φ20x(x, h)dx. (3.4)

Again applying Green’s integral theorem on φ0(−x, y) and φ1(x, y) in the same
region we obtain

2ik0T1h =

∫ ∞
−∞

c(x)φ0x(x, h)φ0x(−x, h)dx. (3.5)

Before we proceed further we must mention that our analysis is valid for small
bottom deformations such as the presence of natural sand ripples at the bottom.
The ripples have similar forms as that of sinusoidal functions. We thus consider
c(x) as

c(x)→
{
c0 sinλx, −Mπ

λ ≤ x ≤ Mπ
λ ,

0, otherwise.

Here M is a positive integer denoting the number of ripples at the bottom, λ
is the wave number of each ripple and c0 represents the ripple amplitude.

Substituting the above form of c(x) into equation (3.5) we find that T1
vanishes identically where we have used the condition c(−x) = −c(x). Now,
equation (3.4) can be manipulated as

2ik0R1h =

∞∫
0

c(x)
{
φ0x(x, h)− φ0x(−x, h)

}{
φ0x(x, h) + φ0x(−x, h)

}
dx. (3.6)

From the above expression R1 can be estimated numerically if we can compute
the values of φ0x(x, h) and φ0x(−x, h). For finding the values of φ0x(x, h) and
φ0x(−x, h) we solve equation (3.3) using the end conditions

dφ0x
dy

= 0 = φ0x at y = l1 and
d2φ0x
dy2

= 0 =
d3φ0x
dy3

at y = l2.

It may be noticed that the solution φ0x to the differential equation (3.3) in-
volves the unknown potential difference across the elastic plate. This unknown
function is determined numerically by solving a hypersingular integral equa-
tion and using the solution, finally the normal derivative of φ0 on the plate is
calculated (cf. [11]). The method is briefly illustrated in Appendix.

Math. Model. Anal., 25(3):323–337, 2020.
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4 Numerical results

In this section, we present some relevant graphs of absolute values of R1 and
R0 + εR1 depending on the changes of different parametric values. Physical
quantities are made dimensionless with respect to the uniform depth of the
water domain. The plate is clamped at the upper end and free at the lower
end.

In Figure 3, we present the values of |R1| as a function of Kh to compare
the results for a rigid plate (cf. [14]) to that of the elastic plate. We consider
a negligible submergence depth (l1/h = 0.001) of the upper end of the plate
to compare our results with those for a partially immersed barrier. It is clear
that when D is large enough [D/h4 = 10], the absolute values of the first order
reflection coefficient for an elastic plate completely agree with those for a rigid
plate.

Kh
0 0.2 0.4 0.6 0.8 1

jR
1j

0

0.02

0.04

0.06

0.08

0.1

Mandal and Gayen [2006]

D=h4 = 10

Figure 3. Comparison of the
magnitudes of |R1| between rigid and

elastic plates with
D/h4 = 10, l1/h = 0.001, l2/h =

0.1,M = 1, c0/h = 0.1, λh = 1 and
m/h = 0.001.

k0h
0 0.2 0.4 0.6 0.8 1

jR
1j

0

0.1

0.2

0.3

Martha and Bora [2007]

Our results for L=h = 0:001

Figure 4. Comparison of the
magnitudes of |R1| between the results

for the sole effect of bottom
undulation [15] and our results with

negligible plate lenth for fixed
M = 3, c0/h = 0.1, λh = 1 and

l1/h = 0.1.

Figure 4 represents the fact that the values of |R1| are the same in both the
cases when there is no plate (cf. [15]) and when the dimensionless plate length
L/h = l2−l1

h is very small. Values of other parameters are kept fixed as M = 3,
c0/h = 0.1, D/h4 = 1, λh = 1 and m/h = 0.001. These two figures give a check
on the correctness of our numerical results.

Figure 5 depicts the values of |R1| with respect to Kh for different values
of D/h4, whereas Figure 6 represents the values of |R0 + εR1| as a function
of Kh. In these two figures the rest of the parametric values are fixed as
l1/h = 0.1, l2/h = 0.2,M = 1, c0/h = 0.1, λh = 1 and m/h = 0.001. For
Figure 6 we consider ε = 0.001. These figures illustrate the fact that the values
of |R1| as well as the values of |R0 + εR1| are increasing with increasing values
of stiffness (D/h4). As D becomes sufficiently large i.e. when D/h4 ≥ 1, the
elastic plate behaves as a rigid plate. After a certain level (D/h4 = 1) the
changes are not significant. Also, if we compare the corresponding curves of
Figure 5 and Figure 6, we observe that the presence of the elastic plate increases
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Kh
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jR
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D=h4 = 0:001
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Figure 5. Variation of the values of
|R1| with respect to Kh for different

values of D/h4 when l1/h = 0.1, l2/h =
0.2,M = 1, c0/h = 0.1, λh = 1 and

m/h = 0.001.

Kh
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0R
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Figure 6. Variation of the values of
|R0 + εR1| with respect to Kh for

different values of D/h4 when l1/h =
0.1, l2/h = 0.2,M = 1, c0/h = 0.1, λh = 1

and m/h = 0.001.

the reflection to some extent.

Kh
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Figure 7. |R1| for different plate
lengths with M = 1, c0/h = 0.1, l1/h =

0.01, D/h4 = 1.

Kh
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L=h = 0:3

L=h = 0:5

Figure 8. |R0 + εR1| for different
plate lengths with M = 1, c0/h =

0.1, l1/h = 0.01, D/h4 = 1.

Figure 7 represents the changes in the nature of the graph of absolute value
of the first order reflection coefficient (|R1|) with respect to non-dimensional
wave number (Kh) for various values of the non-dimensional plate length
(L/h = 0.001, 0.1, 0.3, 0.5) when the value of l1/h(= 0.01) is fixed. Here, the
number of ripples and the ripple amplitude are also kept fixed (M = 1, c0/h =
0.1). From this figure, we realize the fact that |R1| has an oscillatory nature
as a function of Kh and the zeros of |R1| are shifted towards the left with an
increasing plate length. It indicates that with increasing plate length the zero
values of |R1| appear at some lower frequency of the incoming wave. In other
words, we can say at those particular frequencies the contribution of the bottom
undulation in reflecting incoming waves is negligible. In Figure 8, the absolute
values of R0 + εR1 are plotted for different plate lengths L/h = 0.1, 0.3, 0.5.
Other parametric values are kept fixed as l1/h = 0.01,M = 1, c0/h = 0.1.
Through Figures 7 and 8, it can be noticed that with increasing plate length
the peak value of |R1| decreases whereas the value of |R0 + εR1| increases

Math. Model. Anal., 25(3):323–337, 2020.
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significantly.

0 0.2 0.4 0.6 0.8 1
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Figure 9. |R1| for different ripple
number with

l1/h = 0.05, l2/h = 0.2, c0/h = 0.1.
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Figure 10. |R1| for different ripple
amplitude with

l1/h = 0.01, l2/h = 0.2,M = 1.

Figure 9 shows the effect of ripple numbers on |R1| for the fixed values of
l1/h = 0.05, l2/h = 0.2 and c0/h = 0.1. The value of |R1| increases and becomes
more oscillatory with increasing number of ripples. The reason behind this
outcome is the multiple interactions of the incident wave with ripple tops. In
Figure 10, the absolute value of the first order reflection coefficient is depicted
against Kh for various ripple amplitude. It is clear that for higher ripple
amplitudes |R1| increases. In this figure, the fixed values are l1/h = 0.01, l2/h =
0.2 and M = 1.

Bragg reflection over varying topography is an important topic to discuss in
the context of problems dealing with bottom irregularities. Several researchers
have studied the developed models of Bragg reflection (cf. Kirby [9]). Through
these studies, ocean engineers can make a clear idea about the peak value of
reflection due to bottom undulation and the condition of its occurrence. In early
studies, it has been demonstrated that in a simple case of a patch of sinusoidal
ripples in the bottom, the resonant nature of the first order reflection depends
on the wavelengths of the incoming wave and that of the undulating bottom.

0 0.5 1 1.5 2
0

0.04

0.08

0.12

0.16

Figure 11. |R1| versus α for different
values of plate length with l1/h =

0.01, c0/h = 0.1,M = 2,Kh = 0.25.
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L=h = 0:4

L=h = 0:6

Figure 12. |R1| versus α for different
values of plate length with l1/h =
0.01, c0/h = 0.1,M = 2,Kh = 1.5.

In Figures 11 and 12 we represent the graphs of |R1| with respect to α(= 2k0
λ )
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for various values of L/h with fixed values of l1 = 0.01,M = 2, c0/h = 0.1 and
D/h4 = 1. In Figure 11, Kh = 0.25 whereas in Figure 12, Kh = 1.5. The
value of α for which |R1| attains its highest value is almost unity. Though in
Figure 11, the differences between the peak values of |R1| for different values
of L/h are not clearly visible but for a moderate value of Kh(= 1.5) it is
detectable that with increasing plate length the peak values of |R1| are shifted
to the left.

5 Conclusions

The problem of wave scattering by a thin elastic plate in the presence of an un-
dulating bottom has been studied. Employing a simplified perturbation analy-
sis the first-order reflection and transmission coefficients are expressed in terms
of integrals involving the shape function describing the bottom deformation and
the normal derivative of potential function related to the problem of uniform
finite depth. A particular case of bottom deformation has been considered in
the form of sinusoidal ripples. For this particular choice, the first order trans-
mission coefficient vanishes and the first order reflection coefficient is calculated
numerically and presented graphically for different parametric values. Due to
multiple interactions of waves with an elastic plate and ripples at the bottom,
|R1| shows an oscillatory nature. From the graphs presented above, it is quite
clear that the value of |R1| increases in absence of a barrier (see Figure 7). It
has been established through graphical comparison with published results (see
Figure 1) that the values of |R1| in the presence of an elastic plate for large
rigidity are the same as those in the presence of a rigid plate (cf. Mandal and
Gayen [14]). The variations of |R1| and |R0+εR1| with varying flexural rigidity
of the plate show that the net reflection increases as the plate tends to become
rigid. Comparison of graphs for |R0 + εR1| with those for |R1| clarify the fact
that the joint effect of the plate and the small bottom undulation increases the
reflection due to the sole effect of bottom undulation to some extent. |R1| has
also been presented with respect to the parametric value α denoting the ratio
of the wavelength of the incoming wave to that of the bottom undulation, from
which an observation can be made about the resonant interactions of waves
with the ripples. These observations might be useful in modelling a flexible
breakwater placed in a fluid region with small bottom undulations.
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Appendix

Determination of the expression of φ0x(x, h).
We first construct a Green’s function g1(η, y) corresponding to the equation

(3.3). Here g1(η, y) satisfies

d4g1(η, y)

dη4
− γ4g1(η, y) = δ(η − y), l1 < y, η < l2; γ4 =

mK

D
(A.1)

together with the end conditions

g1 = 0 = g1η, η = l1, g1ηη = 0 = g1ηηη, η = l2.

Other inherent properties satisfied by g1:

g1, g1η, g1ηη to be continuous at η= y,(∂3g1
∂η3

)
η=y+0

−
(∂3g1
∂η3

)
η=y−0

= −1.


The general solution of equation (A.1) is given by

g(η, y) =


4∑
i=1

Ai(y)eγiη, l1 < η < y < l2,

4∑
i=1

Bi(y)eγiη, l1 < y < η < l2,
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where γ1, γ2 = ±iγ, γ3, γ4 = ±γ and the unknowns Ai and Bi’s are found by
solving a matrix equation PQ=R, where

P =


e−iγl1 eiγl1 e−γl1 eγl1

ie−iγl1 −ieiγl1 e−γl1 −eγl1

−eiγl2 −e−iγl2 eγl2 e−γl2

−ieiγl2 ie−iγl2 eγl2 −e−γl2

 , Q =


A1

A2

A3

A4



and R = 1
4γ3


0
0

−ieiγ(l2−y) + ie−iγ(l2−y) + eγ(l2−y) − e−γ(l2−y)

eiγ(l2−y) + e−iγ(l2−y) + eγ(l2−y) + e−γ(l2−y)

 , together with

the relations

B1=A1−
i

4γ3
e−iγy, B2=A2+

i

4γ3
eiγy, B3=A3−

1

4γ3
e−γy, B4=A4 +

1

4γ3
eγy.

Now the solution of the equation (3.3) is expressed as

φ0x(0, y) =
γ4

m

∫ l2

l1

g1(η, y)(φ01(0, η)− φ02(0, η)) dη, for l1 < y < l2, (A.2)

where φ01 ≡ φ−0 andφ02 ≡ φ+0 . Note that the above expression is not enough
for numerical computation of φ0x as its right hand side involves the unknown
potential difference function (φ01(η)− φ02(η)).

(ξ, η)
δ

y = 0

y

(−X, 0)

(−X,h)

(X, 0)

(X,h)

1

Figure 13. Contour for application of Green’s integral theorem.

We thus seek for an alternative expression of φ0x(0, y). Applying Green’s
integral theorem to φ0x(0, y) − eik0xψ0(y) and G(x, y; ξ, η) (the fundamental
potential function due to line source at (ξ, η)) in the domain given in Figure 13
we obtain an integral representation of φ0(x, y) as (cf. Chakraborty et al. [2])

φ0(x, y) = eik0xψ0(y)−
∫ l2

l1

(φ01(0, η)− φ02(0, η))
∂G
∂ξ

(0, η;x, y)dη. (A.3)

Differentiating both sides with respect to x and taking the limit x→ 0 we get

φ0x(0, y)=
∂

∂x

[
eik0xψ0(y)

]
x=0
−
∫
X
l2

l1

[φ01−φ02](0, η)
∂2G
∂x∂ξ

(0, η; 0, y)dη. (A.4)

The integration is performed in the sense of Hadamard finite-part integral and
thus a cross is put on the integral sign. The two expressions of φ0x as given in
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the equations (A.2) and (A.4) are compared to yield the following hypersingular
integral equation∫
X
l2

l1

[ ∂2G
∂x∂ξ

(0, η; 0, y) +
γ4

m
g1(η, y)

]
[φ01 − φ02](0, η)dη =

∂

∂x

[
eik0xψ0(y)

]
x=0

.

(A.5)

This technique is legitimated by several researchers (cf. Gayen and Mondal [8])
for studying the problems of waves scattering by thin plates. Considering the
transformation (y, η) = l2−l1

2 + l2−l1
2 (u, t) we can rewrite equation (A.5) as∫

X
1

−1
f(t)

[
− 1

(u− t)2 − κ(u, t)
]
dt = (l2 − l1)πik0ψ0(u), − 1 < u < 1, (A.6)

where f(t) = [φ01 − φ02](0, t) and

κ(u, t) =
( l2 − l1

2

)2[
− 1

Y 2
+ 2

∫ ∞
0

ke−kh sinh kη sinh ky

cosh kh
dk − 2π

γ4

m
g1(η, y)

+2πi
{2k20 cosh k0(h−η) cosh k0(h−y)

2k0h+ sinh 2k0h
+

∞∑
n=1

2k2n cos kn(h−η) cos kn(h−y)

2knh+ sin 2knh

}]
.

In the above expression of κ(u, t), Y = y + η and kn (n = 1, 2, ...) are positive
real roots of K cos kh + k sin kh = 0. The unknown function f(t) is expanded
as

f(t) = (1− t2)1/2
N∑
n=0

anUn(t). (A.7)

The above approximation for f(t) is consistent with the end point behaviour
(2.4) of φ. Here an (n = 0, 1, 2..., N) are the unknown constants to be deter-
mined and Un are the Chebyshev polynomials of the second kind. Substituting
this expression of f(t) in equation (A.6) and collocating at (N + 1) points
u = uj = cos 2j+1

2N+2 , j = 0, 1, 2, ..., N we determine a system of (N + 1) linear
equations, given by

N∑
n=0

anPn(uj) = (l2 − l1)πik0ψ0(uj), (A.8)

Pn(uj) = π(n+ 1)Un(uj) +

∫ 1

−1
(1− t2)1/2κ(uj , t)Un(t)dt.

Solving the system of equations (A.8) for an’s and substituting them into equa-
tion (A.7) we get the estimation for f(t). Also, from equation (A.3) we obtain

φ0x(x, h) = ik0eik0xψ0(h)−
∫ l2

l1

(φ01(0, η)− φ02(0, η))
∂2G
∂x∂ξ

(0, η;x, h)dη.

Now, using the value of f(t)(= [φ01 − φ02](0, t)) which is already computed
from equation (A.7) after solving the system (A.8), we determine φ0x(x, h). In
a similar manner we express φ0x(−x, h). Using expressions of φ0x(x, h) and
φ0x(−x, h) we obtain the value of R1 from the equation (3.6).
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