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Abstract. The new virtual modelling tool is constructed, which is used for optimal
design of power transmission lines and cables. The construction of such lines should
meet the latest power transmission network technical and economical requirements.
The solver is is based on classical and modified mathematical models describing main
heat conduction processes: diffusion, convection and radiation in various materials
and environments. In basic heat conduction equation, we take into account a linear
dependence of the resistance on temperature. Multi-physic and multi-scale models
are required to simulate industrial cases of power transmission lines. The velocity
of convective transport of the heat in air regions is simulated by solving a coupled
thermo-convection problem including the heat conduction problem and the standard
Navier-Stokes model of the heat flow in air. Another multi-physic model is used to
describe changes of material heat conduction coefficients in soil due to influence of
heating. This process is described by by solving a simplified mass balance equation
for flows in porous media. The multi-scale and homogenization analysis is required
to to formulate simple and accurate mathematical describing heat conduction process
is metal region which consists of a bundle of tightly coupled metal wires. The FVM
is used to solve the obtained systems of differential equations. Discretization of the
domain is done by applying “aCute” mesh generator, which is a modification of the
well-known Triangle mesh generator. The discrete schemes are implemented by using
the OpenFOAM tool.

Keywords: heat conduction, multi-scale model, multi-physics, homogenized model, finite

volume method.

AMS Subject Classification: 65M08; 65Z05; 80A20.

1 Introduction

This research is aimed to develop design rules for power transmission lines and
cables, which have to meet the latest power transmission network technical
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and economical requirements. At present the power lines are over-dimensioned
by up to 60% in terms of transmitted power. However, today, as the new
distributed generating capacities are installed e.g. large wind farms, bio-gas
plants or waist-to-energy plants, the infrastructure of power grid must be re-
designed or new optimization strategies for the available grid developed. Power
cables for power distribution applications are still rated according to IEC 287
and IEC 853 standards, which use the Neher and McGrath methods from
1957 [1, 15]. However, today there are many applications, where analytical
and heuristic formulas cannot describe precisely enough the conditions under
which the cables are installed. An example could be an underground cable
route, where the installation conditions for a cable are different only for a short
distance including only a short crossing of the road. The present standards
require that the cable’s current-carrying capacity must be reduced due the
worst case conditions. Today the cost effective designing of cable installations
comes us an urgent need, since the copper price level has reached its maximum
since decades. At the same time the safety of the design is also must be
guaranteed. Thus a direct simulation of cables including all specific conditions
under which the cables are operating is needed. The knowledge of dynamics (in
time) of heat distribution in/around electrical cables is necessary to optimize
the usage of electricity transferring infrastructure. It is important to determine
various parameters of the cable networks: maximal electric current for the
cable; optimal cable parameters in certain circumstances; cable life expectancy
and many other engineering factors.

The main aim of this paper is to construct accurate and robust numerical
solvers for simulation of heat transfer in eletrical cables. Some preliminary
results of this paper are presented in our short paper [4].

The rest of this paper is organized as follows. In Section 2, the mathematical
models of electrical cables in various environments are presented. They describe
various layouts of cables directly buried in soil, cables in pipes and the pipes
directly buried in soil, cables in air. Heat transfer models are defined and the
heat source mainly depends on the resistivity of the electrical current and is
described by the Joule-Lenz law. Additional source of the heat is described by
heating effect of the sun.

In Section 3, numerical algorithms are described. The solvers are con-
structed by using the Finite Volume Method (FVM). Discretization of the
domain is done by applying “aCute” mesh generator, which is a modification
of the well-known Triangle mesh generator. The discrete schemes are imple-
mented by using the OpenFOAM tool.

Some results of numerical experiments are presented in Section 4. One ro-
bust and efficient numerical algorithm is presented to find the maximal value
of electrical current for a specified maximal temperature of cables. Such infor-
mation is most important for engineers in construction of networks of electrical
cables.

Multi-scale structures should be simulated in metal region of cables. In Sec-
tion 5 simplified averaged mathematical models are derived, homogenization
of the conductance region of electrical cables is done by defining heuristically
new homogeneous metal domains with some virtual materials filling these do-
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mains. Results of computational experiments are presented and the accuracy
of homogenized models is investigated.

2 Mathematical Models

In this section we formulate main mathematical models of heat transfer in un-
derground electrical cables. We will restrict only to those cases, which are most
important for typical layouts of industrial cable networks. A good review on
such mathematical models is presented in [9, 13]. Thus we will present only
a short description of basic details on high voltage cables and their installa-
tion conditions. Figure 1 illustrates a typical high voltage cable, it consists
of conductor (most often copper or aluminum), conductor screen, insulation
layer (cross-linked polyethylene), insulation screen, metallic shielding (cop-
per tape/wire, aluminum/lead sheath) and outer covering (polyvinyl chloride,
polyethylene, nylon) layers.

Figure 1. A standard structure of high-voltage cables consisting of six layers.

Different installation environments are considered in real world applications.
Here we restrict to simulation of the following environments and layouts of
cables:

a) cables in air,

b) cables directly buried in soil,

c) cables are put into pipe and the pipe is directly buried in soil,

d) cable groups (duct banks).

In each case a group of cables can be arranged horizontally or vertically (see,
Figure 2).

Next we present basic mathematical models which are used in our simula-
tions of heat transfer in different environments.

2.1 Heat Transfer in Solids

It is well-known that electric current flowing through cable generates heat. This
process is described by the Joule–Lenz law. The non-stationary heat-transfer is

Math. Model. Anal., 20(6):701–714, 2015.
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(a) (b) (c) (d)

Figure 2. Examples of cables layouts: (a,b) three single core cables are arranged
horizontally; (c) three single core cables are arranged vertically; (d) three-core cable.

described by classical heat equations in heterogeneous medium [2,3]. Since the
bundle of cables consisting of metal cores and various insulation layers is placed
in a medium, we assume that the coefficients of thermal conductivity, material
density and specific heat capacity are discontinuous piece-constant functions
depending on spatial coordinates.

Since the heat transfer mechanism in the underground electrical cables is
quite complicated, and many processes can be described only approximately,
the structure of cables also can be simplified. In taking any simplification
assumptions we should follow one important rule of engineering design – the
obtained approximate models should give estimates from above of real exper-
imental values of temperatures. In such a case we can guarantee that the
recommendations done on the basis of simulations are safe.

It is typical in applications, that the length of cable is much bigger than its
diameter, thus effects along the cables’ length can be neglected. A sand or soil
area around cables is much larger than cables’ area, so usually two-dimensional
nonstationary models are sufficient for the analysis.

We note that properties of different filler (materials) should be taken into
account. In simple approximations we consider apriori defined regions of sand,
wet and dry soil and other materials. In more challenging situations the multi-
physic models are used and the flow of water in porous media is simulated in
a coupled system of equations.

For heat transfer in underground cables we assume the diffusion to be the
main transfer mechanism. A mathematical model of the heat source is de-
scribed by the Joule–Lenz law. Then the mathematical model of non-stationary
heat-transfer is given by the parabolic differential equation [2, 3]:

cρ
∂T

∂t
= ∇ · (λ∇T ) + q0(1 + α(T − T ∗))I2, t ∈ [0, tmax], x ∈ Ω,

T (x, 0) = T0, when x ∈ Ω,
T and λ∇T are continuous, when x ∈ Ω,

(2.1)

here x = (x1, x2), Ω is the domain, T (x, t) is temperature in the Kelvin scale,
λ(x) > 0 is the heat conductivity coefficient, q0(x, t, T ) defines the the source
function. Coefficient ρ(x) > 0 is the mass density, c(x) > 0 is the specific
heat capacity, α(x) is temperature resistance coefficient, T0 is the initial tem-
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perature. In the model, we take into account dependence of the resistance on
temperature, T ∗ is the reference temperature and I is the electrical current.
Due to different properties of materials included into the model, coefficients
λ, c, ρ are discontinuous at boundaries of different regions, the geometry of
these regions can be very complicated, and the values of coefficients may vary
thousands times. That makes the simulation task very challenging.

Here we should take into account the fact, that metal regions of the cable
are not homogeneous but are a bundle of small wires tightly put together. We
still assume that the diffusion of heat is the main transfer mechanism, but
a proper homogenization technique should be applied to derive virtual metal
regions. Homogenized models will be investigated in the next section.

Various boundary conditions are applied to describe the heat flow through
boundaries of the domain Ω, which is rectangular in simulations given below:

• T (x, t) = Tb1 for the upper boundary, T (x, t) = Tb2 for the lower bound-
ary, ∂T

∂x1
= 0 for the left and right boundaries are applied to simulate

boundary conditions in winter (Tb1 = Tb2) or summer (Tb1 > Tb2).

• Boundary conditions of the third type

λ
∂T

∂x2
= β(T )(T (x, t)− Tair) + ψ(x, t)

are applied on the upper boundary to evaluate the cooling effects of wind
in air and heating effect of the sun. The nonlinear coefficient β(T ) defines
the advection and radiation processes.

2.2 Cable in Pipe

Figure 3 shows a single cable placed at the bottom of a plastic pipe directly
buried in the soil. The plastic pipe is placed in the center of the soil domain.
Due to its relatively low heat conduction coefficient a plastic pipe represents

Figure 3. A single cable in directly buried pipe.

a significant thermal resistance for the cooling of the cable. The main heat
transfer mechanism in air is described by air circulation inside the plastic pipe.

Math. Model. Anal., 20(6):701–714, 2015.
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Velocities of the free convection process are computed by solving the Navier-
Stokes equations (the conservation of continuity, momentum and energy equa-
tions) in the air area. In order to get a simpler mathematical model, we assume
the air to be incompressible for small velocities. Then, assuming the velocities
are not large, the model of laminar incompressible flow is given by the following
system of equations:

∇ · u = 0, (2.2)

ρ
∂u

∂t
+ ρu∇ · u−∇ · (η∇u) = −∇p− ρα̃g(T − T0), (2.3)

ρc
(∂T
∂t

+∇ · (uT )
)
−∇ · (λ∇T ) = q, (2.4)

where u(x, t) is velocity of the flow, p is the pressure, η is the dynamic viscosity,
α̃ is the thermal expansion coefficient.

Then the heat conduction equation (2.4) is extended to the whole domain.
In the soil, pipe and cable regions the advection term ∇ · (uT ) is equal to
zero, and equation (2.4) is reduced to the basic non-stationary heat conduction
equation (2.1).

2.3 Heat Transfer in Soil

In most papers dedicated to simulation of heat conduction in electrical cables
the soil is considered as solid material. In this subsection we formulate a
multi-physic mathematical model of coupled heat and water transfer in variable
saturated soil. The porous medium is considered to be rigid and unsaturated,
hence two phases are present: liquid (water) and gas (water vapor and air).
The temperature of the solid, liquid and gas phases are considered to be in
local thermal equilibrium. The Richards equation is obtained from the mass
conservation equation for liquid phase and Darcy law [4,7]:

ε
∂ρwS

l

∂t
+∇ ·

(
−ρw ~K

klrel(S
l)

µw

(
−∇pc(Sl)− ρw~g

))
= 0, (2.5)

where ε is porosity of the porous medium, ρw is density of the water, Sl is
saturation of the liquid phase, pc is capillary pressure, ~K is intrinsic perme-
ability tensor of the porous medium, µw is viscosity of the water, ~g is vector of
gravitational acceleration. In general, the capillary pressure also depends on
the temperature pc = pc(Sl, T ).

For the description of the heat transfer, the energy conservation is used

(ρc)eff
∂T

∂t
+

(
ρw ~K

klrel(S
l)

µw

(
∇pc(Sl) + ρw~g

))
· ∇T = ∇ · (λeff∇T ) + q,

where (ρc)eff is the effective heat capacity, λeff is the effective heat conduc-
tivity.

The presented mathematical model is used as a basic template for construc-
tion of modified models. Here we shortly note on two possible generalizations.
The soil-atmosphere interface is an important boundary condition affecting
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subsurface movement of liquid water and heat under field conditions. Another
approach is to use a generalization of the Darcy law, when the flow velocity di-
rectly depends also on the gradient of temperature. It should be remarked that
the last generalization is considered as an heuristic, which gives the additional
degree of freedom to fit the mathematical model to experimental data.

3 Numerical Approximations

The obtained systems of PDEs are solved by using Finite Volume Method.
OpenFOAM (Open source Field Operation And Manipulation) tool is used to
implement the given finite volume schemes. OpenFOAM is a C++ toolbox (li-
brary) targeted for the development of customized numerical solvers for partial
differential equations [17].

Here we describe briefly two main challenges we have solved in order to
adapt this universal and robust tool to simulate heat transfer processes in high
power electrical cables.

The first one deals with adaptation of standard library solvers to solve
the coupled multi-physics mathematical model (2.2) – (2.4). It consists of
different models in different sub-regions and application of OpenFOAM func-
tionality requires some non-trivial modifications of basic models presented in
the OpenFOAM library. For mathematical models describing coupled multi-
physics problems, two different approaches can be used to design robust and
efficient solvers [14]. Monolithic solvers operate directly on the system of non-
linear algebraic equations, obtained after the discretization of the system of
PDEs. In the partitioning approach the discrete system is solved by using the
single-physics solvers in decoupled fixed-point iterations. A review for a com-
parison of fixed-point methods is given in [10]. The latter approach is imple-
mented in OpenFOAM. The important original part of our algorithm consists
in implementation of FVM scheme for Navier-Stokes equations as an indepen-
dent standard OpenFOAM solver on an additional mesh, which is embedded
into the main discrete mesh. Such approach enables users to solve decoupled
equations of the full multi-physics system only on parts of the whole domain,
thus reducing computational costs essentially.

The second challenge is connected to selection of the optimal mesh to dis-
cretize the given domain and sub-domain describing different types of materials.
In order to approximate heat conduction equation in solid medium (2.1), two
sub-tasks should be solved accurately.

First, the numerical fluxes of the discrete solution must be orthogonal to the
boundary of finite volumes [6]. Quadrilater meshes can be generated by using
OpenFOAM native mesh tools, they lead to regular classical five-point stencils
in approximation of diffusion operators. The main drawback of such meshes is
that orthogonality of fluxes is not preserved automatically and should be ob-
tained by applying additional interpolation corrections. Such modified schemes
require iterative implementation even for linear problems. The stability of finite
volume schemes also can be violated due to corrections of flux approximations
and should be investigated for each case of problems. In our solver this problem
is solved by using a proper Delaunay triangulation of the domain. Discretiza-

Math. Model. Anal., 20(6):701–714, 2015.
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tion of the domain is done by applying “aCute” mesh generation tool, which
is a modification of the well-known Triangle mesh generator [19]

Second, a special interpolation should be used for definition of discontinuous
coefficients λ in the discrete diffusion flux term, namely harmonic version of
the interpolation formula [6].

4 Computational Experiments

In this section we present some results of simulations of heat transfer in electri-
cal cables. Our aim is to demonstrate possibilities of the constructed simulation
tool. First we consider the case of one cable which is placed at the bottom of a
plastic pipe buried in the soil. We have simulated the heat transfer during three
summer months, when the soil is assumed to be semi-dry, boundary conditions
are taken T = 293 K on all boundaries, and the electrical current is equal to
470 A. At the final time the solution practically reached a stationary phase.

Figure 4 shows a distribution of temperature and a velocity field in the
domain of computations.

(a) (b)

Figure 4. Simulation results for a single cable in a pipe: (a) distribution of temperature,
(b) distribution of velocity fields.

The presented results show that the main mechanism of heat transfer in
air is describe by the advection processes, thus accurate simulation of velocity
fields is required.

Next we have investigated the influence of different arrangements of cables.
Thus we have considered trefoil cables buried directly in soil and preserved
all remaining conditions the same as in the previous experiment. Results of
computations are given in Figure 5.

The presented results show a strong heating effect on neighboring systems
of trefoil cables and therefore the maximal electrical current should be reduced
in the case of two pairs of trefoil cables.
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(a) (b)

Figure 5. Simulation results for trefoil cables: (a) electrical current I = 609 A, (b)
I = 675 A.

Determination of the maximal electrical current value. In engineering
practice, it is expected to get heat transfer simulation results in the form

Imax = F (Tmax),

where Tmax is the maximal allowed temperature of cables and I is the maximal
possible value of electrical current such that

T (x, t) ≤ Tmax, x ∈ Ω.

Such a form of the solution can be achieved if we get the analytical solution of
simplified mathematical models. In order to provide a similar information for
general more accurate mathematical models we apply the numerical approach.

Since engineers are interested in the upper bound of maximal electrical
current values, then using the well known maximum principle for parabolic
equations we consider the stationary case of the mathematical model for heat
conduction in electrical cables

−∇ · (λ∇T ) = q0I
2
(
1 + α(T − Tb)

)
x ∈ Ω, (4.1)

T (x)|∂Ω = Tb.

The source term depends on the solution T . Taking into account this linear
dependence, it is convenient to rewrite mathematical model (4.1) as elliptic
problem

LT := −∇ · (λ∇T ) + q(x)T = f(x), x ∈ Ω, (4.2)

T (x)|∂Ω = Tb,

the source function and sink term q(x) are defined as

f(x) =

{
q0I

2(1− αTb), x ∈ ΩM ,
0, x 6∈ ΩM ,

q(x) =

{
−q0αI2, x ∈ ΩM ,
0, x 6∈ ΩM ,

where ΩM indicates the domain of metallic core.

Math. Model. Anal., 20(6):701–714, 2015.
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Next we apply the techniques described above and approximate the differ-
ential equation by the standard FVM scheme

LhTh := −∇h · (k∇hTh) + q(X)Th = fh(X), X ∈ Ωh, (4.3)

Th(X)|∂Ωh
= Tb.

Since sink/source term q(x) ≤ 0, thus the existence and convergence of the
discrete solution requires a special analysis. The conclusion depends on the re-
lation among intensity of the source term coefficient q and the type of boundary
conditions. The dependence monitor is defined by the minimal eigenvalue of
the full boundary value problem. We note that a detailed analysis for such
problems is done in [5, 12] and these results can be applied for problem (4.3).

The obtained system of linear equations is solved efficiently by the precon-
ditioned conjugate gradient iterative method and algebraic multigrid method
is used as the preconditioner [16,20].

From mathematical model (4.3) by fixing the value of electrical current I
we compute the distribution of temperature T (x) and find the maximal value
of it

Tmax = G(I). (4.4)

As was stated above, for engineers it is important to get the maximal pos-
sible value of electrical current for a specified bound of the temperature in
domain Ω. Thus we should solve the nonlinear equation (4.4) and find I for a
given Tmax. By using the maximum principle and comparison theorems it is
easy to prove (see [5]) that Th(X, I) depends monotonically on I, i.e.

∂Th(X, I)

∂I
≥ 0, X ∈ Ωh.

Thus equation (4.4) can be solved efficiently by the classical bisection method.
In Table 1 we present results of computational experiments. We have simulated
the heat transfer in a one electrical cable which was buried directly in the dry
soil. The critical values of the electrical current I in A are computed for
different threshold values of temperature Tmax. The discrete mesh consisted of
25100 triangles. The computations were done on the Vilkas cluster at Vilnius
Gediminas technical university. It consists of eight Intel Quad i7-860 processors
(2.80 GHz) interconnected via Gigabit Smart Switch (http://vilkas.vgtu.lt).
The CPU time of finding electrical current value I for a given Tmax is approx.
1.3 seconds.

Table 1. Analysis of maximal values of electrical current: I denotes the largest possible
value of electrical current, T denotes the threshold value of temperature.

T = 70 T = 80 T = 90 T = 100

I 1047.5 1128.5 1200.7 1264.1
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5 Homogenized heat conduction model

In this section we investigate the accuracy of simplified mathematical models
of high power electrical cables obtained after application of homogenization
technique. As was stated above the metal region of electrical cables consists
of tightly bundled copper wires and should be considered as composite mate-
rial. We note, that accurate direct numerical simulation of such complicated
structures should be avoided since:

• The size of a discrete problem and CPU time would increase essentially;

• It is not efficient and appropriate to simulate very accurately one spe-
cific process if simplifying assumptions (and approximation errors) are
introduced at the remaining parts of the model. The optimality principle
requires to balance all approximation errors.

A general theory of multi-scale analysis is quite well developed and homog-
enization of heat conduction models for composite materials can be done by
using two-scale analysis technique [8, 11,18].

In this section we propose to take into account specific details of composite
materials defining electrical cables: the grain scale is not well separated from
the macro-scale and heat transfer in air domains is simplified to virtual diffusion
process with some small diffusion coefficient. Thus the main heat transfer flow
is defined by metal regions. Homogenization of the mathematical model of
electrical cables is done by defining heuristically new geometrical domains of
metal. We put the following main requirements to the averaging procedure:

• A total amount of produced heat should be preserved as in the original
mathematical model;

• Solutions of simplified mathematical models should give an accurate es-
timates from above of the benchmark model solution.

In order to compare different homogenization strategies we consider the
following benchmark domain presented in Figure 6. In conductor domain ΩC =
ΩM ∪ΩA quadratic wires are connected by thin bridges. Let denote the copper
wires domain by ΩM . Air regions ΩA are filled with a virtual material for
which the heat diffusion coefficient λ is much smaller than in the metal region.

We consider two homogenized models of electrical cables.

HM1. The conductor domain is reduced to metal wires domain. An additional
ring is filled with some material, the diffusion coefficient of which can be
fitted to experimental data. We consider two cases when this region is
filled with standard isolator or with some virtual material. No current is
flowing through this ring region.

HM2. The conductor region is filled with metal and the electrical current is
flowing through it. In order to conserve the total amount of heat produced
by this current we should reduce the intensity of the current Ĩ as:

Ĩ2

A2
C

=
AM
AC

I2

A2
M

,

Math. Model. Anal., 20(6):701–714, 2015.
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Figure 6. The domain of benchmark problem: conduction domain ΩC is filled with
quadratic wires connected by thin bridges.

where Aj = |Ωj | denotes the area of domain Ωj .

The benchmark problem is defined by the following geometrical parameters:
the width of the conduction domain ΩC is 0.04, the width of metal bridges is
0.002, the metal domain ΩM fills 0.72 part of the full conduction domain, the
width of isolator ring is 0.02. The diffusion coefficients λ of materials (metal,
virtual air, isolator, soil, virtual filler) are defined as

λM = 387.6, λA = 0.15, λI = 0.333, λS = 1, λF = 2.

Results of computational experiments are given in Table 2. Here we present
maximal values of temperature in K for the benchmark model MM and differ-
ent homogenized models HM . Here HM1a denotes the case of model HM1
when the ring is filled with isolator, HM1b denotes the case when this ring
is filled with with a virtual material. I denotes the value of basic electrical
current in A.

Table 2. Comparison of homogenized mathematical models: maximal values of temperature
in K for the benchmark model MM and different homogenized models HM . Here I denotes
the value of basic electrical current in A.

I MM HM1a HM1b HM2

2400 361.9 368.5 359.7 357.6
2600 377.8 386.4 375.0 372.3

The presented results show that all heuristics give reasonable accuracy and
can be recommended for usage in design of optimal electrical cable networks.
Heuristic HM1a gives the estimate of the solution from above and thus can be
used to define an alternative to requirements defined by standards.
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