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1 Introduction

In this paper, we consider the time-dependent Navier-Stokes problems
ut − ν4u+ (u · ∇)u+∇p = f, x ∈ Ω × [0, T ],
∇ · u = 0, x ∈ Ω × [0, T ],
u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω × [0, T ],

(1.1)

where Ω is a bounded domain in R2 assumed to have a Lipschitz continuous
boundary ∂Ω. u = (u1(x, t), u2(x, t))T represents the velocity vector, p(x, t)
represents the pressure, f(x, t) is the body force, ν = 1/Re the viscosity num-
ber, Re is the Reynolds number.

Developing efficient finite element methods for the Stokes and Navier-Stokes
equations is a key component in the incompressible flow simulation. There are
some iterative methods for solving the stationary Navier-Stokes equations un-
der some strong uniqueness conditions were presented by some authors [15,
18, 19]. The VMS method was first introduced by Hughes and his coworkers
in [22,23]. The basic idea is splitting the solution into resolved and unresolved
scale, representing the unresolved scales in terms of the resolved scales, and
using this representation in the variational equation for the resolved scales.
And there are many works devoted to this method, e.g. VMS method for
the Navier-Stokes equations [26]; a two-level VMS method for convection-
dominated convection-diffusion problems [29]; VMS methods for turbulent flow
[9,30,31]; large-eddy simulation (LES) [24,25,32]; subgrid-scale models for the
incompressible flow [22,44]. In [27,28], John et al. presented the error analysis
of the two different kinds of VMS for the Navier-Stokes equations. The main
difference is the definition of the large scales projection (L2-projection in [28]
and elliptic projection in [27]). There is another class of VMS method which
rely on a three-scale decomposition of the flow field into large, resolved small
and unresolved scales [8].

In the characteristics method, which is a highly effective method for ad-
vection dominated problems, the hyperbolic part (the temporal and advection
term) is treated by a characteristic tracking scheme. In 1982, Douglas and Rus-
sell [11] presented the modified method of characteristics finite element method
(MMOCFEM) firstly. Russell [36] extended it to nonlinear coupled systems in
two and three spatial dimensions. The second order in time method for lin-
ear convection diffusion problems had been given by Ewing and Russell [13].
A characteristics mixed finite element method for advection-dominated trans-
port problems was presented by Arbogast [2] and for Navier-stokes equations
by Buscagkia and Dari [7], respectively. In [34], a detail theory analysis for
Navier-Stokes equations have been done by Pironneau, who obtained subop-
timal convergence rates of the form O(hm + 4t + hm+1/4t) and improved
by Dawson et al [10]. In [4], Boukir et al. presented a second-order time
scheme based on the characteristics method and spatial discretization of finite
element type for the incompressible Navier-Stokes equations. An optimal error
estimate for the Lagrange-Galerkin mixed finite element approximation of the
Navier-Stokes equations was given by Süli in [43]. In [38, 39], one order and

Math. Model. Anal., 20(5):658–680, 2015.



660 Z. Si, Y. Wang and X. Feng

second order MMOC mixed defect-correction finite element methods for time-
dependent Navier-Stokes problems were given. In [41], second order in time
MMOC variational multiscale finite element method for the time-dependent
Navier-Stokes equation was shown. In [40], we presented modified character-
istics gauge-Uzawa finite element method for the conduction-convection equa-
tion. In [42], the modified characteristics finite element method for the Navier-
Stokes/Darcy problem was shown.

In this paper, we present a modified method of characteristics VMS finite
element method based on the L2 projection for the time dependent Navier-
Stokes equations. In our method, the hyperbolic part (the temporal and ad-
vection term) is treated by a characteristic tracking scheme. The VMS based
on projection finite element method is used for spatial discretization. The error
analysis shows that this method has a good convergence property. In order to
show the efficiency of the MMOCVMS finite element method, we firstly present
some numerical results of analytical solution problems. The numerical results
show that the convergence rates are O(h3) in the L2-norm for u, O(h2) in the
semi H1-norm for u and O(h2) in the L2-norm for p by using the Taylor-Hood
element, which agrees very well with our theoretical results. Then, some nu-
merical results of the lid-driven cavity flow with Re = 5000 and 7500 are given.
We present the numerical results as the time are sufficient long enough, then
the solution of the Navier-Stokes should approximate the solution of the steady
state cases. From the numerical results, we can see that a steady state numeri-
cal solutions of the time-dependent Navier-Stokes equations are obtained. And
the numerical solutions are in good agreement with that of the steady Navier-
Stokes equations shown by Ghia et al. [14] and Erturk et al. [12]. Finally, we
present some numerical results for Re = 10000. It shows that the solution is
mainly periodic with small variations in the amplitude of the time evolution at
the monitoring points as the time is sufficient long. And the phase portraits
of the monitoring points show that the variations in amplitude yield a solution
which is quasi-periodic. Furthermore, we present numerical simulations for
the two-dimensional fluid flow around a cylinder. It is observed from these
numerical results that the scheme can result in good accuracy, which shows
that this method is highly efficient.

The rest of this paper is organized as follows. In Section 2, the func-
tional settings of the Navier-Stokes equations are presented. In Section 3 the
MMOCVMS finite element methods is proposed. The following Section 4 we
derive optimal error estimate for the new algorithm. Numerical experiments
will be carried out in Section 5 and some concluding remarks will be given in
the final section.

2 Functional settings of the Navier-Stokes equations

In this section, we aim to describe some notations and results which will be
frequently used in this paper. Firstly we introduce the standard Sobolev spaces

Hn(0, T ;Φ) =

{
v ∈ Φ;

∑
0≤i≤n

∫ T

0

(∥∥∥∥∂iv∂ti
∥∥∥∥
Φ

)2

dt < +∞
}
,
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equipped with the norm

‖v‖Hn(Φ) =

[ ∑
0≤i≤n

∫ T

0

(∥∥∥∥∂iv∂ti
∥∥∥∥
Φ

)2

dt

] 1
2

.

Here Φ denotes a Hilbert space with the norm ‖ · ‖Φ. Especially, when n = 0
we note

‖v‖L2(Φ) =

(∫ T

0

‖v‖2Φdt
) 1

2

.

And, we define

L∞(0, T ;Φ) =

{
v ∈ Φ; ess sup

0≤t≤T
‖v‖Φ < +∞

}
with the norm

‖v‖L∞(Φ) = ess sup
0≤t≤T

‖v‖Φ.

For the mathematical setting of the Navier-Stokes problems (1.1), we intro-
duce the following Hilbert spaces

X := H1
0 (Ω)2, M := L2

0(Ω) =

{
ϕ ∈ L2(Ω);

∫
Ω

ϕdx = 0

}
,

V := {v ∈ X; (∇ · v, q) = 0 ∀q ∈M} .

The following assumptions and results are recalled (see [18]).
(A1) There exists a positive constant C0 which only depends on Ω, such

that

‖u‖0 ≤ C0‖∇u‖0 ∀u ∈ X.
(A2) Assume that Ω is smooth, hence the unique solution (v, q) ∈ (X,M)

of the steady Stokes problem

−4v +∇q = g, ∇ · v = 0, in Ω, v|∂Ω = 0

for any prescribed g ∈ L2(Ω)2 exits and satisfies

‖v‖2 + ‖q‖1 ≤ c‖g‖0,

where c > 0 is a generic constant depending on Ω, which may stand for different
values at its different occurrences. ‖ · ‖2 means the H2−norm, ‖ · ‖1 means the
H1−norm, and ‖ · ‖0 means the L2−norm, respectively.

For simplicity, we assume that the time-dependent Navier-Stokes system
(1.1) has a unique solution (u, p) satisfying

‖u0‖Hr+1 + ‖u‖L∞(I;Hr+1) + ‖ut‖L2(I;Hr+1) + ‖utt‖L2(I;L2)

+ ‖p‖L∞(I;Hr) + ‖pt‖L2(I;Hr) ≤ C

with I = (0, T ) and r ≥ 2.
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3 MMOCVMS finite element methods

3.1 MMOC-mixed finite element methods for the time-dependent
Navier-Stokes equations

For each positive integer N , let {Jn : 1 ≤ n ≤ N} be a partition of [0, T ] into
subintervals Jn = (tn−1, tn], with tn = n4t, 4t = T/N . Set un = u(·, tn) be
the u(x, t) at t = tn. The characteristic trace-back along the field un−1 of a
point x ∈ Ω at time tn to tn−1 is approximately x̄(x, tn−1) = x−4tun−1.

Consequently, the hyperbolic part in the first equation of (1.1) at time tn
is approximated by

ut + un−1 · ∇un ≈ un − ūn−1

4t
,

where

w̄ =

{
w(x̄), x̄ = x−4tun−1 ∈ Ω,
0, otherwise

for any function w.
Let =h be a quasi-uniform partition of Ω̄ into non-overlapping triangles,

indexed by a parameter h = maxK∈=h
{hK ;hK = diam(K)}. We introduce the

finite element subspace Xh ⊂ X, Mh ⊂M as follows

Xh = {vh ∈ X ∩ C0(Ω̄)2; vh|K ∈ P`(K)2 ∀K ∈ =h},
Mh = {qh ∈M ∩ C0(Ω̄); qh|K ∈ Pk(K) ∀K ∈ =h},

where P`(K) is the space of polynomials of degree ` on K. ` ≥ 1, k ≥ 1 are
two integers. Assume that (Xh,Mh) satisfies the discrete LBB condition

sup
vh∈Xh

d(ϕh, vh)

‖∇vh‖0
≥ β‖ϕh‖0 ∀ϕh ∈Mh,

where d(ϕ, v) = (ϕ,∇·v), β > 0 is a constant independent of h. In this paper,
Vh denotes the kernel of the discrete divergence operator

Vh = {vh ∈ Xh; (qh,∇ · vh) = 0 ∀qh ∈Mh} .

With the previous notations, we present the MMOC finite element method
for the Navier-Stokes (1.1): find (un, pn) : {t1, . . . , tN} → Vh ×Mh such that(

unh − ǔ
n−1
h

4t
, vh

)
+ νa(unh, vh)− d(pnh, vh) + d(ϕh, u

n
h) = (fn, vh)

∀vh ∈ Xh, ϕh ∈Mh,(3.1)

where a(u, v) = (∇u,∇v), fn = f(tn),

ǔn−1h =

{
un−1h (x̌), x̌ = x− un−1h 4t ∈ Ω,
0, otherwise.
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3.2 The VMS finite element method and MMOCVMS finite ele-
ment method for the time-dependent Navier-Stokes equations

For the VMS finite element method, a large scale space LH ⊂ L = {L ∈
(L2(Ω))d×d,L = LT } and a so-called turbulent viscosity νT ≥ 0 are introduced.
The semi-discrete problems reads as follows (please see [31]): Find uh : [0, T ]→
vh, ph : [0, T ]→Mh and GH : [0, T ]→ LH satisfying

(uht, vh) + (ν + νT )a(uh, vh)− d(ph, vh) + d(ϕh, uh) + b(uh, uh, vh)

− (νTGH ,∇vh) = (f, vh) ∀ vh ∈ Xh, ϕh ∈Mh,

(GH −∇uh,Lh) = 0 ∀LH ∈ LH , (3.2)

where uh(x, 0) = u0h ∈ Vh is a discretely divergence free approximation of u0,

b(u, v, w) =
1

2

[ ∫
Ω

2∑
i,k=1

ui
∂vk
∂xi

wk −
2∑

i,k=1

ui
∂wk
∂xi

vkdx

]
∀ u, v, w ∈ Xh.

Let PLH
: L→ LH for all v ∈ V , with

(PLH
∇v −∇v,LH) = 0 ∀LH ∈ LH

denote the L2−projection from L onto LH . Then, GH = PLH
∇uh in (3.2).

Since PLH
is an L2−projection, it follows for v ∈ V and ‖∇v‖0 > 0,

νT ‖(I − PLH
)∇v‖20 = νT (‖∇v‖20 − ‖PLH

∇v‖20)

= νT

(
1− ‖PLH

∇v‖20
‖∇v‖20

)
‖∇v‖20 ≡ νadd‖∇v‖20. (3.3)

By 0 ≤ ‖PLH
∇v‖0 ≤ ‖∇v‖0, we get 0 ≤ νadd ≤ νT . By straightforward

calculation, we deduce

(νT∇uh,∇vh)−(νTPLH
∇uh,∇vh) = (νT (I−PLH

)∇uh, (I−PLH
)∇vh). (3.4)

Hence, system (3.2) can be reformulated as: Find uh : [0, T ] → Xh, ph :
[0, T ]→Mh satisfying

(uht, vh) + νa(uh, vh) −d(ph, vh) + d(ϕh, uh) + b(uh, uh, vh)
+(νT (I − PLH

)∇uh, (I − PLH
)∇vh)

= (f, vh) ∀vh ∈ Xh, ϕh ∈Mh.

The MMOC time discretization, combined with the VMS finite element
method in space, leads to the following MMOCVMS finite element method.

Find (unh, p
n
h) ∈ (Xh ∩ Vh)×Mh, such that(

unh − û
n−1
h

4t
, vh

)
+ (ν + νT )a(unh, vh)− d(pnh, vh) + d(ϕh, u

n
h)

− (νTGnH ,∇vh) = (fn, vh) ∀vh ∈ Xh, ϕh ∈Mh, (3.5)

(GnH −∇unh,LH) = 0 ∀LH ∈ LH ,

Math. Model. Anal., 20(5):658–680, 2015.
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where

ûn−1h =

{
un−1h (x̂), x̂ = x− un−1h τ ∈ Ω,
0, otherwise.

Using (3.4), (3.5) can be reformulated as(
unh − û

n−1
h

4t
, vh

)
+ νa(unh, vh)− d(pnh, vh) + d(ϕh, u

n
h) (3.6)

+ (νT (I − PLH
)∇uh, (I − PLH

)∇vh) = (fn, vh) ∀vh ∈ Xh, ϕh ∈Mh.

Remark 1. Since LH has been distinguish between resolved small scales and
large scales, with LH representing the large scales, it must be in some sense
a coarse finite element space. One way of achieving this is choosing it to
be a lower order finite element space than Vh on the same grid (e.g. LH =
D(Vh), D(v) = (∇v +∇vT )/2, see [27] for details). The other way is defining
LH on a coarser grid. This two methods are called one-level and two-level
projection-based FEVMS methods respectively (see [29, 31]). The so-called
turbulent viscosity νT can be chosen in many ways. In this paper we choose
as follows (Smagorinsky-type [26]) νT = δh2‖∇unh‖0, where δ is a suitable
constant.

Remark 2. [35, 44] If LH=
{
vh∈(C0(Ω))2 ∩X : vh|K ∈ (Pk(K))2 ∀K ∈ =h

}
,

then we have the following properties

‖PLH
v‖1 ≤ C‖v‖1 ∀v ∈ X, ‖∇(I − PLH

)v‖0 ≤ C‖∇v‖0 ∀v ∈ X,
‖v − PLH

v‖1 ≤ Chl‖v‖l+1, 1 ≤ l ≤ k ∀v ∈ H l+1(Ω)2 ∩X.

4 Error estimate

In order to obtain the error analysis, we give some lemmas firstly.

Lemma 1. [39] Let

e(x, n) =
un(x)− ūn−1(x)

4t
−
(
∂u

∂t
(x, tn) + un(x)∇un(x)

)
and τ > 0 such that u ∈ C4([τ, T ];H3(Ω)2). For tn > τ , we have

e(x, n) = −4t
(

1

2

d2gnx
dt2

+
∂u

∂t
· ∇u(x, tn)

)
+O(4t2), (4.1)

where gnx (t) = u(x− (tn − t)un−1, t), un(x) = u(x, tn).

Then, we define the following Galerkin projection

(Rh, Qh) = (Rh(u, p), Qh(u, p)) : (X,M)→ (Xh,Mh),

such that

νa(Rh − u, vh) − d(Qh − p, vh) + d(ϕh, Rh − u) = 0

∀(u, p) ∈ (X,M), (vh, ϕh) ∈ (Xh,Mh). (4.2)
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Lemma 2. [20, 33] The Galerkin projection (Rh, Qh) satisfies

‖Rh − u‖0 + h(‖∇(Rh − u)‖0 + ‖Qh − p‖0)

≤ Chk+1(ν‖u‖k+1 + ‖p‖k), k = 1, 2. (4.3)

Lemma 3. [1, 3] The Galerkin projection (Rh, Qh) satisfies

‖Rh‖∞ ≤ C(‖u‖∞ + hk‖u‖Hk+1(Ω)).

4.1 Error estimate for the velocity

Lemma 4. Let unh be defined by (3.6). If 4t ≤ min {1/(2Ln), h}, Ln =
max1≤l≤n−1 ‖∇ulh‖∞, for all 2 ≤ n ≤ N we have

‖ξnh‖20 + ν4t
n∑
i=1

‖∇ξih‖20

≤ C exp(CT )
(
4t2 + h2k+2 + νaddh

2k + νT ‖(I − PLH
)∇un‖20

)
, (4.4)

‖unh‖∞ < +∞, 4t‖unh‖W 1,∞ ≤ 1/4, (4.5)

where ξnh = unh −Rnh , C is a positive constant independent of 4t and h.

Remark 3. Define X̂nx (t) = x − (tn − t)un−1h ∀t ∈ [tn−1, tn], 2 ≤ n ≤ N . Since
Xh is a subset of W 1,∞(Ω), under the condition 4t ≤ 1

2Ln
on the time step it

is an easy matter to verify that this mapping has a positive Jacobian, since ulh
vanishes on ∂Ω; this mapping is one-to-one and this it is a change of variables
from Ω onto Ω. This yields for any positive function φ on Ω the estimate
(please see [4] for details)∫

Ω

φ(X̂nh (t))dx ≤ C
∫
Ω

φ(x)dx.

Remark 4. Here, we assume that the initial condition u0 has a strong regularity.
Or there are some restriction on the time step 4t [17].

Proof. We prove this lemma by induction. By the definition of x̂, we can see
that (4.5) and (4.4) hold for n = 0. We assume that (4.5) and (4.4) hold for
1 ≤ n ≤ l − 1, then Ln < +∞. Now we will prove them hold for n = l.

Letting ϕh = 0 in (3.6) and using the definition of Vh, we have(
ulh − û

l−1
h

4t
, vh

)
+ νa(ulh, vh)

+νT ((I − PLH
)∇ulh, (I − PLH

)∇vh) = (f l, vh) ∀vh ∈ Vh. (4.6)

Subtracting
(

(Rlh − R̂l−1h )/4t, vh
)

+ νa(Rlh, vh) from both sides of (4.6), we

get (
(ulh −Rlh)− (ûl−1h − R̂l−1h )

4t
, vh

)
+ νa(ulh −Rlh, vh)

+ νT
(
(I − PLH

)∇ulh, (I − PLH
)∇vh

)
= (f l, vh)−

(
Rlh − R̂

l−1
h

4t
, vh

)
− νa(Rlh, vh). (4.7)

Math. Model. Anal., 20(5):658–680, 2015.
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Define ηl = ul −Rlh, we arrive at(
ξlh − ξ

l−1
h

4t
, vh

)
+ νa(ξlh, vh) + νT

(
(I − PLH

)∇ξlh, (I − PLH
)∇vh

)
= −

(
ul − ūl−1

4t
− ν4ul +∇pl − f l, vh

)
+

(
ûl−1 − ūl−1

4t
, vh

)
+

(
ηl − η̂l−1

4t
, vh

)
+

(
ξ̂l−1h − ξl−1h

4t
, vh

)
+ νT

(
(I−PLH

)∇ηlh, (I−PLH
)∇vh

)
+νT

(
(I−PLH

)∇ul, (I−PLH
)∇vh

)
+ (∇pl, vh) + νa(ul −Rlh, vh) (4.8)

=

6∑
i=1

Πi + d(Qlh − pl, vh) + νa(ul −Rlh, vh) =

6∑
i=1

Πi, (4.9)

where Πi denotes the i-th term of the right-hand side of (4.8).
Next we give the estimate for each term. By the definition of x̂ and x̄, we

arrive at

x̂(x, tl−1)− x̄(x, tl−1) = (ul−1h − ul−1)4t.

Using Taylor formula, we obtain

‖ûl−1 − ūl−1‖0 = ‖ul−1(x̂)− ul−1(x̄)‖0
≤ 4t‖∇ul−1‖∞‖ul−1h − ul−1‖0
≤ 4t‖∇ul−1‖∞(‖ul−1h −Rl−1h ‖0 + ‖Rl−1h − ul−1‖0).

Therefore, we get

1

4t
‖ûl−1 − ūl−1‖0 ≤ ‖∇ul−1‖∞(‖ul−1 −Rl−1h ‖0 + ‖Rl−1h − ul−1h ‖0)

≤ C(hk+1 + ‖ξl−1h ‖0). (4.10)

Now, we estimate the bound of ‖η
l−η̂l−1

4t ‖0. By Cauchy-Schwarz inequality,
we get

‖ηl − ηl−1‖0 =

(∫
Ω

(ηl − ηl−1)2dx

) 1
2

=

∫
Ω

∣∣∣∣∣
∫ tl

tl−1

∂η

∂t
(x, θ)dθ

∣∣∣∣∣
2

dx

 1
2

≤
√
4t

(∫
Ω

∫ tl

tl−1

∣∣∣∣∂η∂t (x, θ)

∣∣∣∣2 dθdx
) 1

2

≤
√
4t
∥∥∥∥∂η∂t

∥∥∥∥
L2([tl−1,tl]:L2(Ω))

. (4.11)

By the definition of X̂ lx(tl−1) , we have

J(X̂ lx(tl−1)) =

(
1− ∂xul−1h1 4t −∂yul−1h1 4t
−∂xul−1h2 4t 1− ∂yul−1h2 4t

)
. (4.12)
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Hence, det J(X̂ lx(tl−1)) = 1 +O(4t). Then, we deduce

‖ηl−1 − η̂l−1‖−1 = sup
v∈V

(
‖∇v‖−10 (ηl−1 − η̂l−1, v)

)
= sup
v∈V

[
‖∇v‖−10

×
(∫

Ω

ηl−1(x)v(x)dx−
∫
Ω

ηl−1(z)v(X̂nx (tl−1)−1)(1 +O(4t2))dz

)]
≤ sup
v∈V

(
‖∇v‖−10

∫
Ω

ηl−1(x)(v(x)− v(X̂ lx(tl−1)−1))dx

)
+ sup
v∈V

(
C4t2‖∇v‖−10

∫
Ω

ηl−1(z)v(X̂ lx(tl−1)−1))dz

)
.

Let G(x) = x− X̂ lx(tl−1)−1, then |G(x)| ≤ C4t, and

‖v(x)−v(X̂ lx(tl−1)−1)‖20≤
∫
Ω

(∫ tl

tl−1

d

dt
v(X̂ lx(t)−1)dt

)2

dx ≤ C4t2‖∇v‖20.

Similarly, we have

‖v(X̂ lx(tl−1)−1)‖ ≤ (1 + C4t)‖v‖20.

Then, we deduce

‖ηl−1 − η̂l−1‖−1 ≤ C4t‖ηl−1‖0. (4.13)

By (4.11) and (4.13), we get∥∥∥∥ηl − η̂l−14t

∥∥∥∥
−1
≤ Chk+1‖ul−1h ‖∞ + C

hk+1

√
4t

∥∥∥∥∂u∂t
∥∥∥∥
L2(tl−1,tl;Hk(Ω))

. (4.14)

Similarly, we obtain ∥∥∥∥ξl−1h − ξ̂l−1h

4t

∥∥∥∥
−1

≤ C‖ξl−1h ‖0. (4.15)

Setting vh = ξlh in (4.9), we obtain

‖ξlh‖20 − ‖ξ
l−1
h ‖20

24t
+ (ν + νadd)a(ξlh, ξ

l
h)

≤

∣∣∣∣∣
(
ul − ūl−1h

4t
− ν4ul +∇pl − f l, ξlh

)∣∣∣∣∣+

∣∣∣∣∣
(
ηl − η̂l−1h

4t
, ξlh

)∣∣∣∣∣
+

∣∣∣∣( ûl−1 − ūl−14t
, ξlh

)∣∣∣∣+

∣∣∣∣∣
(
ξ̂l−1h − ξl−1h

4t
, ξlh

)∣∣∣∣∣
+
∣∣∣νT((I−PLH

)∇ηnh , (I−PLH
)∇ξlh

)∣∣∣+ ∣∣∣νT((I − PLH
)∇ul, (I − PLH

)∇ξlh
)∣∣∣ .
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Using Cauchy-Schwarz and Young’s inequalities, we deduce

‖ξlh‖20 − ‖ξ
l−1
h ‖20

24t
+ (ν + νadd)‖∇ξlh‖20

≤ C

∥∥∥∥∥ul − ūl−1h

4t
− ν4ul +∇pl − f l

∥∥∥∥∥
0

‖∇ξlh‖0 + C

∥∥∥∥∥ηl − η̂l−1h

4t

∥∥∥∥∥
−1

‖∇ξlh‖0

+ C

∥∥∥∥ ûl−1 − ūl−14t

∥∥∥∥
0

‖∇ξlh‖0 + C

∥∥∥∥∥ ξ̂l−1h − ξl−1h

4t

∥∥∥∥∥
−1

‖∇ξlh‖0

+ νadd‖∇ηlh‖0‖∇ξlh‖0 + νT ‖(I − PLH
)∇ul‖0‖(I − PLH

)∇ξlh‖0

≤ C

∥∥∥∥∥ul − ūl−1h

4t
− ν4ul +∇pl − f l

∥∥∥∥∥
2

0

+

∥∥∥∥∥ηl − η̂l−1h

4t

∥∥∥∥∥
2

−1

+

∥∥∥∥ ûl−1 − ūl−14t

∥∥∥∥2
0

+

∥∥∥∥∥ ξ̂l−1h −ξ
l−1
h

4t

∥∥∥∥∥
2

−1

+ νadd‖∇ηlh‖20 + νT ‖(I − PLH
)∇ul‖20

+
ν + νadd

2
‖∇ξlh‖20.

By (4.1), (4.10), (4.14) and (4.15), we get

‖ξlh‖20 − ‖ξ
l−1
h ‖20

4t
+ (ν + νadd)‖∇ξlh‖20 ≤ C(4t2 + h2k+2 + νaddh

2k

+
h2k+2

4t

∥∥∥∥∂u∂t
∥∥∥∥
L2(tl−1,tl;Hk(Ω))

+ ‖ξl−1h ‖
2
0 + νT ‖(I − PLH

)∇ul‖20).

(4.16)

Summing inequality (4.16) from i = 1 to l, we obtain

‖ξlh‖20 + ν4t
l∑
i=1

‖∇ξih‖20

≤ C

(
4t2 + h2k+2 + νaddh

2k + νT ‖(I − PLH
)∇ul‖20 +4t

l−1∑
i=1

‖ξih‖20

)
.

Using discrete Gronwall’s Lemma, we have

‖ξlh‖20 + ν4t
l∑
i=1

‖∇ξih‖20

≤ C exp(CT )
(
4t2 + h2k+2 + νaddh

2k + νT ‖(I − PLH
)∇ul‖20

)
. (4.17)

By triangle inequality, we deduce

‖ulh‖∞ ≤ ‖ulh −Rlh‖∞ + ‖Rlh‖∞.

Using inverse inequality, ‖vh‖∞ ≤ Ch−1‖∇vh‖0 (see [4]), we get

‖ulh‖∞ ≤ Ch−1‖∇(ulh −Rlh)‖0 + ‖Rlh‖∞,
4t‖un+1

h ‖W 1,∞ ≤ 4t‖Rl+1
h ‖W 1,∞ +4t‖ξl+1

h ‖W 1,∞ ≤ C4t+ Ch−14t‖ξl+1
h ‖1 .

Using (4.17) and Lemma 4.4 we finish the proof.
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Theorem 1. Let unh be defined by (3.1) and u be the solution of (1.1). Under
the assumptions of Lemma 4, for all 1 ≤ n ≤ N we have

‖un − unh‖20 ≤ C exp(CT )
(
4t2 + h2k+2 + νaddh

2k + νT ‖(I − PLH
)∇un‖20

)
,

ν4t
n∑
i=1

‖∇(un − unh)‖20 ≤ C exp(CT )

×
(
4t2 + h2k+2 + νaddh

2k + νT ‖(I − PLH
)∇un‖20

)
+ Ch2k. (4.18)

Proof. Using triangle inequality, (4.3) and (4.4), we obtain the desired result.

Corollary 1. Under the assumption of Lemma 4, Remark 3.2, the regularity
assumption of (u, p) ∈ (H3(Ω)2∩X,H2(Ω)∩M) ∀t ∈ (0, T ] and the assumption
of νT , for all 1 ≤ n ≤ N we have the following error analysis

‖un − unh‖20 ≤ C exp(CT )
(
4t2 + h2(k+1)

)
,

ν4t
n∑
i=1

‖∇(un − unh)‖20 ≤ C exp(CT )
(
4t2 + h2k

)
, k = 1, 2.

4.2 Error estimate for pressure

The following result on the pressure is a consequence of the previous theorem
on the velocity.

Theorem 2. Under the assumptions of Lemma 4, for all 1 ≤ n ≤ N we have(
n∑
i=0

4t‖pi − pih‖20

)1/2

≤ C(4t+ hk + νT ‖(I − PLH
)∇unh‖0),

where C is a positive constant independent of 4t and h.

Proof. Multiplying (1.1) by vh ∈ Xh and subtracting the result form (3.6)
with ϕh = 0, we obtain

d(Qnh − pnh, vh) = −(ē(x, n), vh) + d(Qnh − pn, vh) + νa(unh − un, vh)

+

(
(un − unh)− (ûn−1h − ūn−1h )

4t
, vh

)
+ νT

(
(I − PLh

)∇unh, (I − PLH
)∇vh

)
.

By the inf-sup condition and Cauchy-Schwarz inequality, we get

‖Qnh − pnh‖0 ≤ C
(
‖e(x, n)‖0 +

∥∥∥∥u− unh4t

∥∥∥∥
0

+

∥∥∥∥ ûn−1h − ūn−1h

4t

∥∥∥∥
0

+ ‖Qnh − pn‖0
)

+ ν‖∇(unh − un)‖0 + νT ‖(I − PLH
)∇unh‖0. (4.19)

Using (4.1), (4.10) and (4.18), we arrive at(
n∑
i=0

4t‖Qih − pih‖20

)1/2

≤ C(4t+ hk + νT ‖(I − PLH
)∇unh‖0).

Math. Model. Anal., 20(5):658–680, 2015.



670 Z. Si, Y. Wang and X. Feng

By triangle inequality, we have(
n∑
i=0

4t‖pi − pih‖20

)1/2

≤

(
n∑
i=0

4t‖Qih − pih‖20

)1/2

+

(
n∑
i=0

4t‖Qih − pi‖20

)1/2

≤ C(4t+ hk + νT ‖(I − PLH
)∇unh‖0).

Therefore, we finish the proof. ut

Corollary 2. Under the assumptions of Lemma 4 and Remark 3.2, the regu-
larity assumption of (u, p) ∈ (H3(Ω)2 ∩ X,H2(Ω) ∩M) ∀t ∈ (0, T ] and the
assumption of νT , we have the following error estimate(

n∑
i=0

4t‖pi − pih‖20

)1/2

≤ C(4t+ hk), k = 1, 2. (4.20)

5 Numerical Results

In this section, we present some numerical results to verify the theoretical
results obtained in the previous section and show the effect of our methods.
Here, we use the software package FreeFEM++ [21] for our program.

5.1 Analytical solution problems

In this subsection, we present some numerical results of the Navier-Stokes prob-
lems with the analytical solution

u1 = 10x2(x− 1)(2x− 1)y2(y − 1)2 exp(−2π2tν),

u2 = −10x(x− 1)(2x− 1)y2(y − 1)2 exp(−2π2tν),

p = 20(2x− 1)(2y − 1) exp(−4π2tν).

The boundary and initial conditions in (1.1) are set equal to the analytical
solution and f is given by evaluating the momentum equation of the problem
(1.1) for the analytical solution. We choose 4t = 0.001, T = 1, δ = 0.5 and
Re = 2000. We present the numerical results with different h respectively by
using Taylor-Hood element, and LH = {L ∈ (L2(Ω))2×2, L|K ∈ P 2×2

1dc ∀K ∈
=h}, P1dc means the piecewise linear discontinuous finite element space [16].

Table 1. The numerical results of MMOCVMS at T = 1 with 4t = 0.001, Re = 2000,
νT = δh2‖∇uh‖0.

1/h
‖u−uh‖0
‖u‖0

‖∇(u−uh)‖0
‖u‖0

‖p−ph‖0
‖p‖0

uL2 rate uH1 rate PL2 rate CPU, s

10 2.59204e-3 3.06620e-2 7.74597e-3 — — — 178.433
20 3.14163e-4 7.47865e-3 1.93649e-3 3.0445 2.0356 2.0000 727.026
30 9.41846e-5 3.29969e-3 8.60663e-4 2.9711 2.0180 2.0000 1650.72
40 4.30740e-5 1.85122e-3 4.84123e-4 2.7195 2.0091 2.0000 2988.12
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Table 2. The numerical results of MMOCFEM mixed finite element method at T = 1 with
4t = 0.001, Re = 2000.

1/h
‖u−uh‖0
‖u‖0

‖∇(u−uh)‖0
‖u‖0

‖p−ph‖0
‖p‖0

uL2
rate uH1

rate PL2
rate CPU, s

10 2.59204e-3 3.06620e-2 7.74597e-3 — — — 214.547
20 3.14163e-4 7.47865e-3 1.93649e-3 3.0445 2.0356 2.0000 872.899
30 9.41846e-5 3.29969e-3 8.60663e-4 2.97105 2.01799 2.0000 1987.68
40 4.3074e-5 1.85122e-3 4.84123e-4 2.7195 2.0091 2.0000 3553.67

Table 3. The numerical results of MMOCVMS at T = 1 with h = 1/100, Re = 2000,
νT = δh2‖∇uh‖0.

4t ‖u−uh‖0
‖u‖0

‖∇(u−uh)‖0
‖u‖0

‖p−ph‖0
‖p‖0

uL2
rate uH1

rate CPU, s

0.1 1.81239e-3 2.23524e-2 7.74605e-5 — — 207.386
0.05 9.06667e-4 1.16259e-3 7.74599e-5 1.13258 1.06939 376.132
0.025 4.5537e-4 6.46561e-4 7.74597e-5 0.9935 0.8464 752.062
0.0125 2.28506e-4 4.16179e-4 7.74597e-5 0.9774 0.6272 1525.39

The numerical results in Table 1 and 2 show that the convergence rates are
O(h3) of the L2-norm for u, O(h2) of the semi H1-norm for u and O(h2) of
the L2-norm for p, which agree very well with our theoretical results by using
P2 − P1 finite element spaces. In Table 3 and 4, we present the convergence
test results for time. We can see that the time convergence order is O(4t),
which agrees well with our theory analysis. Comparing our numerical results
with the MMOCFEM’s, we can see that the error and the convergence rates
are very similar. But our method can save much time.

5.2 The lid driven cavity problem

In this subsection we show the numerical results of lid driven cavity problem.
The two-dimensional lid driven was formulated as in Ω = (0, 1)2, the boundary
conditions are u1 = 1, u2 = 0 on the top lid and u1 = 0, u2 = 0 on the other
lids. In a former work [5], it was suggested that the first Hopf bifurcation
occurs around Reynolds number Re = 7500. Since then various results were
given in the literature [5,12,14]. In this numerical experiments, h = 1

60 , 4t =
0.01, νT = δh2‖∇uh‖0, δ = 0.5 are chosen.We choose the Taylor-Hood element
and LH = {L ∈ (L2(Ω))2×2, L|K ∈ P 2×2

1dc ∀K ∈ =h}.
Firstly, we choose Re = 5000, which is a good choice as there are some

comparisons available in the literature and as the steady solution is still stable
but not too far from the first Hopf bifurcation. Figure 1 gives the numerical
results, (a) the numerical streamline at t = 250, (b) the numerical pressure
contours at t = 250, (c) the computed u-velocity profiles along a vertical line
passing through the geometric center of the cavity, (d) the computed v-velocity
profiles along a horizontal line passing through the geometric center of the
cavity, (e) the evolution of the kinetic energy in time and (f) the evolution of
‖unh − u

n−1
h ‖0/‖unh‖0 in time.
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Table 4. The numerical results of MMOCFEM at T = 1 with h = 1/100, Re = 2000.

4t ‖u−uh‖0
‖u‖0

‖∇(u−uh)‖0
‖u‖0

‖p−ph‖0
‖p‖0

uL2
rate uH1

rate CPU, s

0.1 1.81239e-3 2.23524e-2 7.74605e-3 — — 211.911
0.05 9.06667e-4 1.16259e-3 7.74599e-5 1.13258 1.06939 385.82
0.025 4.5537e-4 6.46561e-4 7.74597e-5 0.9935 0.8464 757.553
0.0125 2.28506e-4 4.16179e-4 7.74597e-5 0.9774 0.6272 1536.96
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Figure 1. The numerical results for Re = 5000 with νT = δh2‖∇uh‖0.

Figure 2 gives the numerical results forRe = 7500, (a) the numerical stream-
line at t = 250, (b) the numerical pressure contours at t = 250, (c) the computed
u-velocity profiles along a vertical line passing through the geometric center of
the cavity, (d) the computed v-velocity profiles along a horizontal line pass-
ing through the geometric center of the cavity, (e) the evolution of the kinetic
energy in time and (f) the evolution of ‖unh − u

n−1
h ‖0/‖unh‖0 in time.

From the numerical results, we can see that the kinetic energy reaches
a stable state, ‖unh − un−1h ‖0/‖unh‖0 changes very small. It means that we
get a steady solution of the time-dependent Navier-Stokes equations. And,
comparing with the results of the steady Navier-Stokes equations given by
Ghia et al. [14] and Erturk et al. [12], we can see that u-velocity profiles along
a vertical line passing through the geometric center of the cavity and v-velocity
profiles along a horizontal line passing through the geometric center of the
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Figure 2. The numerical results for Re = 7500 with νT = δh2‖∇uh‖0.
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Figure 3. The numerical velocity for Re = 10000 with νT = δh2‖unh‖0 at different time.
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Figure 4. u-velocity history (a), v-velocity history (b) and the phase portrait (c), at
monitoring point (1/8, 13/16) for Re = 10000 with νT = δh2‖unh‖0 from t = 200 to t = 300.
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Figure 5. u-velocity history (a), u-velocity history (b) and the phase portrait (c), at
monitoring point (7/8, 13/16) for Re = 10000 with νT = δh2‖unh‖0 from t = 200 to t = 300.

cavity agree very well.

Finally, we show some numerical results for Re = 10000, which is probably
the most famous value and for quite a long time the question was to known if
the steady solution was stable or not for this Reynolds number. In [6], Bruneau
and Saad shown that the steady is not stable and the first Hopf bifurcation
occurs around Re = 8000. Figure 3 presents the streamlines at different time.
We choose two monitoring points (1/8, 13/16) and (7/8, 13/16). Figures 4
and 5 show u-velocity history (a), v-velocity history (b) and the phase (c)
portrait at monitoring points (1/8, 13/16) and (7/8, 13/16). It shows that the
stable solution in mainly periodic with small variations in the amplitude of the
time evolution at the monitoring points. And the phase portraits show that
the variations in amplitude yield a solution which is quasi-periodic. Figure 6
shows the evolution of the kinetic energy in time (a) and evolution of ‖unh −
un−1h ‖0/‖unh‖0 in time (b). We can see that the kinetic energy dose not change
as the time change long enough and the errors don’t change smaller. The results
are very close the those shown in [6].
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Figure 6. Evolution of the kinetic energy in time (a) and evolution of
‖unh − u

n−1
h ‖0/‖unh‖0 in time (b) for Re = 10000 with νT = δh2‖unh‖0.

5.3 The flow around a cylinder problems

In this part, we investigate the two-dimensional under-resolved fluid flow around
a cylinder [37], the physical model given by Figure 7. From Figure 7 we can
see that, the height of the channel H = 0.41 and the width W = 2.2. The
origin of the cylinder is at (0.2, 0.2), and the radius R is equal to 0.05. The
time-dependent inlet flow velocity profiles are given by

u1 = 6y(1−H)/H2, u2 = 0.

The outlet boundary condition is given by

∂u

∂n
= 0.

The boundary conditions of the two parallel planes and the cylinder surface
are set as the non-slip boundary conditions. The Reynolds number is de-
fined by Re = 2ŪR/ν and Ū = 2u(0, H/2)/3. Here, we choose Re = 100,
4t = 0.01. The finite element grid is presented by Figure 7. We choose the
Taylor-Hood element spaces. Figures 8 and 9 give the numerical results by
the MMOCVMSFEM. Figures 10 and 11 present the numerical results by the
MMOCFEM. From the numerical results, we can see that the numerical results
of the MMOCVMSFEM agree well with the numerical results of MMOCFEM.

Figure 7. Physical model of the flow around a cylinder problems.
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(a) t=1

(b) t=5

(c) t=8

Figure 8. The numerical contours of the velocity u at different time by MMOCVMSFEM.

(a) t=1

(b) t=5

(c) t=8

Figure 9. The numerical streamlines at different time by MMOCVMSFEM.

6 Conclusions

In this work, we proposed a modified algorithm of characteristics variational
multiscale finite element method for the time dependent Navier-Stokes equa-
tions. The theoretical analysis is discussed and illustrated. Error estimate
shows that this method has a good convergence property. Numerical experi-
ments are presented to demonstrate the high efficiency of the new algorithm.
Also, further developments can extend these techniques and ideas to the general
nonlinear problems and high-dimensional problems.
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(a) t=1

(b) t=5

(c) t=8

Figure 10. The numerical contours of the velocity u at different time by MMOCFEM.

(a) t=1

(b) t=5

(c) t=8

Figure 11. The numerical streamlines at different time by MMOCFEM.
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