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Abstract. In this paper a general multi-objective geometric programming problem
with interval parameters is proposed, and a methodology is developed to derive its
solution. The model is transformed into a general geometric programming problem,
and relation between the original problem and the transformed problem is established.
Application of this discussion is illustrated in a waste water treatment model.
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1 Introduction

Since last two decades, linear/non-linear interval optimization problems have
been studied by many researchers (see [1,2,7,8,9,9,10,11,12,13,18,28]). Some
of these models consider interval parameters in the objective function only.
Most of the above papers focus on the derivation of optimal bounds of interval
optimization models. The methodologies due to [1,11] focus on the existence of
solution of nonlinear interval optimization problems with several assumptions.
In the literature of the theory of interval optimization, readers may observe
the existence of very few number of research papers on interval geometric pro-
gramming. The existing literature is limited to some particular type interval
geometric programming models only. A single objective interval geometric
(posynomial) programming model takes the following form.

(IGP ) min
x

s0∑
t=1

ĉ0t

n∏
j=1

x
â0tj
j subject to

si∑
t=1

ĉit

n∏
j=1

x
γ0tj
j ≤ b̂i, i = 1, 2, ...,m,

xj > 0, j = 1, 2, ..., n, where ĉ0t, â0tj , ĉit, b̂i, ∀i, j, t are intervals.
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Single objective geometric programming models with interval parameters
(IGP ) are studied by [3, 8, 15, 16, 17, 20]. Most of these methods formulate a
pair of two-level mathematical programming problems as

(P1) max
Ŝ

min
x

s0∑
t=1

ĉ0t

n∏
j=1

x
â0tj
j

subject to

si∑
t=1

ĉit(b̂i)
−1

n∏
j=1

x
γ0tj
j ≤ 1, xj > 0,

i = 1, 2, ...,m, j = 1, 2, ..., n

and

(P2) min
Ŝ

min
x

s0∑
t=1

ĉ0t

n∏
j=1

x
â0tj
j

subject to

si∑
t=1

ĉit(b̂i)
−1

n∏
j=1

x
γ0tj
j ≤ 1, xj > 0,

i = 1, 2, ...,m, j = 1, 2, ..., n,

where Ŝ is the set of all intervals present in the above models. Consequently
optimal values of P1 and P2 provide lower and upper bound of the optimal
value of IGP . But these methods do not provide the optimal solution of IGP .

There are several real life interval geometric programming models with more
than one objective functions, known as multi-objective geometric programming
model. One of these model related to waste water treatment system is explained
in the last section of this paper. Multi-objective geometric programming with
interval parameters has not been addressed yet. This motivated the authors to
focus on the theory of general interval multi-objective geometric programming
problem. It is obvious that the methodology for general multi-objective geomet-
ric programming problem may not work for interval multi-objective geometric
programming problem due to the presence of interval uncertainty. Moreover,
the methodologies described in [3, 8, 15, 16, 17, 20], for interval geometric pro-
gramming, provide lower and upper bounds of the objective function at two
different points, but do not focus on optimal solution. In this paper the authors
have tried to meet these gaps. Initially, existence of solution of this model is
studied. A methodology is derived to find its efficient solution, which can pro-
vide a compromising lower and upper bound for all objective functions. As a
result, one can find a solution as well as optimal bounds. Throughout this paper
(IMGP ) denotes an interval multi-objective geometric programming problem.
A general (IMGP ) model is proposed in Section 3.

The paper is divided in four major sections. Section 2 explains some no-
tations and prerequisites on interval analysis. Section 3 describes solution
methodology for a general multi-objective geometric programming model. Sec-
tion 4 describes the proposed waste water treatment model as an (IMGP )
problem. This model is formulated through some hypothetical data. Method-
ology of Section 3 is used to solve this model.
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2 Mathematical notations, concepts and definitions

Following notations are used throughout the paper.

• I(R): The set of closed intervals on R. â ∈ I(R) is the set â = [aL, aR],

â is said to be a degenerate interval if aL = aR and is denoted by Â.

• I(R)+: The set of positive closed intervals on R, i.e., â ∈ I(R)+ if aL > 0.

• I(R)n : The set of interval vectors âv : âv = (â1, â2, ..., ân)T , âj ∈
I(R), j = 1, 2, ..., n}.

• Λk : {1, 2, ..., k}.

• An algebraic operation ~ (∗ ∈ {+,−, ·, /}) in I(R) is defined as follows.

For â = [aL, aR] and b̂ = [bL, bR] in I(R), â~ b̂ = {a ∗ b : a ∈ â, b ∈ b̂}.
Hence â⊕ b̂ = [aL + bL, aR + bR], â	 b̂ = [aL − bR, aR − bL],

â� b̂ =

[
min

a∈â,b∈b̂
a.b, max

a∈â,b∈b̂
a.b

]
and â� b̂ =

[
min

a∈â,b∈b̂

a
b , max
a∈â,b∈b̂

a
b

]
, 0 /∈ b̂.

• The spread of the interval â is µ(â) = aR − aL.

• Summation and product of several intervals in I(R) are denoted as fol-
lows. For â1, â2, ...., ân ∈ I(R),∑̂n

j=1âj , â1 ⊕ â2 ⊕ ...⊕ ân,
∏̂n

j=1âj , â1 � â2 � ...� ân.

2.1 Interval valued function

Interval valued function is defined by many authors in several ways (see [6,22],
etc). In general, interval valued function is a mapping from one or more interval

arguments onto an interval number. An interval valued function f̂ : Rn → I(R)

is f̂(x) = [fL(x), fR(x)] such that fL(x) ≤ fR(x) ∀x ∈ Rn.

2.2 Order relations in I(R)

The set of intervals is not a totally ordered set. Several partial orderings in
I(R) exist in literature(see [1, 6, 22]). Order relation between two intervals â

and b̂ can be explained in two ways; first one is an extension of < on real line,
that is, â < b̂ iff aR < bL, and the other is an extension of the concept of set
inclusion, that is, â ⊆ b̂ iff aL ≥ bL and aR ≤ bR. These order relations cannot
explain ranking between two overlapping intervals. Set of intervals is a partial
order set, so all intervals can not be compared with respect to a particular
partial order relation. In most of the literatures on interval optimization, �LR
partial order relation is used to compare two intervals. According to this partial
ordering, â �LR b̂ iff aL ≤ bL and aR ≤ bR. But in case, when one interval lies
in another one, then these two intervals are not comparable with respect to �LR
partial order relation. For this reason we have introduced a new partial order
relation, and named this as χ- partial order relation. Definition of χ- partial
order relation and its advantage are provided in the following subsection.

Math. Model. Anal., 20(5):585–603, 2015.
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2.2.1 χ- partial ordering

Two intervals may overlap, one interval may lie behind another interval or one
interval may contain another interval. To describe this concept mathematically,
we associate a function χ : I(R)× I(R)→ [0, 1] as follows. For two intervals â

and b̂,

χ(â, b̂) =


1, aR ≤ bL,
0, aL ≥ bR,

bR−aL
(bR−bL)+(aR−aL) ∈ (0, 1), aL < bR and aR > bL.

(2.1)

χ(â, b̂) represents degree of closeness of â with b̂. One may observe here that

χ is continuous and belongs to [0, 1]. Moreover χ(â, b̂) + χ(b̂, â) = 1.

We define order relation “�χ” between two intervals as follows, which is based
upon the concept of closeness of two intervals.

Definition 1. For two intervals â, b̂ ∈ I(R),

â �χ b̂ iff µ(â) ≤ µ(b̂) and χ(â, b̂) ∈ [1/2, 1],

â ≺χ b̂ iff µ(â) ≤ µ(b̂) and χ(â, b̂) = 1,

â = b̂ iff µ(â) = µ(b̂) and χ(â, b̂) = 1/2.

χ(â, b̂) ∈ [ 12 , 1] means χ(â, b̂) ≥ χ(b̂, â).
For example, µ([1, 4]) < µ([0, 5]) and χ([1, 4], [0, 5]) = 1

2 . So [1, 4] �χ [0, 5] with
degree of closeness 1

2 ;
χ([1, 5], [3, 6]) = 5

7 but [1, 5] �χ [3, 6] is not true, so µ([1, 5]) � µ([3, 6]).
µ([1, 4]) < µ([5, 9]) and χ([1, 4], [5, 9]) = 1. So [1, 4] ≺χ [5, 9] with degree of
closeness 1;
µ([1, 4]) = µ([−3, 0]) but χ([1, 4], [−3, 0]) = 0, so [1, 4] �χ [−3, 0] is not true.

Lemma 1. �χ is a partial order relation.

Proof of this result is provided in Appendix.

Note 1. Advantages of χ-partial ordering are the following:

χ− partial order relation describes the closeness between two intervals. Ac-
cording to this partial ordering, for any two intervals â and b̂, closeness of â with
b̂ is χ(â, b̂), which always lies between 50% to 100% and also known as degree

of closeness. This means â is more than 50% closer towards b̂. The existing
interval partial orderings in the literature are either not associated with any
such closeness factor or if associated, then their closeness/acceptability factor
lies between 0% to 100%.

Interval order relation due to [26] is associated with acceptability index,
which lies between 0 and 1. χ- partial ordering is associated with closeness
index, which lies between 1

2 and 1. Both interval order relations determine
closeness of one interval towards other. Since the degree of closeness between
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two intervals is always more than 50% in case of χ-partial ordering, so χ- partial
ordering always accepts the decisions with higher degree of acceptability, which
is definitely more acceptable for any decision maker. It is true that, the decision
is more acceptable for the decision maker if the degree of closeness is more.
Since our degree of closeness is always more then 50% so χ partial ordering is
stronger than other partial ordering.

I(R)n is not a totally ordered set. To compare the interval vectors in I(R)n,
we define the following partial ordering �nχ.

Definition 2. For âv = (â1 â2 ... ân)T and b̂v = (b̂1 b̂2 ... b̂n)T in I(R)n,

âv �nχ b̂v iff âi �χ b̂i, i ∈ Λn.

From the above two definitions, degree of closeness between two interval vectors
âv and b̂v of dimension n can be defined as follows.

Definition 3. Degree of closeness of the interval vector âv = (â1 â2 ... ân)T

with the interval vector b̂v = (b̂1 b̂2 ... b̂n)T is defined as

χ(âv, b̂v) = min
i∈Λn

{χ(âi, b̂i)}.

Example 1. Consider the interval vectors âv = ([0, 2], [2, 3])
T

and b̂v = ([1, 4],

[2, 4])T. Here χ([0, 2], [1, 4]) = 4
5 , χ([2, 3], [2, 4]) = 2

3 , χ(âv, b̂v) = min {χ([0, 2],

[1, 4]), χ([2, 3], [2, 4])} = 2
3 . Hence we say âv �2

χ b̂v with degree of closeness 2
3 .

Throughout this paper we consider the partial ordered sets (I(R),�χ) and
(I(R)n,�nχ).

3 Interval multi-objective geometric programming prob-
lem and its solution

In a general multi-objective optimization problem there may not exist a sin-
gle optimal solution that simultaneously optimizes all the objective functions.
In this circumstance the decision maker looks for the most preferred solution.
Hence the concept of optimal solution is replaced with Pareto-optimal/ effi-
cient solution. This concept may be extended for multi-objective geometric
programming problem with interval parameters.

Consider a general interval multi-objective geometric programming problem
(IMGP ) with k objective functions as,

(IMGP ) :

min

{∑̂s01

t1=1
ĉ0t1
∏̂n

l=1
xγ̂0l1l ,

∑̂s02

t2=1
ĉ0t2
∏̂n

l=1
xγ̂0l2l , ...,∑̂s0k

tk=1
ĉ0tk

∏̂n

l=1
xγ̂0lkl

}
subject to

∑̂sj

t=1
ĉjt
∏̂n

l=1
x
γ̂jtl
l � b̂j , j ∈ Λm, x > 0,

Math. Model. Anal., 20(5):585–603, 2015.
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where ĉ0ti , γ̂0li, ĉjt, γ̂jtl, b̂j ∈ I(R)+, ĉ0ti = [cL0ti , c
R
0ti ], γ̂0li = [γL0li, γ

R
0li],

ĉjt = [cLjt, c
R
jt], b̂j = [bLj , b

R
j ] with cL0ti > 0, cLjt > 0 and bLj > 0, ∀ti, j, t, i ∈ Λk,

j ∈ Λm.
Solution method for (IMGP ) is different from the solution method for

general multi objective geometric programming problem due the presence of
interval uncertainties and interval ordering, associated with (IMGP ). Solution
of (IMGP ) is definitely a compromising solution but following uncertainties
should be taken care.

(i) Feasible region of (IMGP ) is the set{
x :

∑̂sj

t=1
ĉjt
∏̂n

l=1
x
γ̂jtl
l � b̂j , ∀j ∈ Λm

}
,

which has uncertain parameters as intervals as well as interval ordering.
So x ∈ Rn can be a feasible solution of (IMGP ) if x satisfies m number

of interval inequalities,
∑̂sj

t=1ĉjt
∏̂n

l=1x
γ̂jtl
l � b̂j , which can be determined

using the concept of closeness between two interval vectors as per Def-
inition 3. Hence a feasible point is associated with certain degree of
closeness between two interval vectors. In other words, we may say this
feasible point with some degree of closeness as a feasible solution with
some acceptability level.

(ii) A feasible point x with certain degree of closeness/acceptability level, can
be an efficient solution of (IMGP ) for the k conflicting interval valued
objective functions. This has another uncertain factor in connection to
these k conflicting interval functions, which are compared using partial
ordering (�kχ). We say, any acceptable feasible solution which optimizes
all these conflicting objectives functions, as χ-efficient solution.

These two uncertainties are addressed separately in mathematical terms in the
following subsections to find an efficient solution of (IMGP ).

3.1 Acceptable feasible solution

The feasible region of (IMGP ) is the set

S =
{
x ∈ Rn :

∑̂sj

t=1
ĉjt
∏̂n

l=1
x
γ̂jtl
l � b̂j , j ∈ Λm

}
.

S is associated with a system of m non-linear inequalities. Acceptable feasible
solution for (IMGP ) can be derived in the light of the discussion on close-

ness between two interval vectors
(∑̂s1

t=1ĉ1t
∏̂n

l=1x
γ̂1tl
l

∑̂s2

t=1ĉ2t
∏̂n

l=1x
γ̂2tl
l · · ·∑̂sm

t=1ĉmt
∏̂n

l=1x
γ̂mtl
l

)T
and

(
b̂1 b̂2 · · · b̂m

)T
(See Definition 3). Here, for every

x ∈ Rn,

∑̂sj

t=1
ĉjt
∏̂n

l=1
x
γ̂jtl
l =

[ sj∑
t=1

cLjt

n∏
l=1

x
ηjtl
l ,

sj∑
t=1

cRjt

n∏
l=1

x
ηjtl
l

]
,
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where

x
ηjtl
l =

x
γLjtl
l , when xl ≥ 1,

x
γRjtl
l , when xl < 1.

For any x in S, the interval
[∑sj

t=1 c
L
jt

∏n
l=1 x

ηjtl
l ,

∑sj
t=1 c

R
jt

∏n
l=1 x

ηjtl
l

]
may lie

behind or overlap or exceed [bLj , b
R
j ] for every j ∈ Λm. Accordingly the fea-

sibility of x for (IMGP ) is completely acceptable or partially acceptable or
not acceptable. Hence every point x in S is associated with certain degree of
acceptability/feasibility/closeness factor. Using the discussion in Section 2, we
will convert S to a deterministic form to have some mathematical sense of this
affect as follows.
Denote

Smax = {x :

sj∑
t=1

cLjt

n∏
l=1

x
ηjtl
l ≤ bRj j ∈ Λm}

and

Smin = {x :

sj∑
t=1

cRjt

n∏
l=1

x
ηjtl
l ≤ bLj j ∈ Λm}.

Smax and Smin are the maximum and minimum feasible regions respectively.
From the definition of Smax and Smin, it is obvious that Smin ⊆ Smax. Hence
any feasible point of (IMGP ) lies either in Smin or in Smax \ Smin, but not in
the complement of Smax (which is Scmax), depending upon the relation between[∑sj

t=1 c
L
jt

∏n
l=1 x

ηjtl
l ,

∑sj
t=1 c

R
jt

∏n
l=1 x

ηjtl
l

]
and [bLj , b

R
j ]. It is clear that

(i) x ∈ S is a fully acceptable feasible solution if x ∈ Smin. i.e.,

sj∑
t=1

cRjt

n∏
l=1

x
ηjtl
l ≤ bLj j ∈ Λm;

(ii) x is not at all an acceptable feasible point if x goes beyond the region
Smax. i.e.,

x ∈ Scmax,
sj∑
t=1

cLjt

n∏
l=1

x
ηjtl
l > bRj j ∈ Λm;

(iii) x is a partially acceptable feasible solution if x ∈ Smax \ Smin. In this
case, the degree of acceptability of x decreases from 100% to 0% as it
moves closer to Smax from Smin.

Acceptability degree of x corresponding to jth constraint is the degree of close-

ness of two intervals
∑̂sj

t=1ĉjt
∏̂n

l=1x
γ̂jtl
l and b̂j , which can be obtained by asso-

ciating a function χFj : I(R)× I(R)→ [0, 1] as in (2.1), as follows.

χFj

(∑̂sj

t=1
ĉjt
∏̂n

l=1
x
γ̂jtl
l , b̂j

)

=


1,

∑sj
t=1 c

R
jt

∏n
l=1 x

ηjtl
l ≤ bLj ,

0,
∑sj
t=1 c

L
jt

∏n
l=1 x

ηjtl
l > bRj ,

bRj −
∑sj
t=1 c

L
jt

∏n
l=1 x

ηjtl
l

(bRj −bLj )+(
∑sj
t=1 c

R
jt

∏n
l=1 x

ηjtl
l −

∑sj
t=1 c

L
jt

∏n
l=1 x

ηjtl
l )

, elsewhere.

(3.1)

Math. Model. Anal., 20(5):585–603, 2015.
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It is clear that every x ∈ S is associated with certain degree of acceptabil-
ity (χFj ) with respect to jth constraint. Since S is the intersection of m
number of constraints, so every x ∈ S satisfies the minimum degree of close-
ness/acceptablity, which can be found using Definition 3 as

τ = min
1≤j≤m

{
χFj

(∑̂sj

t=1
ĉjt
∏̂n

l=1
x
γ̂jtl
l , b̂j

)}
.

Define a set

S′ =

{
(x, τ) : x ∈ Rn, τ = min

1≤j≤m

{
χFj

(∑̂sj

t=1
ĉjt
∏̂n

l=1
x
γ̂jtl
l , b̂j

)}}
.

For (x, τ) ∈ S′, we say x is a feasible point with acceptable degree τ and S′ is
the acceptable feasible region.

3.2 χ-efficient solution

Since (IMGP ) is a multi-objective programming problem so it may not have
optimal solution as in the case of a single objective optimization problem. So
it is necessary to determine Pareto-optimal/compromising/efficient solution of
(IMGP ) over this acceptable feasible region S′. In other words we need to
solve

(P ) min
(x,τ)∈S′

{∑̂s01

t1=1
ĉ0t1
∏̂n

l=1
xγ̂0l1l ,

∑̂s02

t2=1
ĉ0t2
∏̂n

l=1
xγ̂0l2l , ...,

∑̂s0k

tk=1
ĉ0tk

∏̂n

l=1
xγ̂0lkl

}
. (3.2)

Recall that a feasible solution of a general multi-objective programming prob-
lem is an efficient solution if there is no other feasible solution that would reduce
some objective value without causing simultaneous increase in at least one other
objective value. This type situation appears in an interval multi-objective geo-
metric programming (IMGP ) also. An exact optimum solution of an interval
multi-objective geometric programming problem may not be found always due
to the nature of conflicting objectives. Hence the decision maker has to com-
promise with several objective values. Here each objective value is an interval,
which leads to uncertainty. For this purpose partial orderings are necessary
to compare interval vectors as well as intervals in place of real vectors and
real numbers respectively. To compare interval valued objective functions in
(IMGP ), we accept �χ and �nχ partial orderings as discussed in Section 2.2.1.

In the light of the definition of weak efficient solution of a general multi-
objective geometric programming problem (MGP ), we define weak efficient
solution of (IMGP ) with respect to �kχ partial ordering in I(R)k and call this
solution as χ-efficient solution.

Definition 4. A feasible solution (x, τ) with acceptable degree τ of (IMGP ) is
said to be χ-efficient solution of (IMGP ) if there does not exist any feasible
solution (y, τ

′
) with acceptable degree τ

′
, (τ

′ ≥ τ), of (IMGP ) such that∑̂s0i

ti=1
ĉ0ti
∏̂n

l=1
yγ̂0lil ≺χ

∑̂s0i

ti=1
ĉ0ti
∏̂n

l=1
xγ̂0lil ∀i ∈ Λk.
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Note that τ
′ ≥ τ is considered since τ

′
< τ implies that y has less feasibility

degree, which can not be acceptable for a decision maker.

3.2.1 Solution of (P )

It is difficult to derive the χ−efficient solution (Definition 4) of (IMGP ) ana-
lytically. For this purpose we assign a target/goal to every objective function
of (IMGP ). Since every objective function is an interval valued function, so
the decision maker has an aspiration level of achievement (denoted by li) and
highest possible level of achievement (denoted by ui) of ith objective function
for every i. [li, ui] can be considered as preassigned goal for ith objective func-
tion. The goal [li, ui] stands for the achievement level of the objective function
which is to be minimized. That is, the decision maker has to take the decisions
so that ∑̂s0i

ti=1
ĉ0ti
∏̂n

l=1
xγ̂0lil �χ [li, ui] ∀ i, (3.3)

where

∑̂s0i

ti=1
ĉ0ti
∏̂n

l=1
xγ̂0lil =

[
s0i∑
ti=1

cL0ti

n∏
l=1

xη0lil ,

s0i∑
ti=1

cR0ti

n∏
l=1

xη0lil

]
.

Value of these goals (li and ui) may be provided by the decision maker. The
basic idea behind this assumption is that, the decision maker specifies desired
goal levels for the objective functions, and the actual optimization problem
uses the deviations from the goals as the objective of the model. li is aspire
level of achievement and ui is the highest acceptable level of achievement of
the objective function. This means, minimum value of ith objective function is
very close to [li, ui].

The inequalities (3.3) literally mean that, for every (x, τ) ∈ S′, deviation of
ith objective function from the goal [li, ui] may be more or less acceptable for
the decision maker. Hence every interval valued objective function is associated
with certain degree of flexibility from its goal. One may observe that for every

(x, τ) ∈ S′, the degree of flexibility of
∑̂s0i

ti=1ĉ0ti
∏̂n

l=1x
γ̂0li
l is higher if deviation

of
∑s0i
ti=1 c

R
0ti

∏n
l=1 x

η0li
l from li is less and the degree of flexibility is less if

deviation of
∑s0i
ti=1 c

R
0ti

∏n
l=1 x

η0li
l from ui is more. This logic is similar to

the discussion of Subsection 2.2.1 in the context of the closeness between two
intervals. Accordingly we can associate a function χOj : I(R)× I(R)→ [0, 1] as
in (2.1) to measure this degree of closeness, as

χOi

(∑̂s0i

ti=1
ĉ0ti
∏̂n

l=1
xγ̂0lil , [li, ui]

)

=


1, if

∑s0i
ti=1 c

R
0ti

∏n
l=1 x

η0li
l ≤ li,

0, if
∑s0i
ti=1 c

L
0ti

∏n
l=1 x

η0li
l ≥ ui,

ui−
∑s0i
ti=1 c

L
0ti

∏n
l=1 x

η0li
l

(ui−li)+(
∑s0i
ti=1 c

R
0ti

∏n
l=1 x

η0li
l −

∑s0i
ti=1 c

L
0ti

∏n
l=1 x

η0li
l )

, elsewhere.

(3.4)

Here, value of every objective function is flexible towards its goal with certain
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degree of flexibility. This occurs simultaneously for k number of goals with

minimum flexibility, min
i

χOi

(∑̂s0i

ti=1ĉ0ti
∏̂n

l=1x
γ̂0li
l , [li, ui]

)
(See Definition 3).

The objective functions are characterized by their individual degree of flexi-
bility and the constraints are characterized by their degree of acceptability. So,
in this uncertain environment a decision x is the selection of activities that si-
multaneously satisfy all the objective functions and constraints with maximum
satisfaction, which may be mathematically expressed as

max min
i

{
χOi

(∑̂s0i

ti=1
ĉ0ti
∏̂n

l=1
xγ̂0lil , [li, ui]

)
; (x, τ) ∈ S′

}
≡ max min

i

{
χOi

(∑̂s0i

ti=1
ĉ0ti
∏̂n

l=1
xγ̂0lil , [li, ui]

)
;

τ = min
j

χFj

(∑̂sj

t=1
ĉjt
∏̂n

l=1
x
γ̂jtl
l , b̂j

)
, x ∈ S

}
.

This max-min problem is equivalent to

(IMGP )′ : max θ (3.5)

subject to θ ≤ χOi
(∑̂s0i

ti=1
ĉ0ti
∏̂n

l=1
xγ̂0lil , [li, ui]

)
, i ∈ Λk,

θ ≤ χFj
(∑̂sj

t=1
ĉjt
∏̂n

l=1
x
γ̂jtl
l , b̂j

)
, j ∈ Λm, 0 < θ < 1.

After substituting the value of χOi and χFj , (IMGP )′ can be further simplified
to the following form.

(IMGP )′ : max θ

subject to

(
s0i∑
ti=1

θcR0ti

n∏
l=1

xη0lil

)
+

(
s0i∑
ti=1

(1−θ)cL0ti
n∏
l=1

xη0lil

)
≤liθ+(1−θ)ui,(

sj∑
t=1

θcRjt

n∏
l=1

x
ηjtl
l

)
+

(
sj∑
t=1

(1− θ)cLjt
n∏
l=1

x
ηjtl
l

)
≤ bLj θ + (1− θ)bRj ,

1

2
< θ < 1, i ∈ Λk, j ∈ Λm.

(IMGP )′ is a general geometric programming problem which is free from in-
terval uncertainty, and can be solved using geometric programming technique.
Let the solution of the problem (IMGP )′ be (θopt, xopt) with degree of fea-
sibility τopt. Following result establishes the relation between the solution of
(IMGP )′ and (IMGP ).

Theorem 1. If (θopt, xopt) is an optimal solution of the (IMGP )′, then xopt

is an χ-efficient solution of (IMGP ) with degree of satisfaction θopt. In case
of alternate optimal solution of (IMGP )′, at least one of them is an χ-efficient
solution of (IMGP ).

Proof of the theorem is provided in Appendix.

Methodology of this section is illustrated in a waste water treatment model
in next section.
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4 A possible application in waste water treatment system

Several problems in waste water treatment system can be formulated as an
optimization model. Readers may refer [4,5,14,19,21,24,25,27,29] for different
type of optimization models related to waste water treatment system. These
are single objective optimization models where the treatment cost is minimized
under several conditions while removing the pollutant in the water. One may
observe that the total time required to execute the complete process of waste
water treatment system plays an important role while minimizing the total
cost. In this paper we address both the objectives which occur simultaneously:
minimization of the total annual cost as well as total time required to complete
all the steps of a waste water treatment plant. At every step, cost and time may
vary due to the presence of several inexact information in the system, which
arise due to change in climate, change in market price, quality of ingredients and
instruments, which are used in the treatment process. Lower and upper bound
of these parameters can be estimated from the historical data. As a result of
which, the parameters of the waste water treatment model become intervals
and hence the model is converted to interval optimization model. Formulation
of such a model is discussed in detail in this section.

4.1 System description

A general waste water treatment system is configured in the following major
steps.

Step 0 A known quantity of water from showers, toilets, washers and sometimes
from factories is pumped into the tank where the water is dozed with
alum for coagulation with heavy metals or insoluble particles. After co-
agulation, water is allowed to settle for some hours in the tanks.

Step I Next, water pollutants are removed by reverse osmosis process in which
water is pushed through a semi-permeable membrane to remove salts,
viruses etc. Then, the rest amount of water is taken to chlorination tank
where the primary disinfection is brought about by bubbling chlorine gas.

Step II Water in Step I is then passed through sand filters for trapping of undis-
solved pollutants and also pass through carbon filters to remove odor,
color etc. Dechlorination is done at this stage.

Step III Water from Step II is passed through a series of micro filters to remove
bacteria, protozoa etc., followed by ultraviolet disinfection system for ter-
minal disinfection.
Finally, water is packed in bottles through an automatic rising, filling and
capping machine fitted with an ozone generator.

Let xj (in percentage) be the remaining amount of water pollutant after
completion of jth step. Due to change in climate, change in market price,
quality of ingredients and instruments used in the treatment process, total
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expenditure at jth step varies between yLj and yRj (say); and total time re-

quired to complete this step varies between tLj and tRj (say). Denote ŷj(xj) =

[yLj , y
R
j ], t̂j(xj) = [tLj , t

R
j ], for j = 0, 1, 2, 3.

The required time and cost at every step depend upon the remaining amount
of pollutants of that step. Objective of the system is to minimize the total cost
and the total time required for the waste water treatment process so that at
least p% (say) of the pollutants should be removed. The intervals ŷj(xj) and
t̂j(xj) can be determined from some given past data.

4.2 Formulation of the model

To illustrate the proposed model, consider the following hypothetical data.
Cost and time required for lth (l = 1, 2, ..., 6) experiment are given in Table 1
and Table 2 respectively. xjl (with percentage) denotes the remaining amount
of pollutant after completion of step j. Cost and required time to complete jth

step in lth experiment varies in the intervals ŷj(xj) and t̂j(xj) respectively.

The intervals ŷj(xj) and t̂j(xj) at jth step of the model can be found from

Table 1. Cost to complete the steps for System.

Exp-1 Exp-2 Exp-3 Exp-4 Exp-5 Exp-6
(l = 1) (l = 2) (l = 3) (l = 4) (l = 5) (l = 6)

xjl →
ŷjl=[yL

jl
,yR
jl

]↓
50% 30% 20% 15% 10% 3%

Step 0(j = 0) × × × × × ×
Step I(j = 1) [0.5,0.8] [1,1.2] [1.4,1.5] [1.5,1.8] [2,2.5] [3,3.5]
Step II(j = 2) [0.5,0.6] [0.7,0.9] [2.5,2.7] [2.8,3.1] [3.3,3.5] [3.8,4.2]
Step III(j = 3) [1.4,1.5] [1.8,2.1] [2.8,3.1] [3.2,3.5] [3.8,4.0] [4.4,4.6]

Table 2. Time taken to complete the steps for System.

Exp-1 Exp-2 Exp-3 Exp-4 Exp-5 Exp-6
(l = 1) (l = 2) (l = 3) (l = 4) (l = 5) (l = 6)

xjl →
t̂jl=[tL

jl
,tR
jl

]↓
50% 30% 25% 15% 10% 5%

Step 0(j = 0) × × × × × ×
Step I(j = 1) [0.8,1.0] [1,1.3] [1.5,1.7] [1.8,2.0] [2.1,2.4] [3.0,3.2]
Step II(j = 2) [0.4,0.5] [0.6,0.8] [2.4,2.5] [2.6,2.8] [3.2,3.5] [3.6,3.9]
Step III(j = 3) [1.4,1.6] [2.8,2.9] [2.9,3.2] [3.4,3.6] [4.1,4.3] [4.4,4.6]

this data through interpolation. Here we consider least square approximation
to interpolate data as follows.

For j = 0, 1, 2, 3 and aj , bj ∈ R, bj > 0, consider the interpolating curve

yjl = bjxjl
aj , where yjl ∈ ŷjl. Then y

′

jl = b
′

j + ajx
′

jl, where y
′

jl = log yjl, b
′

j =
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log bj , x
′

jl = log xjl. For best approximation, b
′

j and aj should be found in such

a way that
∑6
l=1(ajx

′

jl+b
′

j−y
′

jl)
2 is minimum. The necessary and sufficient con-

dition for the existence of the minimum of L, where L =
∑6
l=1(ajx

′

jl+b
′

j−y
′

jl)
2,

are equations ∂L
∂aj

= 0 and ∂L
∂b

′
j

= 0. Solving this system, we get

aj =
6
∑6
l=1 log xjl log yjl −

∑6
l=1 log xjl

∑6
l=1 log yjl

6
∑6
l=1(log xjl)2 − (

∑6
l=1 log xjl)2

,

b
′

j =
1

6

(
6∑
l=1

log yjl − aj
6∑
l=1

log xjl

)
,

bj can be found from the relation b
′

j = log bj . Since yjl ∈ ŷjl so aj and bj also
lie in some intervals, which can be computed as follows

aj ∈ [ min
yjl∈ŷjl

aj , max
yjl∈ŷjl

aj ] = âj (say), bj ∈ [ min
yjl∈ŷjl

bj , max
yjl∈ŷjl

bj ] = b̂j (say).

Hence the cost function at jth step is ŷj = b̂j�xj âj , which is an interval valued
function, and can be interpolated from the data given in Table 1. Similarly the
time function at jth can be calculated from the data given in Table 2 through
an interpolating function tj = djx

cj
j .

Table 3 summarizes the values of the intervals âj , b̂j for cost function and

ĉj , d̂j for time function, which are found through interpolation as discussed

above. In Step 0, it is not possible to remove the pollutants. So âj , b̂j , ĉj , d̂j
are 0̂, where 0̂ = [0, 0]. The total cost and total time taken for completion of

Table 3. Evaluated âj , b̂j , ĉj , d̂j .

j âj b̂j ĉj d̂j

1 [−0.672,−0.450] [0.386, 0.726] [−0.661,−0.483] [0.490, 0.767]
2 [−0.786,−0.660] [0.407, 0.585] [−1.118,−0.930] [0.224, 0.356]
3 [−0.482,−0.416] [0.875, 1.343] [−0.488,−0.394] [1.259, 1.592]

all the steps for this system are respectively

Ŷ (x) , [0.386, 0.726]� x[−0.672,−0.450]1 ⊕[0.407, 0.585]� x[−0.786,−0.660]2

⊕[0.875, 1.343]� x[−0.482,−0.416]3

and

T̂ (x) , [0.490, 0.767]� x[−0.661,−0.483]1 ⊕[0.224, 0.356]� x[−1.118,−0.930]2

⊕[1.259, 1.592]� x[−0.488,−0.394]3 .

Ŷ (x) and T̂ (x) are the interval valued functions which have to be minimized
simultaneously. Generally, after waste water is purified through j steps, the
remaining amount of the water pollutant (percentage) in water is acceptable up
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to some desirable limit say b(b > 0). In Step II x1% of pollutant is entering and
it is possible to remove x2% of pollutants. So, after completion of this step the
remaining amount of pollutant is x1x2%. Similarly after Step III, it is x1x2x3%.
We assume that after completion of these steps the remaining amount of water
pollutant is limited up to b%(b > 0). So, x1x2x3 ≤ b. For p = 96, that is, if at
least 96% of the pollutants has to be removed then, b = 1− 0.96 = 0.04.

Summarizing the above discussion, the waste water treatment optimization
model denoted by (W − IMGP ) can be formulated as

(W − IMGP ) :

min
{

[0.386, 0.726]� x[−0.672,−0.450]1 ⊕ [0.407, 0.585]� x[−0.786,−0.660]2

⊕ [0.875, 1.343]� x[−0.482,−0.416]3 ,

[0.490, 0.767]� x[−0.661,−0.483]1 ⊕ [0.224, 0.356]� x[−1.118,−0.930]2

⊕ [1.259, 1.592]� x[−0.488,−0.394]3

}
subject to x1x2x3 ≤ 0.04, 0 < xj ≤ 1.

This is an interval multi-objective geometric programming (IMGP ) model.

4.3 Solution of (W − IMGP )

In (W − IMGP ) model,

g1(x) = x1x2x3, S = {(x1, x2, x3) : x1x2x3 ≤ 0.04, 0 < xj ≤ 1},
fL1 (x) = 0.386x−0.4501 + 0.407x−0.6602 + 0.875x−0.4163 ,

fR1 (x) = 0.726x−0.6721 + 0.585x−0.7862 + 1.343x−0.4823 ,

fL2 (x) = 0.490x−0.4831 + 0.224x−0.9302 + 1.259x−0.3943 ,

fR2 (x) = 0.767x−0.6611 + 0.356x−1.1182 + 1.592x−0.4883 .

Based on the above information, χ-efficient solution of this model can be found
using the proposed methodology in Section 3. Details may be avoided. Here
S′ = S. Suppose goals for the functions [fL1 (x), fR1 (x)] and [fL2 (x), fR2 (x)] are
[4, 7] and [6, 8] respectively (provided by decision maker). So χOi , for i = {1, 2}
are as follows

χO1 (f̂1(x), [4, 7]) =
7− fL1 (x)

3 + (fR1 (x)− fL1 (x))
,

χO2 (f̂2(x), [6, 8]) =
8− fL2 (x)

2 + (fR2 (x)− fL2 (x))
.

The inequality θ ≤ χO1 (f̂1(x), [4, 7]) is equivalent to

0.386x−0.4501 + 0.407x−0.6602 + 0.875x−0.4163 + (3 + fR1 (x)− fL1 (x))θ ≤ 7,

and the inequality θ ≤ χO2 (f̂2(x), [6, 8]) is equivalent to

0.490x−0.4831 + 0.224x−0.9302 + 1.259x−0.3943 + (2 + fR2 (x)− fL2 (x))θ ≤ 8.
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Here (IMGP )′ becomes the deterministic equivalent (W − IMGP )′, which is

(W − IMGP )′ : max θ

subject to (1− θ)(0.055x−0.4501 + 0.058x−0.6602 + 0.125x−0.4163 )

+ θ(0.104x−0.6721 + 0.083x−0.7862 + 0.192x−0.4823 ) + 0.429θ ≤ 1,

(1− θ)(0.061x−0.4831 + 0.028x−0.9302 + 0.157x−0.3943 )

+ θ(0.096x−0.6611 + 0.045x−1.1182 + 0.199x−0.4883 ) + 0.250θ ≤ 1,

25x1x2x3 ≤ 1, 0 < x1, x2, x3 < 1,
1

2
< θ < 1.

The transformed model is a geometric programming problem with positive
degree of difficulty. Optimal solution of the problem is found using GGPLAB
( [23]) optimization environment in MATLAB R2012a as

xopt1 = 0.300, xopt2 = 0.352, xopt3 = 0.379, θopt = 0.793.

Since the feasible region of the problem is a deterministic region. So the degree
of acceptability/feasibility of the solution is 1. Both the objectives satisfy
their goals with degree of flexibility 0.793. Hence a χ-efficient solution of the
given interval multi-objective problem is xopt = (0.300 0.352 0.379) with
79.3% degree of satisfaction. In this case 96% of the pollutant is removable.
(xopt1 , xopt2 , xopt3 are remaining amount of pollutant in corresponding steps.)

Note 2. In this model the parameter b represents the desirable limit of remain-
ing water pollutants after completion of all the process of waste water treatment
system. Other parameters of the model are uncertain. For any change on the
pollutant limit b to b± ε, the constraint for remaining amount of pollutant in
(W − IMGP )′ becomes x1x2x3 ≤ (b ± ε)%. In that case the sensitivity anal-
ysis of the model (W − IMGP ) can be studied using the sensitivity analysis
technique of general geometric programming problem, since (W −IMGP )′ is a
general geometric programming problem. Corresponding to different values of
b, change in the solution as well as change in the range of total cost and total
time taken for the completion of all the steps for the system are provided in
Table 4.

Table 4. Optimal solutions corresponding to different desirable limits of remaining pollu-
tants b.

b x1 x2 x3 Total cost Ŷ (x) Total time taken T̂ (x)

0.04 0.300 0.352 0.379 [2.783, 5.103] [3.313,5.400]
0.05 0.324 0.374 0.412 [2.684, 4.873] [3.188,5.137]
0.03 0.315 0.348 0.364 [2.916, 5.418] [3.482,5.759]
0.02 0.230 0.300 0.289 [3.113, 5.896] [3.734,6.307]
0.01 0.175 0.255 0.223 [3.479, 6.816] [4.206,7.371]

5 Conclusions

In this paper a new partial ordering is introduced to compare interval vectors.
Existence of solution of a general interval geometric programming problem is
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studied and summarized in a theorem. A methodology is derived for the so-
lution of the model. In the process of the methodology, one may observe that
χ-efficient solution of (IMGP ) is associated with certain degree of feasibility
and certain degree of flexibility of the objective functions towards the goals. A
possible application of this methodology is discussed in a waste water treatment
system. The methodology provides compromise lower and upper bound of min-
imum cost as well as minimum time requirement of the waste water treatment
model. The model is explained in hypothetical data. However real life waste
water model can also be studied for large data, which is beyond the scope of this
theoretical development. Study of sensitivity analysis on the lower and upper
bounds of the interval parameters of a general interval geometric programming
problem (IMGP ) is complex. We leave this for future study.
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Appendix

Proof of Lemma 1:

For this we need to show �χ is (i) reflexive, (ii) antisymmetric and (iii)
transitive.

Reflexive : Suppose â ∈ I(R). Since µ(â) = µ(â) and χ(â, â) = 1
2 , so

â �χ â. Hence �χ is a reflexive relation.

Antisymmetric : Consider â, b̂ ∈ I(R) and â �χ b̂ and b̂ �χ â. â �χ b̂

implies µ(â) ≤ µ(b̂) and χ(â, b̂) ∈
[
1
2 , 1
]
. Again b̂ �χ â implies µ(b̂) ≤ µ(â) and

χ(b̂, â) ∈
[
1
2 , 1
]
. Hence µ(â) = µ(b̂). χ(â, b̂) ∈

[
1
2 , 1
]

implies χ(â, b̂) ≥ χ(b̂, â),

and χ(â, b̂) ∈
[
1
2 , 1
]

implies χ(b̂, â) ≥ χ(â, b̂). Hence χ(â, b̂) = χ(b̂, â). Because

χ(â, b̂) + χ(b̂, â) = 1 and χ(â, b̂) = χ(b̂, â), so χ(â, b̂) = χ(b̂, â) = 1
2 . Since

µ(â) = µ(b̂) and χ(â, b̂) = χ(b̂, â) = 1
2 , so â = b̂. Hence �χ is an antisymmetric

relation.

Transitive : For â, b̂, ĉ ∈ I(R), consider â �χ b̂ and b̂ �χ ĉ. â �χ b̂

implies µ(â) ≤ µ(b̂) and χ(â, b̂) ∈
[
1
2 , 1
]
. b̂ �χ ĉ implies µ(b̂) ≤ µ(ĉ) and

χ(b̂, ĉ) ∈
[
1
2 , 1
]
. Hence µ(â) ≤ µ(ĉ). χ(â, b̂) ∈

[
1
2 , 1
]

implies χ(â, b̂) ≥ χ(b̂, â).

Hence bR + bL ≥ aR + aL. Also, χ(b̂, ĉ) ∈
[
1
2 , 1
]

implies χ(b̂, ĉ) ≥ χ(ĉ, b̂). Hence
cR + cL ≥ bR + bL. From both the relations we have cR + cL ≥ aR + aL.
This implies, cR − aL ≥ aR − cL. So cR−aL

µ(ĉ)+µ(â) ≥
aR−cL

µ(ĉ)+µ(â) , which implies

χ(â, ĉ) ≥ χ(ĉ, â). This means, χ(â, ĉ) ∈
[
1
2 , 1
]
. So â �χ ĉ. Hence �χ is a

transitive relation.

This implies that �χ is a partial order relation. ut

Proof of Theorem 1: Here θopt = θ(xopt).

Denote f̂i(x) =
∑̂s0i

ti=1ĉ0ti
∏̂n

l=1x
γ̂0li
l , fLi (x) =

∑s0i
ti=1 c

L
0ti

∏n
l=1 x

η0li
l ,
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fRi (x) =
∑s0i
ti=1 c

R
0ti

∏n
l=1 x

η0li
l , ĝj(x) =

∑̂sj

t=1ĉjt
∏̂n

l=1x
γ̂jtl
l . Suppose xopt is

not an χ-efficient solution. So from Definition 4, we can say that there exists
x∗ 6= xopt, which is a feasible solution of (IMGP ) with degree of acceptability

τ∗ such that f̂i(x
∗) ≺χ f̂i(xopt), ∀i ∈ Λk. Hence µ(f̂i(x

∗)) ≤ µ(f̂i(x
opt)) and

fRi (x∗) ≤ fLi (xopt). This implies fLi (x∗) ≤ fRi (x∗) ≤ fLi (xopt) ≤ fRi (xopt). So

ui − fLi (x∗) ≥ ui − fLi (xopt) ≥ 0. (5.1)

Since [li, ui] are non degenerate intervals, we have

0 < (ui − li) + (fRi (x∗)− fLi (x∗)) ≤ (ui − li) + (fRi (xopt)− fLi (xopt)). (5.2)

From (5.1) and (5.2), we get

ui − fLi (x∗)

(ui − li) + (fRi (x∗)− fLi (x∗))
≥ ui − fLi (xopt)

(ui − li) + (fRi (xopt)− fLi (xopt))
.

Also we have

θopt ≤ ui − fLi (xopt)

(ui − li) + (fRi (xopt)− fLi (xopt))
≤ ui − fLi (x∗)

(ui − li) + (fRi (x∗)− fLi (x∗))
.

x∗ ∈ S implies that x∗ is a feasible point with some degree of acceptability

τ∗ ∈ [ 12 , 1], where τ∗ = min
j

{
bRj −g

L
j (x)

(bRj −bLj )+(gRj (x)−gLj (x))

}
. So (x∗, τ∗) is a feasible

point of (IMGP )′. Now,

min
i∈Λk

{
ui − fLi (x∗)

(ui−li)+(fRi (x∗)−fLi (x∗))

}
≥min
i∈Λk

{
ui − fLi (xopt)

(ui−li)+(fRi (xopt)−fLi (xopt))

}
.

Hence θ(x∗) ≥ θ(xopt). If θ(x∗) = θ(xopt) then x∗ and xopt are alternate
optimal solutions of (IMGP )′ with degree of feasibility τ∗ and x∗ is a χ-
efficient solution of (IMGP ). θ(x∗) > θ(xopt) leads to a contradiction to the
optimality of xopt. ut
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