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Abstract. Landesman-Lazer’s type efficient sufficient conditions are established for
the solvability of the Dirichlet problem

u′′(t) = p(t)u(t) + f(t, u(t)) + h(t), for a ≤ t ≤ b, u(a) = 0, u(b) = 0,

where h, p ∈ L([a, b];R) and f is the L([a, b];R) Caratheodory function, in the case
where the linear problem u′′(t) = p(t)u(t), u(a) = 0, u(b) = 0 has nontrivial solutions.
The results obtained in the paper are optimal in the sense that if f ≡ 0, i.e., when
nonlinear equation turns to the linear equation, from our results follows the first part
of Fredholm’s theorem.
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1 Introduction

Consider on the interval I = [a, b] the second order nonlinear ordinary differ-
ential equation

u′′(t) = p(t)u(t) + f(t, u(t)) + h(t) (1.1)

with the boundary conditions

u(a) = 0, u(b) = 0, (1.2)

�
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where h, p ∈ L(I;R) and f ∈ K(I ×R;R). By a solution of the problem (1.1)–

(1.2) we understand a function u ∈ C̃ ′(I,R), which satisfies equation (1.1)
almost everywhere on I and satisfies conditions (1.2).

Along with (1.1)–(1.2) we consider the homogeneous problem

w′′(t) = p(t)w(t) for t ∈ I, (1.3)

w(a) = 0, w(b) = 0. (1.4)

At present, the foundations of the general theory of two-point boundary
value problems are already laid and problems of this type are studied by many
authors and investigated in detail. But primarily is studied the case when
the homogeneous problem (1.3)–(1.4) has only a trivial solution i.e., the non
resonance case (see for instance [2, 3, 5, 11] and references therein).

The case when problem (1.3)–(1.4) has the nontrivial solution is still little
investigated and the majority of the authors study the case when p is constant
function and this constant is the first eigenvalue of linear problem (see, for
instance, [1, 3, 4, 6, 7, 8, 9, 10, 12] and references therein), i.e., when problem
(1.1)–(1.2) and equation (1.3) are of the following type

u′′(t) = −λ2u(t) + f(t, u(t)) + h(t) for t ∈ [0, π], (1.5)

u(0) = 0, u(π) = 0, (1.6)

and w′′(t) = −λ2w(t) for t ∈ [0, π], respectively, and λ = 1. Some interesting
results of this type are presented for example in [3] (see the Theorems 2.5–2.10).
Also the rare exception is the paper [7], where the authors study problem (1.5)–
(1.6) for λ ≥ 1.

In the present article we establish the Landesman-Lazer’s type conditions
of the solvability of problem (1.1)–(1.2), when the function p ∈ L(I;R) is
not necessarily constant, under the assumption that the nontrivial solution of
homogeneous problem (1.3)–(1.4) has the zeros in the open interval ]a, b[ (for
problem (1.5)–(1.6) this is the case λ ≥ 2.) The obtained theorems generalize
deeply the results from the above mentioned articles, and give the principal
improvement of the our previous results from the paper [13] (see Theorems 2.3,
2.4, 2.5). Also the obtained results are optimal in the sense that if f ≡ 0, i.e.,
when the equation (1.1) turns to the linear equation, from our results follows
the first part of Fredholm’s theorem (see Remark 6).

The following notation is used throughout the paper: N is the set of all
natural numbers; R is the set of all real numbers, R+ = [0,+∞[; C(I;R) is
the Banach space of continuous functions u : I → R with the norm ‖u‖C =

max{|u(t)| : t ∈ I}; C̃ ′(I;R) is the set of functions u : I → R which are
absolutely continuous together with their first derivatives; L(I;R) is the Banach
space of Lebesgue integrable functions p : I → R with the norm ‖p‖L =∫ b
a
|p(s)|ds; K(I × R;R) is the set of functions f : I × R → R satisfying the

Carathéodory conditions, i.e., f(·, x) : I → R is a measurable function for all
x ∈ R, f(t, ·) : R → R is a continuous function for almost all t ∈ I, and for
arbitrary r ∈ R+

f∗(t, r) = sup{|f(t, x)| : |x| ≤ r} ∈ L(I, R+).
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Also having the function x : I → R, we put:

[x(t)]+ = (|x(t)|+ x(t))/2, [x(t)]− = (|x(t)| − x(t))/2.

Remark 1. a. The dimension of the space of the nontrivial solutions of problem
(1.3)–(1.4) is one; b. If w1 and w are the nonzero solutions of problem (1.3)–
(1.4), then

w1(t) = βw(t) for t ∈ I, (1.7)

where β = −‖w1‖C/‖w‖C or β = ‖w1‖C/‖w‖C .

From Remark 1 it is clear that if w is an arbitrary nonzero solution of
problem (1.3)–(1.4) then the notation Np ≡ {t ∈]a, b[: w(t) = 0} is correct.

Definition 1. Let f ∈ K(I ×R;R) and A = {t1, · · · , tk} be a finite subset of
I. Then we say f ∈ E(A) if for an arbitrary neighbourhood U(A) of the set A,
and r ∈]0, +∞[, there exists λ1 > 0 such that∫

U ′(A)\Uλ
|f(s, x)|ds−

∫
Uλ

|f(s, x)|ds ≥ 0 for |x| ≥ r, λ ≤ λ1,

where U ′(A) = I ∩ U(A), and Uλ = I ∩
(
∪kj=1 [tj − λ, tj + λ]

)
.

Remark 2. In example 1.1 of [13], for given set A ⊂ I is constructed f ∈
K(I ×R;R) such, that f 6∈ E(A).

Remark 3. It is clear that if f(t, x)
def
≡ f0(t)g0(x), where f0 ∈ L(I;R) and

g0 ∈ C(R;R), then f ∈ E(A) for an arbitrary finite A ⊂ I.

2 Main results

In this paper we study problem (1.3)–(1.4) only under the assumption that
Np 6= ∅. The second order ordinary differential equations under different two
point boundary conditions for the case Np = ∅, are studied in our articles [13]
and [14].

In the following propositions we always suppose that i ∈ {0, 1} takes one
of the values 0 or 1.

Theorem 1. Let i ∈ {0, 1}, r > 0, f ∈ E(Np), functions f+, f− ∈ L(I;R+) be
such that

(−1)if(t, x) ≤ −f−(t) for x ≤ −r, t ∈ I,
f+(t) ≤ (−1)if(t, x) for x ≥ r, t ∈ I,

(2.1i)

and condition

lim
ρ→+∞

1

ρ

∫ b

a

f∗(s, ρ)ds = 0 (2.2)
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holds. Let moreover w be an arbitrary nonzero solution of problem (1.3)–(1.4)
and there exists ε > 0 such that

−
∫ b

a

(f+(s)[w(s)]−+f−(s)[w(s)]+)ds+εγr‖w‖C ≤ (−1)i+1

∫ b

a

h(s)w(s)ds

≤
∫ b

a

(f−(s)[w(s)]− + f+(s)[w(s)]+)ds− εγr‖w‖C , (2.2i)

where γr =
∫ b
a
f∗(s, r)ds. Then problem (1.1)–(1.2) has at least one solution.

Remark 4. In view of item a. of Remark 1 it is clear that if f 6≡ 0, then
condition (2.2i) in Theorem 1 can be replaced by the condition

−
∫ b

a

(f+(s)[w(s)]− + f−(s)[w(s)]+)ds < (−1)i+1

∫ b

a

h(s)w(s)ds

<

∫ b

a

(f−(s)[w(s)]− + f+(s)[w(s)]+)ds.

Remark 5. If f̃(t) = min{f+(t), f−(t)} then∫ b

a

f̃(s)|w(s)|ds ≤
∫ b

a

(f±(s)[w(s)]− + f∓(s)[w(s)]+)ds,

and therefore condition (2.2i) will be fulfilled if∣∣∣∣∣
∫ b

a

h(s)w(s)ds

∣∣∣∣∣ ≤
∫ b

a

f̃(s)|w(s)|ds− εγr‖w‖C . (2.3)

Consequently condition (2.2i) can be replaced by the last inequality.

Remark 6. From inequality (2.3) is evident that if f ≡ 0, then f ≡ f+ ≡ f− ≡
0, γr = 0, and Theorem 1 turns to the first part of Fredholm’s Theorem.

Theorem 2. Let i ∈ {0, 1}, r > 0, and the conditions

(−1)if(t, x) sgnx ≥ 0 for |x| ≥ r, t ∈ I, (2.4)

and (2.2) be satisfied. Let moreover there exist sets I+, I− ⊂ I such, that

lim
x→±∞

|f(t, x)| = +∞ uniformly on I±,

and for an arbitrary solution w of problem (1.3)–(1.4) the inequalities∫
I+

[w(s)]+ds+

∫
I−

[w(s)]−ds 6= 0,

∫
I+

[w(s)]−ds+

∫
I−

[w(s)]+ds 6= 0, (2.5)

hold. Then for an arbitrary h ∈ L(I;R) problem (1.1)–(1.2) has at least one
solution.
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If I1 = I+ ∩ I− is the set of positive measure, then condition (2.5) auto-
matically holds, and from Theorem 2 it follows

Corollary 1. Let i ∈ {0, 1}, r > 0, and the function f ∈ E(Np) be such that
the conditions (2.2) and (2.4) are satisfied. Let moreover there exist such a set
I1 ⊂ I of positive measure that

lim
x→±∞

|f(t, x)| = +∞ uniformly on I1.

Then for an arbitrary h ∈ L(I;R) problem (1.1)–(1.2) has at least one solution.

If we note that from condition (2.6) follows validity of condition (2.4), from
Corollary 1 we get

Corollary 2. Let i ∈ {0, 1}, and the function f ∈ E(Np) be such that the
condition (2.2) is satisfied, and

(−1)i lim
x→±∞

f(t, x) = ±∞ uniformly on I. (2.6)

Then for an arbitrary h ∈ L(I;R) problem (1.1)–(1.2) has at least one solution.

Also in view of Remark 3 from the Corollary 1 immediately follows

Corollary 3. Let i ∈ {0, 1}, f(t, x)
def
≡ f0(t)g(x) where the functions f0 ∈

L(I;R+), and g ∈ C(R;R), be such that∫ b

a

f0(s)ds 6= 0, lim
|x|→+∞

g(x)

x
= 0,

(−1)i lim
x→+∞

g(x) = +∞, (−1)i lim
x→−∞

g(x) = −∞.

Then for an arbitrary h ∈ L(I;R) problem (1.1)–(1.2) has at least one solution.

Example 1. From Corollary 3 it follows that the equation

u′′(t) = −λ2u(t) + σ|u(t)|αsgnu(t) + h(t) for 0 ≤ t ≤ π

under the boundary conditions (1.6), where σ ∈ {−1, 1}, λ ≥ 2, and α ∈ ]0, 1[,
has at least one solution for an arbitrary h ∈ L([0, π], R).

Remark 7. For problem (1.5)–(1.6) when λ ≥ 2, the proved propositions are
valid with w(t) = β sinλt (β ∈ R), and

Np = Nλ2 = {πn/λ : n = 1, ..., λ− 1}.

Example 2. From Remark 5, with f+ ≡ f− ≡ 1− δ for arbitrary δ ∈]0, 1/2[, it
follows that the equation

u′′(t) = −λ2u(t) +
σ|u(t)|α

1 + |u(t)|α
sgnu(t) + h(t) for 0 ≤ t ≤ π

under the boundary conditions (1.6), where σ ∈ {−1, 1}, λ ≥ 2, and α > 0, is
solvable if |h(t)| < 1 on [0, π], or

∫ π
0
h(s) sinλsds = 0.

Math. Model. Anal., 24(4):585–597, 2019.
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3 Auxiliary propositions

Let A,B ⊂ I be measurable sets, Np = {t1, · · · , tk} (a < tj < tj+1 < b), α > 0,
w ∈ C(I, R) and

Uα
def
≡ ∪kj=1

]
tj − α, tj + α

[
,

I(A,B, x, w)
def
≡

∫
A\B

|f1(s, x)w(s)|ds−
∫
B

|f1(s, x)w(s)|ds for x ∈ R.

Then the following lemma is true

Lemma 1. Let f1 ∈ E(Np), and w be a nonzero solution of problem (1.3)–
(1.4). Then for an arbitrary δ ∈]0, 1/2 min{t1−a, b−tk}[, there exists γ ∈]0, δ[
such that

I(Iδ, Uγ , x, w) ≥
∫
Iδ\Uδ

|f1(s, x)w(s)|ds for |x| ≥ r, (3.1)

where Iδ = [a+ δ, b− δ].

Proof. From definition 1 it follows the existence of such positive γ1 < δ that

I(Uδ, Uγ1 , x, 1) ≥ 0 for |x| ≥ r. (3.2)

Let now w0 be a solution of problem (1.3)–(1.4) and ‖w0‖C = 1. Then from the
inclusion Np ⊂ Uγ1 ⊂ Iδ it is evident that there exist positive numbers γ, β0,
such that

Uγ ⊂ Hβ0

def
≡
{
t ∈ Iδ : |w0(t)| ≤ β0

}
⊂ Uγ1 . (3.3)

Then the inequality γ1 < δ and (3.3) imply inclusion Hβ0 ⊂ Uδ, and the
relations

|w0(t)| > β0 for t ∈ Uδ \Hβ0
, (3.4)

Iδ \Hβ0
= (Iδ \ Uδ) ∪ (Uδ \Hβ0

),

hold. From the last expression, Remark 1, and (3.3), (3.4), we have

1

‖w‖C
I(Iδ, Uγ , x, w) = I(Iδ, Uγ , x, w0) ≥ I(Iδ, Hβ0 , x, w0)

≥
∫
Iδ\Uδ

|f1(s, x)w0(s)|ds+ β0I(Uδ, Hβ0 , x, 1)

≥
∫
Iδ\Uδ

|f1(s, x)w0(s)|ds+ β0I(Uδ, Uγ1 , x, 1).

By (3.2) from the last inequality (3.1) immediately follows. ut

Let un ∈ C̃ ′(I;R), ‖un‖C 6= 0 (n ∈ N), w1 be an arbitrary nonzero solution
of problem (1.3)–(1.4), and r > 0. Then we define:

Ω+
w1

def
= {t ∈ I : w1(t) > 0}, Ω−w1

def
= {t ∈ I : w1(t) < 0},
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An,2
def
= {t ∈ I : |un(t)| ≤ r}, An,1

def
= {t ∈ I : |un(t)| > r},

Bn,`
def
= {t ∈ An,1 : sgnun(t) = (−1)`−1sgnw1(t)} (` = 1, 2).

From these definitions it is clear that, for all n ∈ N, we have

An,2 ∩An,1 = ∅, An,2 ∪An,1 = I,

Bn,1 ∩Bn,2 = ∅, Bn,1 ∪Bn,2 = An,1 \Np ⊂ I. (3.5)

Lemma 2. Let r > 0, the functions un ∈ C̃ ′(I;R), n ∈ N admit to the condi-
tions

un(a) = 0, un(b) = 0, (3.6)

‖un‖C > 2rn for n ∈ N, (3.7)

and w1 be such nonzero solution of problem (1.3)–(1.4), that the condition

‖v(j)n − w
(j)
1 ‖C ≤ 1/2n for n ∈ N (j = 0, 1) (3.8)

holds where vn(t) = un(t)‖un‖−1C . Then for an arbitrary δ ∈]0, 1
2 min{t1 −

a, b− tk}[, and γ ∈]0, δ[ there exists n0 ∈ N such that

Iδ \ Uγ ⊂ ∩+∞n=n0
Bn,1, (3.9)

Bn,2 ⊂ Uγ for n > n0, (3.10)

± un(t) ≥ r for t ∈ Ω±w1
∩ (Iδ \ Uδ), n > n0. (3.11)

Moreover

lim
n→+∞

mes An,2 = 0, lim
n→+∞

mes An,1 = mes I, (3.12)

lim
n→+∞

mesBn,2 = 0, lim
n→+∞

mes Bn,1 = mes I, (3.13)

lim
δ→0

mes(Ω±w1
\ [Ω±w1

∩ (Iδ \ Uδ)]) = 0. (3.14)

Proof. First note that from the unique solvability of Cauchy problem for equa-
tion (1.3) it is clear that

w′1(a) 6= 0, w′1(b) 6= 0.

Therefore conditions (3.6) and (3.8) imply the existence of such

δ ∈]0, 1/2 min{t1 − a, b− tk}[, and n∗ ∈ N,

that sgnw1(t) = sgnun(t) if t ∈ [a, a + δ] ∪ [b − δ, b] = I \ Iδ, and n > n∗.
Consequently

(I \ Iδ) ∩Bn,2 = ∅ for n > n∗. (3.15)

Now fix γ ∈]0, δ[, and note that Iδ \ Uγ is the closed set and min{|w1(t)| : t ∈
Iδ \ Uγ} > 0. Therefore we can choose n0 > n∗ such that the inequality

|w1(t)| ≥ 1/n0 for t ∈ Iδ \ Uγ

Math. Model. Anal., 24(4):585–597, 2019.
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holds, from which by (3.8) we obtain

|vn(t)| ≥ 1/2n0 for n ≥ n0, t ∈ Iδ \ Uγ , (3.16)

sgnw1(t) = sgnun(t) for n ≥ n0, t ∈ Iδ \ Uγ . (3.17)

Also from (3.16) by (3.7) we get

|un(t)| > nr/n0 ≥ r for n ≥ n0, t ∈ Iδ \ Uγ . (3.18)

From the last two relations follows that if t ∈ Iδ\Uγ then t ∈ Bn,1 for n > n0, i.e.
(3.9) holds. Now assume that there exists such increasing sequence {nj}+∞j=1that
t′nj ∈ Bnj ,2 and t′nj 6∈ Uγ . Then taking into account (3.9), and (3.15) we get
t′nj ∈ I \ (I \ Iδ) \Uγ = Iδ \Uγ ⊂ Bnj ,1 if n > n0. But this is the contradiction
with (3.5), i.e. (3.10) is valid.

For arbitrary t∗ ∈ I where w1(t∗) 6= 0, in view of condition (3.8) the in-
equality |w1(t∗) − vn(t∗)| ≤ 1

2 |w1(t∗)| holds if n ≥ 1/|w1(t∗)|, i.e., t∗ ∈ Bn,1 if
n ≥ 1/|w1(t∗)|. Then the second equality of (3.13) holds, from which by (3.5) it
follows the validity of first relation of (3.13) and validity of the second equality
of (3.12). Then by (3.5) it is evident that the first equality of (3.12) holds also.

Inequality (3.11) immediately follows from (3.17) and (3.18). From the
trivial relations limδ→0 mes Iδ = b−a, limδ→0 mesUδ = 0 it follows (3.14). ut

Now introduce the notation

Mn(w1)
def
≡
∫ b

a

(h1(s) + f1(s, un(s)))w1(s)ds,

then the following lemma is true

Lemma 3. Let the functions un, w1 be such that all the assumptions of Lemma
2 are fulfilled, r > 0, f1 ∈ E(Np), and there exist functions f−, f+ ∈ L(I,R+)
such that the conditions

f1(t, x) ≤ −f−(t) for x ≤ −r, t ∈ I,
f+(t) ≤ f1(t, x) for x ≥ r, t ∈ I,

(3.19)

are satisfied. Let moreover there exists ε > 0 such that for an arbitrary solution
w of problem (1.3)–(1.4) the condition

−
∫ b

a

(f+(s)[w(s)]− + f−(s)[w(s)]+)ds+ εγr‖w‖C ≤ −
∫ b

a

h1(s)w(s)ds

≤
∫ b

a

(f−(s)[w(s)]− + f+(s)[w(s)]+)ds− εγr‖w‖C (3.20)

holds, where γr =
∫ b
a
f∗1 (t, r)ds. Then there exists n0 ∈ N such that

Mn(w1) ≥ 0 for n ≥ n0. (3.21)
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Proof. First note that if f1 ≡ 0, then γr ≡ f− ≡ f+ ≡ 0, and therefore
in view of conditions (3.12) and (3.14) for arbitrary ε > 0 there exist δ ∈
]0, 1

2 min{t1 − a, b− tk}[, and n1 ∈ N, such that∫
An,2

f∗(s, r)ds ≤ 1

3
εγr for n > n1, (3.22)

1

‖w1‖C

∫
Ω±w1

f±(s)|w1(s)|ds−1

3
εγr ≤

1

‖w1‖C

∫
Ω±w1
∩(Iδ\Uδ)

f±(s)|w1(s)|ds.

Also, by the definition of the sets An,j , Bn,j (j = 1, 2), and conditions (3.5)
and (3.19), we obtain respectively the estimates

Mn(w1) ≥ −
∫
An,2

f∗(s, r)|w1(s)|ds+

∫ b

a

h1(s)w1(s)ds

+

∫
Bn,1

f1(s, un(s))w1(s)ds−
∫
Bn,2

|f1(s, un(s))w1(s)|ds, (3.23)

f1(s, un(s))w1(s) ≥ 0 for s ∈ Bn,1, (3.24)

for n ∈ N. On the other hand by Lemma 1 for chosen δ there exists γ ∈]0, δ[
such, that inequality (3.1) holds, and now for chosen δ, and γ, by Lemma 3.2
we can find n0 > n1 such, that (3.11), and inclusions (3.9), (3.10), hold. Then
from (3.23) in view of (3.1), by virtue of (3.9), (3.10), and (3.24), we get

Mn(w1) ≥ −
∫
An,2

f∗(s, r)ds‖w1‖C +

∫ b

a

h1(s)w1(s)ds

+

∫
Iδ\Uδ

f1(s, un(s))w1(s)ds for n ≥ n0. (3.25)

From the condition Np 6= ∅ we obviously have Ω+ 6= ∅, Ω− 6= ∅, Ω−w1
∪Ω+

w1
=

(I \Np) \ {a, b}, and then from (3.11), and (3.19), we get∫
Iδ\Uδ

f1(s, un(s))w1(s)ds =

∫
Ω+
w1
∩(Iδ\Uδ)
f1(s, un(s))|w1(s)|ds−

∫
Ω−w1
∩(Iδ\Uδ)
f1(s, un(s))|w1(s)|ds

≥
∫
Ω+
w1
∩(Iδ\Uδ)

f+(s)|w1(s)|ds+

∫
Ω−w1
∩(Iδ\Uδ)

f−(s)|w1(s)|ds, (3.26)

for n > n0. Also it is clear that under the conditions of our Lemma equality
(1.7) holds, and then∫

Ω±w1

f±(s)|w1(s)|ds = β

∫
Ω±w1

f±(s)[w(s)]±ds = β

∫ b

a

f±(s)[w(s)]±ds,

if β > 0, and∫
Ω±w1

f±(s)|w1(s)|ds = |β|
∫
Ω±w1

f±(s)[w(s)]∓ds = |β|
∫ b

a

f±(s)[w(s)]∓ds,

Math. Model. Anal., 24(4):585–597, 2019.
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if β < 0. Then from (3.25) by virtue of (3.26), (3.22), and the last equalities
we get

Mn(w1)

|β|
≥ −εγr‖w‖C +

∫ b

a

(f+(s)[w(s)]+ + f−(s)[w(s)]−)ds

+

∫ b

a

h1(s)w(s)ds for n ≥ n0, β > 0,

Mn(w1)

|β|
≥ −εγr‖w‖C +

∫ b

a

(f+(s)[w(s)]− + f−(s)[w(s)]+)ds

−
∫ b

a

h1(s)w(s)ds for n ≥ n0, β < 0.

From the last inequalities by (3.20) we immediately obtain (3.21). ut

Lemma 4. Let the functions un, w1 be such that all the assumptions of Lemma
2 are fulfilled, r0 > 0, f ∈ E(Np), and

f1(t, x) sgnx ≥ 0 for |x| ≥ r0, t ∈ I. (3.27)

Let moreover there exist such sets I+, I− ⊂ I, that

lim
x→±∞

|f1(t, x)| = +∞ uniformly on I± (3.28)

and for an arbitrary solution w of problem (1.3)–(1.4) inequalities (2.5) be
satisfied. Then inequality (3.21) holds.

Proof. Let h1 ∈ L(I, R) be arbitrarily chosen function, and f±(t) = c, for
t ∈ I±, and 0, for t ∈ I \ I±, where c is a positive constant. In view of item a.
of Remark 1, and conditions (2.5) we can find such c > 0 that the inequality

−
∫ b

a

(f+(s)[w(s)]− + f−(s)[w(s)]+)ds < −
∫ b

a

h1(s)w(s)ds

<

∫ b

a

(f−(s)[w(s)]− + f+(s)[w(s)]+)ds

(3.29)

will hold, and for this c in view of conditions (3.27) and (3.28) we can find
such r > 0, that inequalities (3.19) will be fulfilled. Also in view of item a. of
Remark 1 it is clear that from (3.29), for given r > 0, we can find such ε > 0
that inequality (3.20) of Lemma 3 will be satisfied. Therefore for arbitrarily
chosen h1 all the conditions of Lemma 3 are fulfilled and then inequality (3.21)
holds. ut

Lemma 5. Let i ∈ {0, 1}, p ∈ L(I;R), pn(t) = p(t) + (−1)i/n, and wn ∈
C̃ ′(I;R) (n ∈ N) be a solution of the problem

w′′n(t) = pn(t)wn(t) for t ∈ I, wn(a) = 0, wn(b) = 0. (3.30n)

Then there exists n1 ∈ N such that problem (3.30n) has only the zero solution
for n ≥ n1.



Dirichlet BVP for the Second Order Nonlinear ODE 595

Proof. Let integers An ≥ 2 and N∗p ≥ 2 be the number of zeros on I of the
nonzero solutions of problems (3.30n) and (1.3), (1.4) respectively. Now assume
on the contrary that there exists a sequence {wn}+∞n≥n1

of nonzero solutions of
problem (3.30n). Then:

a. If i = 1, from the fact that pn(t) < pn+1(t) by Sturm’s comparison
theorem, we obtain An − An+k ≥ 1 (n, k ∈ N). Now assume that An1

= k1.
Therefore, we obtain the contradiction k1 = An1

> An1
− An1+k1 = (An1

−
An1+1) + (An1+1 −An1+2) + ...+ (An1+k1−1 −An1+k1) ≥ k1.

b. If i = 0, from the fact that pn−1(t) > pn(t) > p(t), by Sturm’s comparison
theorem, we obtain An − An−1 ≥ 1 and N∗p ≥ An − 1 (n ∈ N). Therefore, if
we denote N∗p = k1, we obtain the contradiction k1 = N∗p ≥ An+k1 − 1 >
An+k1 −An ≥ k1.

The contradictions obtained prove our lemma. ut

4 Proof of the main results

Proof of Theorem 1. Let pn(t) = p(t) + (−1)i/n and for n ∈ N, consider the
problems

u′′n(t) = pn(t)un(t) + f(t, un(t)) + h(t) for t ∈ I, (4.1)

un(a) = 0, un(b) = 0, (4.2)

and (3.30n). In view of Lemma 5, problem (3.30n) has only the zero solution
for every n ≥ n1. Therefore, as it is well-known (see [9, Theorem 1.1, p. 345]),
from the inequality (2.2) it follows that problem (4.1)–(4.2) has at least one
solution, suppose un. Assume

limn→+∞‖un‖C = +∞ (4.3)

and vn(t) = un(t)‖un‖−1C . Then vn is the solution of the equation

v′′n(t) = pn(t)vn(t) +
1

‖un‖C
(f(t, un(t))) + h(t)), (4.4)

and the conditions

vn(a) = 0, vn(b) = 0, (4.5)

‖vn‖C = 1, (4.6)

hold for n ∈ N. Hence, by the conditions (4.6) and (2.2), from (4.4) we get the
existence of r0 > 0 such that ‖v′n‖C ≤ r0. Consequently in view of (4.6), by
Arzela-Ascoli lemma, without loss of generality we can assume that there exists

w1 ∈ C̃ ′(I,R) such that limn→+∞ v
(j)
n (t) = w

(j)
1 (t) (j = 0, 1) uniformly on I.

From the last equality and (4.3) there follows the existence of an increasing

sequence {αk}+∞k=1 of a natural numbers, such that ‖uαk‖C > 2rk and ‖v(j)αk −
w

(j)
1 ‖C ≤ 1/2k for k ∈ N . Without loss of generality we can suppose that un ≡

uαn and vn ≡ vαn . Then un and vn are the solutions of problems (4.1)–(4.2)
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and (4.4)–(4.5) respectively, with pn(t) = p(t) + (−1)i/αn for t ∈ I, n ∈ N,
and inequalities (3.7) and (3.8) are fulfilled.

From (4.4), by virtue of (4.5), (3.7), (3.8), and (2.2), we obtain that w1

is a solution of the problem (1.3)–(1.4). Multiplying equations (4.1) and (1.3)
respectively by w1 and −un, and integrating their sum from a to b, in view of
conditions (4.2) and (1.4), we obtain

(−1)i+1

∫ b

a

(h(s) + f(s, un(s)))w1(s)ds =
‖un‖C
αn

∫ b

a

w1(s)vn(s)ds (4.7)

for n ≥ n1. On the other hand in view of condition (3.8) we have

lim
n→+∞

∫ b

a

w1(s)vn(s)ds =

∫ b

a

w2
1(s)ds > 0.

Therefore from the last inequality and (4.7) it follows the existence of such
n2 > n1 that

(−1)i+1

∫ b

a

(h(s) + f(s, un(s)))w1(s)ds > 0 for n ≥ n2. (4.8)

Now note that, in view the conditions f ∈ E(Np), (2.1i), (2.2i), (4.2), and (3.7),
(3.8), all the assumptions of Lemma 3 with f1(t, x) = (−1)if(t, x), h1(t) =
(−1)ih(t) are satisfied. Therefore, the inequality (3.21) is true, which contra-
dicts (4.8) when n ≥ max{n0, n2}. This contradiction proves that (4.3) does
not hold and thus there exists r1 > 0 such that ‖un‖C ≤ r1 for n ∈ N .
Consequently, from (4.1) and (4.2) it is clear that there exists r′1 > 0 such
that ‖u′n‖C ≤ r′1 and |u′′n(t)| ≤ σ(t) for t ∈ I, n ∈ N, where σ(t) =
(1 + |p(t)|)r1 + |h(t)|+ f∗(t, r1). Hence, by Arzela-Ascoli lemma, without loss

of generality we can assume that there exists a function u0 ∈ C̃ ′(I;R) such

that limn→+∞ u
(j)
n (t) = u

(j)
0 (t) (j = 0, 1) uniformly on I. Therefore, it follows

from (4.1) and (4.2) that u0 is a solution of the problem (1.1)–(1.2). ut

Proof of Theorem 2. The proof is the same as the proof of Theorem 1. The
only difference is that we use Lemma 4 instead of Lemma 3. ut

5 Conclusions

In the end of our paper we would like to consider following two tasks for fu-
ture studies of resonance problem (1.1)–(1.2). The first task is to answer the
question about the role of the condition f ∈ E(Np), for solvability of problem
(1.1)–(1.2). Is it possible or not to omit this condition or replace it by the ”eas-
ier” or more ”natural” condition. The second task is to find the conditions of
unique solvability of resonance problem (1.1)–(1.2) for the case when Np 6= ∅,
because if Np = ∅, then it is not difficult to find the conditions of the unique
solvability of our resonance problem.
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