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Abstract. In this paper we consider the Neumann boundary value problem at res-
onance

—u"(t) = f(t,u(t)), 0<t<l, u(0)=u'(1)=0.

We assume that the nonlinear term satisfies the inequality f(¢,z) + oz + B(t) > 0,
t €0,1], z > 0, where 8 : [0,1] = Ry, and a # 0. The problem is transformed into
a non-resonant positone problem and positive solutions are obtained by means of a
Guo—Krasnosel’skii fixed point theorem.
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1 Introduction

We study the Neumann boundary value problem

—u"(t) = f(t,u(t), 0<t<l,
u'(0) = /(1) =0, (1.2)

with a sign-changing nonlinearity.

We will make the assumptions precise in the next section, we only mention
now that the continuous function f : [0,1] x R} — R satisfies the inequality
f(t,z) > —a?2—pB(t) in [0,1] x R4, for some constant a # 0 and a non-negative
valued function 3(t).

One of the most frequently mentioned papers that stimulated the discussion
of semipositone problems is the paper [7] by Miciano and Shivaji. The authors
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of [7] used the bifurcation techniques to obtain multiple positive solutions for
the Neumann problem. We only mention several among many results based on
applications of a Guo—Krasnosel’skii fixed point theorem and fixed point index
computations. In [10], Sun and Wei obtained positive solutions of the non-local
boundary value problem

—u"(t) = f(t,u(t), 0<t<l,
u(0) = au(n), u(l) = Bu(n),

where the right side is a continuous function with f(¢,u) + M > 0 for some
M > 0. Lu [5] obtained multiple positive solutions for singular semipositone
periodic boundary value problems. It should be mentioned that, in [5], the
nonhomogeneous term depends on the first order derivative. In this regard,
the results of [5] are similar to those obtained by Ma [6] who studied a fourth
order semipositone boundary value problem

W (t) = N (tu(t),d'(t), 0<t<1,
u(0) = u'(0) =" (1) =u"(1) = 0.
Other interesting results for second order boundary value problems can be
found in [1,4,9,13]. Semipositone boundary value problems of higher order
have been studied in [2,6,11,12] just to name a few. It seems, however, that
resonant semipositone problems for ordinary differential equations have not
been studied as extensively as their “invertible” counterparts. Nkashama and
Santanilla [8] obtained nonpositive and nonnegative solutions of the Neumann
problem using generalized Ambrosetti-Prodi conditions. Since we are unaware
of results based on cone-theoretic methods, we believe that our study of the

Neumann problem provides new results. We only treat the most basic case of
(1.1) with a continuous right side.

2 Properties of Green’s Function
As a first step, we introduce g(t, z) = f(t, 2) + a®z to transform (1.1) into
—u"(t) + ®u(t) = g(t,u(t)), te(0,1), (2.1)

which we consider together with the boundary condition (1.2).
For 8 € C[0, 1], the differential equation

—u(t) + u(t) = B(t), 0<t<1,
satisfying the boundary condition (1.2) has a unique solution

wo(t) = /O G(t, 5)B(s) ds (2.2)

with the Green function

1 cosha(l —t)coshas, 0<s<t<1
G(t,s) = ———— oot
(t9) asinha{

coshatcosha(l —s), 0<t<s<l1
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It is obvious that

G(t,s) < G(s,s), (t,s)€]0,1] x[0,1].

If s <'t, then
1
G(t,s) ~snha a(l —t)coshas
cosha(l —s)
> ha(l—1t has ——
= sinha o Jcoshas cosh o
cosha(l —1t)
> — .
= cosha Gls,s)
Similarly, for t < s,
cosh at
> .
G(t,s) > —ho G(s,s)
Combining the inequalities above, we obtain
q@t)G(s,s) < G(t,s) < G(s,s), (t,s)€][0,1] x[0,1], (2.4)
where
q(t) = p— min{cosh at, cosh (1 — t) }. (2.5)
Also,
! 1
L = max / G(t,s)ds = —;. (2.6)
tel0,1] Jo «
For 0 < v <1/2,
1=y 1—v 1—v
/ G(l—t,s)ds:/ G(l—t,l—s)ds:/ G(t, s) ds.
¥ ¥ ¥

It suffices to consider

1—y
/ G(t,s)ds
.

B 1 (sinh (1 — «) — sinh avy) cosh at, 0<t<n,
a?sinha | sinha — sinh ay(coshat + cosha(l —t)), v <t <1/2,
for t € [0,1/2], since the above function is symmetric about ¢t = 1/2. Since it

is increasing in [0,1/2],

17’}/ 1
= t = ———(sinha — 2sinh ha/2). (2.
C tIEn[EOl,)%}/V G(t,s)ds o sinha(sm a — 2sinhaycosha/2).  (2.7)
Lemma 1. Let 8 € C[0,1] and B(t) > 0 in [0,1], 5(7) > 0 for some T € [0,1].
Then the inequality

q(t) = puo(t), te€[0,1], (2.8)

holds for

asinh a
w= T . (2.9)
cosh”a [ B(s) ds
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Proof. Note that

uo(t) :/0 G(t,s)B(s) dng(tﬂf)/O B(s)ds.

Hence
q(t) = L min{cosh at, cosh (1 — t) }
cosh o
coshat cosha(l —t) 1
> mi h ot ha(l -t
- mm{ cosha’  cosha }cosha max{ cosh at, cosh a( )}
1 inh
= ———5—coshatcosha(l —t) = &HQQG(LQ
cosh” a cosh” a

1
HGt.0) [ 5()ds = puolt)
0
forallt €[0,1]. O
Suppose that the function f in (1.1) satisfies
(A) f € C([Oa 1] X R+7R);

(B) there exists a function g € C[0,1], 8(t) > 0 in [0, 1], B(7) > 0 for some
7 € [0,1], and o € R, « # 0, such that

ft,2)+ a2+ B(t) >0, (t,2)€[0,1] x Ry.

We turn our attention to the equation
—0"(t) + a®o(t) = f,(t,v(t) —uo(t)), te€(0,1), (2.10)
where

£o(t,2) = f(t,2) +a22+ﬂ(t), (t,2z) €]0,1] x (0,00),
p\ls f(£,0)+ B(¢), (t,z) € [0,1] x (—o0,0],

and impose the boundary conditions (1.2).

DEFINITION 1. A positive solution of the boundary value problem (1.1), (1.2)
is a function u € C?[0, 1] satisfying (1.1), (1.2) and such that u(¢) > 0 in [0, 1].

The next lemma discusses the relationship between the problems (1.1), (1.2)
and (2.10), (1.2) by means of a “shift” u — u+wug applied to the equation (2.1).

Lemma 2. The function u is a positive solution of the boundary value problem
(1.1), (1.2) if and only if the function v = u + ug, where ug is given by (2.2),
is a solution of the boundary value problem (2.10), (1.2) satisfying v(t) > uo(t)
in (0,1).
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In the Banach space B = C[0, 1] endowed with usual max-norm, we consider
the operator

1
To(t) = /0 G(t,s) fp(s,v(s) — uo(s)) ds, (2.11)

where G(t, s) is given by (2.3). By (A), T : B — B is completely continuous.
Using the function ¢ defined by (2.5), we introduce the cone

C={veB:ot)>q@)vl, te01]}.

By (2.4), T : C — C. One can easily confirm that a fixed point of T in C is a
solution of (2.10), (1.2), and conversely. In particular, for 0 < v < 1/2,

o(t) = plloll, tely,1-1] (2.12)
where
. cosh ary
te[rﬁr/l,llrlv]q( ) cosh «

The following is a fixed point theorem due to Guo and Krasnosel’skii.

Theorem 1. ([3] Let B be a Banach space and let C C B be a cone in B.
Assume that £21, {25 are open with 0 € {21, 21 C {25, and let

T:CN(22\ ) —=C
be a completely continuous operator such that either
1) |[Tul| < |ull, we CNaRy, and ||[Tul| > |ul|, we CNI2, or
(ii) |Tu|l > lull, we CNofh, and ||Tu|| <|ull, v CNofs.
Then T has a fized point in C N (2 \ 27).

3 Positive Solutions

To make use of Theorem 1, we introduce, following [11], the “height” functions
o, : Ry — R, defined by

o(r) = max{fp (t7 z— uo(t)) :te|0,1], z € [O,T]}
P(r) = min{fp(t,z - uo(t)) tely,1—19], z€ [pr,r]}, 0<vy<1/2
We present our main results.

Theorem 2. Assume that (A) and (B) hold. Suppose that there exist ry R > 0
such that i <r < R, where > 0 satisfies (2.8), (2.9), and
a?sinh o

< o2 > .
(C) é(r) < a®r and (R) = sinh a — 2 sinh oy cosh /2 r

Then the boundary value problem (1.1), (1.2) has at least one positive solution.
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Proof. Let
={veB:|v|<r} and 2 ={veB:|v| <R}
For v € CNdf2y, by Lemma 1, we have
v(s) = uo(s) = q(s)l|vll — uo(s) = (ur — 1)uo(s) > 0, s € [0,1].
This implies that f,(s,v(s) —uo(s)) < ¢(r), for s € [0,1], 0 < v(s) < r. Thus,
by (2.6) and (C),

| To|| = maX/Gtsfp 5,0(s) — ug(s)) ds

t€[0,1]

IN

maX/Gts ds ¢(r) = Lo(r)

t€[0,1]

= ol <7
That is, | Tv]|| < ||v]| for all v € C N OL.

Let v € C N Of2. Since R > r, we have v(s) — ug(s) > (uR — L)uo(s) > 0,
s € [0,1]. Then, for all s € [o,1 — a], we have, recalling (2.12),

R>w(s) > q(s)|v]| = pR.
Hence f,(s,v(s) —ug(s)) > ¥(R), for s € [y,1 —~], vyR < v(s) < R. Then, by
(2.7) and (C),

|ITv] = max / G(t,s)fp(s,v(s) —uo(s)) ds

t€[0,1]
1—~
> tren[éaﬁ] : G(t,s)fp(s,v(s) —uo(s)) ds
1—v
> max G(t,s)dsy(R) = Cy(R)
te[0,1] /4

= Wlnha (sinh o — 2sinh ay cosh /2) ¢ (R) > R.
That is, ||Tv|| > |lv|| for all v € C N O2s.

By Theorem 1, there exists a fixed point vg € C of (2.11), which, equiva-
lently, is a positive solution of the positone problem (2.10), (1.2). Moreover,
u(t) = vo(t) — up(t) > (pr — Lug(t) > 0 in [0, 1]. By Lemma 2, u is a positive
solution of the sign-changing problem (1.1), (1.2). O

The next result can be shown along similar lines.

Theorem 3. Assume that (A) and (B) hold. Suppose that there exist r, R > 0
such that i <r < R, where > 0 satisfies (2.8), (2.9), and

o? sinh «

(D) ¢(R) < a*R and 1(r) >

sinh o — 2 sinh ay cosh «r/2 "

Then the boundary value problem (1.1), (1.2) has at least one positive solution.
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