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Abstract. In this paper we systematically investigate explicit strong stability pre-
serving (SSP) multistage integration methods, a subclass of general linear methods
(GLMs), of order p and stage order q ≤ p. Characterization of this class of SSP GLMs
is given and examples of SSP methods of order p ≤ 4 and stage order q = 1, 2, . . . , p
are provided. Numerical tests are reported which confirm that the constructed meth-
ods achieve the expected order of accuracy and preserve monotonicity.
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1 Introduction

Many practical problems in sciences and engineering are modeled by systems
of ordinary differential equations (ODEs) which arise from semidiscretization
of partial differential equations (PDEs) of mathematical physics. Such systems
take the form {

y′(t) = f
(
t, y(t)

)
, t ∈ [t0, tend],

y(t0) = y0,
(1.1)

where the function f : R × Rm → Rm is assumed to have some degree of
smoothness.

∗ The work of the first author (GI) was partially supported by GNCS-INdAM.

http://www.tandfonline.com/TMMA
http://dx.doi.org/10.3846/13926292.2015.1085921
mailto:giuseppe.izzo@unina.it
mailto:jackiewicz@asu.edu


SSP Multistage Integration Methods 553

We assume that the discretization of (1.1) by the forward Euler method

yn = yn−1 + hf(tn−1, yn−1),

n = 1, 2, . . . , N , Nh = tend− t0, tn = t0 +nh, is monotone or contractive. This
means that the following inequality holds

‖yn‖ ≤ ‖yn−1‖, (1.2)

n = 1, 2, . . . , N , in some norm or semi-norm ‖ · ‖, for a suitably restricted time
step determined by the condition h ≤ hFE .

In the class of multistage integration methods we want to determine higher
order numerical methods for (1.1), which preserve the monotonicity property
(1.2), under the restriction

h ≤ C hFE . (1.3)

Numerical schemes for (1.1) that preserve the monotonicity condition (1.2)
under the modified restriction (1.3) are called strong stability preserving (SSP)
methods and the constant C ≥ 0 in (1.3) is called SSP coefficient.

SSP Runge–Kutta (RK) and linear multistep methods (LMMs) have been
first studied, using the terminology total variation diminishing (TVD) time
discretizations, by Shu and Osher [50]. Then, they were further investigated
by Gottlieb et al. [22, 23, 24, 25, 27, 43], Spiteri and Ruuth [53], Hundsdorfer
and Ruuth [32], Hundsdorfer, Ruuth and Spiteri [33], Higueras [28, 29, 30, 31]
and Ferracina and Spijker [18, 19, 20, 21]. SSP two-step Runge–Kutta (TSRK)
methods, introduced by Jackiewicz and Tracogna [40], were investigated by
Ketcheson, Gottlieb and Macdonald in [42]. Constantinescu and Sandu [8] gen-
eralized Shu-Osher representation to a class of multistep multistage schemes,
which form a special subclass of GLMs. SSP GLMs were investigated by Spi-
jker [52] and by Izzo and Jackiewicz [36,37].

In this paper we systematically investigate a subclass of explicit GLMs in
order to derive methods with optimal SSP coefficient C.

It is known that irreducible strong stability preserving Runge–Kutta meth-
ods have positive stage coefficients, aij ≥ 0, and strictly positive weights,
bj > 0. A similar property holds for SSP two-step Runge–Kutta methods [23].
Gottlieb and Shu [26] proved that no four-stage, fourth-order SSPRK method
exists having positive coefficients, while Ruuth and Spiteri [47] proved that an
SSPRK method with positive coefficients and order p > 4 cannot exist (for gen-
eral nonlinear problems). The class of general linear methods allows to break
these two barriers and it also permits to construct methods with high stage
order.

The paper is organized as follows: in Section 2 we report the formulation
of general linear methods (GLMs), the related order conditions and a criterion
to determine the SSP coefficient C. In Sections 3 and 4 we characterize some
classes of explicit SSP multistage integration methods of order p and stage
order q ≤ p and investigate them to construct methods with a large SSP coef-
ficient. In Section 5 we describe the starting and finishing procedures, while in
Section 6 we present the results of numerical experiments to validate order and
monotonicity preservation of the new SSP schemes. Finally, in Section 7 some
concluding remarks are given and plans for future research are briefly outlined.
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2 SSP Conditions for GLMs

2.1 General linear methods

General linear methods [1,2,3,39] for the numerical solution of ODEs (1.1) are
defined by

Y
[n]
i = h

s∑
j=1

aijf
(
tn−1 + cjh, Y

[n]
j

)
+

r∑
j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i = h

s∑
j=1

bijf
(
tn−1 + cjh, Y

[n]
j

)
+

r∑
j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

(2.1)

n = 1, 2, . . . , N , where Nh = tend − t0. In (2.1) the internal approximations or
stages approximate the solution y to (1.1) at the points tn−1 + cih to the stage
order q, i.e.,

Y
[n]
i = y(tn−1 + cih) +O

(
hq+1

)
, i = 1, 2, . . . , s,

and the external approximations y
[n]
i approximate the linear combinations of

the scaled derivatives of the solution at the grid point tn to the order p, i.e.,

y
[n]
i =

p∑
k=0

qikh
ky(k)(tn) +O

(
hp+1

)
, i = 1, 2, . . . , r. (2.2)

These methods are specified by the abscissa vector c = [c1, . . . , cs]
T ∈ Rs, four

coefficient matrices

A = [aij ] ∈ Rs×s, U = [uij ] ∈ Rs×r, B = [bij ] ∈ Rr×s, V = [vij ] ∈ Rr×r,

the vectors qi = [q1,i, . . . , qr,i]
T ∈ Rr, i = 0, 1, . . . , p, and four integers: the

order of the method p, the stage order q, the number of external approxima-
tions r, and the number of internal approximations or stages s.

The framework of general linear methods have been used recently to analyze
the numerical stability of several class of methods [4, 5, 9, 10, 11, 13, 14, 15].
General linear methods for second order equations were considered in [12,16,17]
and for VIEs and VIDEs in [38,54].

2.2 Order conditions for GLMs

The order conditions for GLMs (2.1) of order p ≤ 4 are reported in Table 1
(compare Butcher [3], Jackiewicz and Vermiglio [41], Cardone et. al. [6]), where

γ0 = e−Uq0, γk =
ck

k!
− Ack−1

(k − 1)!
−Uqk, k = 1, 2, . . . , p,

γ̂0 = q0 −Vq0, γ̂k =

k∑
l=0

ql
(k − l)!

− Bck−1

(k − 1)!
−Vqk, k = 1, 2, . . . , p,
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Table 1. Order conditions for GLMs (2.1) of order p ≤ 4.

Order Corresponding order conditions

p = 1 γ̂1 = 0

p = 2 γ̂2 = 0

p = 3 γ̂3 = 0

VBγ2 = 0 or Bγ2 = 0

p = 4 γ̂4 = 0, VBγ3 = 0

VBAγ2 = 0, VBΓcγ2 = 0

and Γc = diag(c1, . . . , cs), e = [1, 1, . . . , 1]T ∈ Rs. Let us remark that stage
order q can be achieved by forcing γk = 0 for k = 0, 1, . . . , q.

It will be always assumed that

r∑
j=1

vij = 1, i = 1, 2, . . . , r (2.3)

and q0 = [1, 1, . . . , 1]T ∈ Rr, so that the stage preconsistency condition γ0 = 0,
or Uq0 = e, and the preconsistency condition γ̃0 = 0, or Vq0 = q0, are
automatically satisfied (compare [39]). When in Table 1 there is a couple of
conditions separated by ‘or’, the first condition refer to order p methods, while
the second condition refers to methods with order greater than p.

2.3 Characterization of SSP coefficient for GLMs

Following [37] we consider the componentwise inequalities

(I + γA)−1U ≥ 0, I− (I + γA)−1 ≥ 0,

V − γB(I + γA)−1U ≥ 0, γB(I + γA)−1 ≥ 0. (2.4)

It was demonstrated in [37] using the results of Spijker [52] that the SSP coef-
ficient C of GLMs (2.1) can be characterized as

C = C(c,A,U,B,V) = sup
{
γ ∈ R : γ satisfies (2.3)

}
.

Similarly as in [42] this coefficient C can be computed, by the solution to the
constrained minimization problem

min
γ,c,A,U,B,V,q1,...,qp

−γ, (2.5)

subject to inequality constraints (2.3) and equality constraints

Φp,q(c,A,U,B,V,q1, . . . ,qp) = 0,

where Φp,q represents the order conditions up to the order p and stage order
conditions up to the stage order q ≤ p.

Math. Model. Anal., 20(5):552–577, 2015.
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In order to compare methods with different number of stages s we also
define, as in [8] and [42], the effective SSP coefficient by the normalization
Ceff = C/s.

Izzo and Jackiewicz [37] investigated the strong stability preserving property
for a subclass of explicit general linear methods of order p = 2, 3, 4, stage order
q = 1, 2, . . . , p, with r = 2, 3 external stages and s = 2, 3, . . . , 10 internal stages.
Methods investigated in [37] contain the class of diagonally implicit multistage
integration methods (DIMSIMs), the class of methods of order p and stage
order q = p or q = p− 1, with s internal stages and r = s or r = s+ 1 external
stages, and rank one matrix V.

In this paper we systematically investigate the SSP property for a subclass
of explicit GLMs of order p and stage order q = 1, 2, . . . , p, characterized by
having the number of external stages r and the number of internal stages s,
which equal the order of the method p (i.e. p = r = s), and no restriction on
the rank of V is forced. Hereafter we will generally refer to this subclass as
multistage integration methods.

3 Methods with p = r = s and U = I

In this section we systematically investigate explicit multistage integration
methods of order p ≤ 4 and such that

U = I, and p = r = s, q = 1, 2, . . . , p. (3.1)

To characterize this class of methods we will need the following lemma.

Lemma 1. For an explicit SSP GLM satisfying (3.1) the matrix A must be
identically equal to the zero matrix.

Proof. Let L = [lij ]
s
i,j=1 be the matrix given by L = (I + γA)−1. Since A

is strictly lower triangular, L is a lower triangular matrix such that lii = 1,
i = 1, 2, . . . , s. Furthermore,

L = (I + γA)−1 = I− γA + γ2A2 + · · ·+ (−γA)s−1 =

s−1∑
i=0

(−γA)i,

and we have tril(L) =
∑s−1
i=1 (−γA)i, where tril(L) stands for the strictly lower

triangular part of L. Let us consider the two SSP conditions

LU ≥ 0, I− L ≥ 0. (3.2)

If U = I ∈ Rs×s, from (3.2) we have 0 ≤ L ≤ I, hence tril(L) ≡ 0, so that

s−1∑
i=1

(−γA)i ≡ 0. (3.3)

Since matrix A is strictly lower triangular, from (3.3) we have γai+1,i = 0, for
i = 1, 2, . . . , s− 1. Hence for SSP methods with γ > 0 we have

ai+1,i = 0, i = 1, 2, . . . , s− 1. (3.4)
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From (3.3) and (3.4) we also obtain

ai+2,i = 0, i = 1, 2, . . . , s− 2.

Using induction it can be easily proved that

aij = 0, for i, j = 1, 2, . . . , s. ut

Remark. As consequence of Lemma 1, for GLMs satisfying (3.1), the stage
order conditions γk = 0, k = 0, . . . , q, lead to

qk =
ck

k!
, k = 0, . . . , q,

and the SSP constraints (2.3) reduce to

0 ≤ γB ≤ V. (3.5)

Equations (2.3) and (3.5) imply that 0 ≤ vij ≤ 1 for all i, j = 1, 2, . . . , s,
and, when γ is positive, 0 ≤ bij ≤ 1 for all i, j = 1, 2, . . . , s. This information
is helpful to set sharper (lower and upper) bounds on the parameters in the
minimization process to solve the problem (2.5).

For SSP methods, from (3.5) we obtain bij ≥ 0 for all i, j = 1, 2, . . . , s and

0 ≤ γ ≤ vij
bij
, for i, j = 1, 2, . . . , s, and bij 6= 0.

Since (3.5) are the only constraints, we obtain

C = min

{
vij
bij

: i, j = 1, 2, . . . , r, and bij 6= 0

}
. (3.6)

In addition, (3.5) implies

0 ≤ γBe ≤ Ve = e

and hence, for an SSP GLM satisfying (3.1) with SSP coefficient C, the following
necessary condition must hold

C ≤ 1
/ s∑
j=1

bij and

s∑
j=1

bij > 0, i = 1, 2, . . . , s. (3.7)

Furthermore, from order condition for p = 1

q0 + q1 −Be−Vc = 0,

we obtain

Be = e + c−Vc.

This leads to

0 ≤
s∑
j=1

bij = 1 + ci −
s∑
j=1

vijcj , i = 1, 2, . . . , s.

Hence the necessary condition (3.7) can be also written as

C ≤ 1

1 + ci −
∑s
j=1 vijcj

and 1 + ci −
s∑
j=1

vijcj > 0, i = 1, 2, . . . , s.
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3.1 Methods with p = r = s = 2

Consider the multistage integration method with coefficients

[
A U
B V

]
=


0 0 1 0
a21 0 0 1
b11 b12 v1 1− v1

b21 b22 v2 1− v2

 , c =
[
c1 c2

]T
,

q0 =
[

1 1
]T
, q1 =

[
q11 q21

]T
, q2 =

[
q12 q22

]T
.

3.1.1 Methods with p = r = s = 2, q = 2

Solving the order conditions for order p = 2 and stage order q = 2 we obtain
a 5-parameter family depending on c1, c2, v1, v2 and a21 under the restriction
|v1−v2| < 1, which is equivalent to the power boundedness of the matrix V, and
hence it ensure the zero-stability of the method (compare [39]). Furthermore,
from Lemma 1 we obtain a21 = 0.

Case v1 = v2 (rank(V) = 1).
Maximizing the SSP coefficient C, adding the restriction c1 < c2, we obtain:

C = 1− 1√
2

for c1 = 0, c2 =
√

2 and v1 =
1

2
. (3.8)

Case v1 6= v2 (rank(V) = 2).
Maximizing the SSP coefficient C, adding the restriction −1 ≤ c1 < c2 ≤ 1, we
obtain:

C =
1

2
for c1 = −1, c2 = 1, v1 =

53

64
and v2 =

1

4
, (3.9)

while, adding the restriction −2 ≤ c1 < c2 ≤ 2, we obtain:

C =
3

4
for c1 = −2, c2 = 2, v1 =

243

256
and v2 =

1

16
. (3.10)

Choosing larger bounds for c1 and c2, the value of C increases (up to 1) but
unfortunately also the magnitude of the q’s increases. Our numerical search
points out that in this case the best attainable value for C seems to be

C = 1− 1

c2 − c1
.

For the values given by (3.9) the method has the coefficients:

B =

[
37
64

5
64

0 3
2

]
, V =

[
53
64

11
64

1
4

3
4

]
,

c = [−1, 1]T , W = [q0,q1,q2] =

[
1 −1 1

2

1 1 1
2

]
,
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while, for the values given by (3.10) the method has the coefficients:

B =

[
99
128

3
128

0 5
4

]
, V =

[
243
256

13
256

1
16

15
16

]
,

c = [−2, 2]T , W = [q0,q1,q2] =

[
1 −2 2
1 2 2

]
.

In order to reach higher values for SSP coefficient C, in the following sub-
section we consider methods of stage order q = 1.

3.1.2 Methods with p = r = s = 2, q = 1

Solving the order conditions for order p = 2 and stage order q = 1 we obtain
a 7-parameter family depending on c1, c2, v1, v2, q12, q22 and a21 under the
restriction |v1 − v2| < 1. Since we are looking for SSP methods, Lemma 1
implies a21 = 0. Maximizing the SSP coefficient C, adding the restriction
−1 ≤ c1 < c2 ≤ 1, we obtain:

C =
3

4
for c1 = −1, c2 = 1, v1 =

7

10
, v2 =

1

10
and q12 = q22 + 3,

where q22 is still a free parameter. If we consider the restriction −2 ≤ c1 <
c2 ≤ 2, the value for C increases to 7

8 . In this case we have

C =
7

8
for c1 = −2, c2 = 2, v1 =

29

36
, v2 =

1

36
and q12 = q22 + 10,

where q22 is still a free parameter. In this case, it seems that the maximal
values of the coefficient C the following relation holds:

C = 1− 1

2(c2 − c1)
.

3.2 Methods with p = r = s = 3

In this section we investigate methods with p = r = s = 3 and q = 3, 2, 1.
In this and in the following section we assume that cs = 1. Relaxing this
condition allows abscissas shifting, but seems not to lead to larger values for
the SSP coefficient.

3.2.1 Methods with p = r = s = 3, q = 3

Forcing strictly increasing abscissas, and c3 = 1, the optimal SSP method has
C =
√

2− 1 and the following coefficients:

c =
[
−1−

√
2 −

√
2 1

]T
, B =

 0 0 0

0 4− 2
√

2 0
5
2 −

3√
2

0 9
2 − 2

√
2

 ,

V =

 0 1 0

−1 +
√

2 −8 + 6
√

2 10− 7
√

2
19
2 −

13√
2

0 13√
2
− 17

2

 .
Math. Model. Anal., 20(5):552–577, 2015.
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For this method Ceff =
√

2−1
3 ≈ 0.138.

3.2.2 Methods with p = r = s = 3, q = 2

In this case, forcing the restriction −5 ≤ c1 < c2 < c3 = 1, we obtain that the
optimal SSP method has C = 5

6 , while under the restriction −3 ≤ c1 < c2 <
c3 = 1, we obtain that the optimal SSP method has C = 3

4 . The coefficients of
this last method are:

B =


1317487
1769472

7973
110592

1075
589824

4955
36864

2089
2304

2543
12288

0 0 5
4

 , V =


3851
4096

473
8192

17
8192

35
256

359
512

83
512

1
16 0 15

16

 , (3.11)

c =
[
−3 0 1

]T
, W = [q0,q1,q2,q3] =

 1 −3 9
2 0

1 0 0 − 26
9

1 1 1
2 − 26

3

 . (3.12)

Let us remark that for this method the value of C can be obtained as
C = v33/b33 = 3/4 (compare (3.6)) and so Ceff = 1/4. In this case, our nu-
merical search points out that the best attainable value for C seems to be

C = 1− 1

c3 − c1
.

3.2.3 Methods with p = r = s = 3, q = 1

In this case the higher SSP coefficient C is given by

C =
v12

b12
= −z ≈ 0.782286,

where z ≈ −0.782286 is a root of the polynomial

p(x) = −290965200 + 1284558760x+ 2860364411x2 − 7981097947x3 +

− 19201804817x4 − 9167715999x5 + 1003129920x6,

and v11 = 1− v12 ≈ 0.795767 is a root of the polynomial

p(x) = −120168990605590227 + 175319907436584132x

+ 41426367452248895x2 − 77002533780794860x3

− 16999999144346705x4 + 47246885203112x5 + 105800506695653x6.

The coefficients of this methods are:

c =
[
−3 − 29

10 1
]T
,

B =

 0.7185038451423001 0.26107280720903675 0
0 0 0.2657061947964307
0 0 1.2096037031663531

,
V=

 0.7957665235133686 0.20423347648663137 0
0.7635281794723168 0.028613712027478297 0.20785810850020528

0 0.05374453927342392 0.9462554607265761

,
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and

W = [q0,q1,q2,q3]

=

 1 −3 3.8829228414636545 9.177166775938929
1 −2.9 5.903270746377843 0.4543609951704569
1 1 0.5 −10

 .
This method has Ceff ≈ 0.261. which represents just a slight improvement with
respect to the value Ceff = 1/4 obtained for method (3.11)–(3.12) having same
order p = 3, but a higher stage order q = 2.

3.3 Methods with p = r = s = 4

In this section we investigate methods with p = r = s = 4 and q = 1, 2, 3, 4.

3.3.1 Methods with p = r = s = 4, q = 1

Forcing strictly increasing abscissas, and c4 = 1, the optimal SSP method has
C ≈ 0.450 and the following coefficients:

c =
[
−1.2541132795031640 −1.2110167921401000 −1.1051947914593280 1

]
,

B=

0.2216307397474322 0.2885008731278295 0.4247750415788341 0.0043199970428693
0.1165966501056636 0.1517760370136278 0.2234678589848447 0.2460743776223290
0.2533513573132226 0.3297921934307524 0.4855704288106428 0.0028216788557943

0 0 0 1.6163180017841770

 ,

V=

0.5233434195205922 0.1482774935168031 0.3257753410935703 0.0026037458690343
0.0524219998842081 0.6508084969235142 0.1861196295058758 0.1106498736864019
0.1138926593620751 0.6605498625171727 0.2182774999048495 0.0072799782159028
0.2733912307975496 0.0000285832038595 0 0.7265801859985909

 ,

and

W=[q0,q1,q2,q3,q4] =1 −1.2541132795031640 0.0744315953870818 1.4781869068894780 −1.0811488822422830
1 −1.2110167921401000 1.5029715926335450 −1.5989477159135420 2.8089651773117870
1 −1.1051947914593280 0.4594421371313254 −0.2828371135694487 2.0735645377692490
1 1 0.5 0.1666666666666664 −2.3813563150667030

.

For this method Ceff ≈ 0.112.

3.3.2 Methods with p = r = s = 4, q = 2

In this case, forcing the restriction −3 ≤ c1 < c2 < c3 < c4 = 1, we obtain that
the optimal SSP method has C ≈ 0.507, whose coefficients are

c =
[
−3 −1.5307929996603450 −1.5207929996603450 1

]T
,

B=

0.3446530252761958 0 0 0.0026299108009584
0 0.5387417049219302 0.3156134630119571 0.1027295988157450
0 0.2900023222017333 1.0524245809100090 0.0430876450117072

0.3009115537533498 0 0 1.5509115537533500

 ,

V=

0.5610128954739848 0 0.4376524983724827 0.0013346061535325
0.0647413008868319 0.2733963426787711 0.6097299591380859 0.0521323972963111
0.2968901298627457 0.1471680650188273 0.5340760307534204 0.0218657743650067
0.2129557768766749 0 0 0.7870442231233251

 ,

Math. Model. Anal., 20(5):552–577, 2015.
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and

W=[q0,q1,q2,q3,q4] =1 −3 4.5 −4.3842836159558560 4.5735139716803790
1 −1.5307929996603450 1.1716636039045580 −0.3227609258267113 1.2832700522136430
1 −1.5207929996603450 1.1564056739079550 −0.7092706562374267 2.2165808342746730
1 1 0.5 0.1372706533030787 −3.3681382547675550

.
For this method Ceff ≈ 0.127.

3.3.3 Methods with p = r = s = 4, q = 3

Forcing strictly increasing abscissas, and c4 = 1, the optimal SSP method has
C ≈ 0.410 and the following coefficients:

c =
[
−2.3869796047005760 −1.3883369184845010 0.1288259561957161 1

]T
,

B=

 0 0.0013579426316963 0 0
0 1.2292985146608460 0.0585350583549856 0.0270910653280517
0 0.1774357968951646 0.6915102093954277 0.2861192082600625

0.3824198725422226 0 0 1.6776681812749240

 ,

V=

0.0000000000000001 0.9999985688299070 0.0000003181405537 0.0000000000000001
0.4366178049021296 0.5039337792969264 0.0239703043932266 0.0354781114077175

0 0.3242635035386784 0.2890223409743254 0.3867141554869962
0.3129892049972540 0 0 0.6870107950027460

 ,
and

W=[q0,q1,q2,q3,q4] =1 −2.3869796047005760 2.8488358166282600 −2.2667043304773900 2.3957243302596560
1 −1.3883369184845010 0.9637396996135200 −0.4459984682608710 1.1978794548976930
1 0.1288259561957161 0.0082980634948703 0.0003563353214331 −0.3962411113822618
1 1 0.5 0.1666666666666667 −1.4773211238699260

.

This method has Ceff ≈ 0.102.

3.3.4 Methods with p = r = s = 4, q = 4

After an extensive numerical search, we were not able to find SSP GLMs sat-
isfying (3.1) with p = q = r = s = 4.

The assumption U = I in (3.1), allows only the construction of SSP GLMs
having smaller SSP coefficients C than the corresponding SSP Runge–Kutta
methods [23], two-step Runge–Kutta methods [24] and multistep multideriva-
tive methods [8]. In the following section we will see that considering a more
general coefficient matrix U 6= I allows us to overcome this drawback, and to
construct methods with quite large SSP coefficients.

4 Methods with p = r = s and U 6= I

In this section we systematically investigate multistage integration methods of
order p = 2, 3, and 4 and such that

U 6= I, and p = r = s, q = 1, 2, . . . , p.

As in Section 3.3, to compute the SSP coefficient C we numerically solved the
minimization problem (2.5), by using the Matlab function fmincon and choosing
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Table 2. Ceff for GLMpqrs (2.1) with order p = 2, stage order q = 1, 2, r = 2 external
stages and s = 2 internal stages.

GLM2122 GLM2222

0.847 0.822

Table 3. Ceff for GLMpqrs (2.1) with order p = 3, stage order q = 1, 2, 3, r = 3 external
stages and s = 3 internal stages.

GLM3133 GLM3233 GLM3333

0.667 0.578 0.554

Table 4. Ceff for GLMpqrs (2.1) with order p = 4, stage order q = 1, 2, . . . , 4, r = 4 external
stages and s = 4 internal stages.

GLM4144 GLM4244 GLM4344 GLM4444

0.532 0.529 0.518 0.504

the sequential quadratic programming (‘sqp’) algorithm. Since fmincon is a
local minimization routine, we ran an extensively numerical search using at
least ten thousands random starting points, generated by means of the rand
Matlab function. To the aim of speeding up this search for SSP methods when
the number of free parameters and constraints increases the necessary condition
provided by the following lemma can be useful (for example to provide sharper
bounds for parameters and to obtain a better list of starting points).

Lemma 2. If a general linear method (2.1) has a positive SSP coefficient,
C > 0, then

0 ≤ Le ≤ e, 0 ≤ γBLe ≤ e, (4.1)

where L = (I + γA)−1 and 0 < γ ≤ C.

Proof. Let us recall we are assuming that Ue = e and Ve = e. From (2.3),
LU ≥ 0 implies Le = LUe ≥ 0, and I − L ≥ 0 implies Le ≤ Ie = e, hence
the first part of inequalies (4.1) holds. Again, from (2.3), γBL ≥ 0 implies
γBLe ≥ 0, and V− γBLU ≥ 0 implies γBLUe ≤ Ve, that is γBLe ≤ e, and
so the second part of inequalities (4.1) holds, too. ut

The Ceff coefficients for methods with two, three and four external stages
are respectively listed in Tables 2, 3 and 4, using the notation GLMpqrs, where
p is the order of the method, q is the stage order, r is the number of external
stages and s is the number of internal stages.

Here we report the coefficient matrices of optimal SSP GLMs of order p = 2,
p = 3 and p = 4 and p = q = r = s. It is worth remarking that the coefficients
listed here are computed using double precision accuracy and they are reported
with 16 digits. A technique similar to the one used in [35] can be used when

Math. Model. Anal., 20(5):552–577, 2015.
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more accurate coefficients are needed, for example for implementation in an
extended precision environment.

Coefficients of GLM2222:

c =
[

0.5022655558767691 1
]T
,

A=

[
0 0

0.5708860675842338 0

]
, U=

[
0.9184891352423395 0.0815108647576605
0.8621853383442499 0.1378146616557501

]
,

B =

[
0.5708860675842338 0.6081669766552923
0.2482943789611213 0.2645088930130668

]
,

V =

[
0.8621853383442499 0.1378146616557501
0.3749886103184382 0.6250113896815619

]
,

W =

[
1 0.6081669766552924 −0.0000000000000001
1 −0.6910637589451494 1.5474666436813336

]
.

This method has Ceff ≈ 0.822.

Coefficients of GLM3333:

c =
[

0.3295839783544315 0.6806617112619909 1
]T
,

A =

 0 0 0
0.5124026992885452 0 0
0.4084203656103463 0.4796606306581744 0

 ,
U =

 0 1 0
0 0.8514777730453410 0.1485222269546588

0.1313458703216458 0.6786866342802576 0.1899674953980965

 ,
B =

 0.5223463949514766 0.5348295830910508 0
0.3347759349512645 0.3931704919952592 0.4932702635381821

0 0 0

 ,
V =

 0 0.8680015654661640 0.1319984345338356
0.2607207697861334 0.5563090669843533 0.1829701632295133

1 0 0

 ,
W =

 1 0.2433831470792890 −0.1453586170258652 0.0319049749709932
1 0.3295839783544315 0.0543127993939672 0.0059668761666100
1 −0.7566168529207110 0.1112582358948458 0.1322884988698362

 .
This method has Ceff ≈ 0.554.

Coefficients of GLM4444:

c =
[
0.2389332461541251 0.4860573286209339 0.7359123877762289 1

]
,

A =

 0 0 0 0
0.3876590107850190 0 0 0
0.3052895098296686 0.3907983774045524 0 0
0.2489878897536953 0.3187271759302078 0.4047222644510253 0

,

U=

0.0912599380251995 0 0.9077024591751040 0.0010376027996967
0.2893536053383063 0 0.7090920916129786 0.0015543030487151
0.3134061212806464 0.1269451063377834 0.5584247264993190 0.0012240458822511
0.2556076322999006 0.2876226025113369 0.4554398030738938 0.0013299621148688

,

B=

0.4084337666596042 0 0 0
0.3828018917763514 0.4900212858838719 0.0105574651913504 0
0.2475481687517574 0.2657257201220867 0.3374206007279392 0.4137187953380616
0.1081881397565976 0.1384906723289790 0.1758565404620620 0.2156215593100244

,

V=

0.0751122991274016 0.1721149858574717 0.7470925370715471 0.0056801779435796
0.2875479264730055 0.0027007530079466 0.7002076220630648 0.0095436984559831
0.2204520296708872 0.3255492887593254 0.4528063165607442 0.0011923650090433
0.1110644950381738 0.2259735764529201 0.1978939020464726 0.4650680264624335

,
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and

W =


1 −0.4024799023418847 0.0109880388418833 0.0335886630738861 0
1 −0.0255262786434428 −0.1034566363144243 0.0182430084929503 0.0229216637127512
1 0.3044460558739243 0.0291029904711275 0.0007065225928177 −0.0019072286304098
1 −0.6581482865003410 1.0841569582135440 −1.3812585734008830 1.7993346354617410

.

This method has Ceff ≈ 0.504.

5 Starting and Finishing Procedures

It is the worth remarking that the multistage integration methods considered
in this paper require a starting vector y[0] which satisfies the relation (2.2).
In other words, these methods need a suitable starting procedure to attain
the expected order of convergence [2, 3, 39]. In our implementation, we used
starting procedures in the form of a generalized explicit RK method

c(i) A(i)

b
(i)
0 b(i)T

=

c
(i)
1 = 0 0

c
(i)
2 a

(i)
2,1 0

...
...

...
. . .

c
(i)
si a

(i)
si,1

a
(i)
si,2

· · · 0

b
(i)
0 b

(i)
1 b

(i)
2 · · · b

(i)
si

(5.1)

with si stages, i = 1, . . . , r. Order conditions and a complete description of the
construction of starting procedures of the form (5.1) can be found in [37].

Furthermore, from (2.2), the external stages of the GLMs (2.1) approximate
a linear combination of the solution and its derivatives at grid points. So, usu-
ally, a finishing procedure is needed to recover an approximation for y(tend).
This finishing procedure, which is a suitable linear combination of external
stages, does not involve any additional evaluation of the function f and can
be constructed by using information coming only from the previous integra-
tion step. A possible way to determine a finishing procedure is the following.
From (2.2) we know that

y
[n]
i =

p∑
k=0

qikh
ky(k)(tn) +O

(
hp+1

)
, i = 1, 2, . . . , r, (5.2)

and so

y
[n−1]
i =

p∑
k=0

qikh
ky(k)(tn−1) +O

(
hp+1

)
, i = 1, 2, . . . , r.

Expanding y(k)(tn−1) in Taylor series about tn, up to the power p − k, we
obtain

y(k)(tn−1) =

p−k∑
j=0

(−1)jhj

j!
y(k+j)(tn) +O

(
hp−k+1

)
,
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and hence, for i = 1, 2, . . . , r, we have

y
[n−1]
i =

p∑
k=0

qikh
k

( p−k∑
j=0

(−1)jhj

j!
y(k+j)(tn) +O

(
hp−k+1

))
+O

(
hp+1

)
=

p∑
k=0

qik

( p−k∑
j=0

(−1)jhk+j

j!
y(k+j)(tn)

)
+O

(
hp+1

)
=

p∑
k=0

p∑
m=k

qik
(−1)m−khm

(m− k)!
y(m)(tn) +O

(
hp+1

)
=

p∑
m=0

m∑
k=0

qik
(−1)m−khm

(m− k)!
y(m)(tn) +O

(
hp+1

)
=

p∑
m=0

(
m∑
k=0

(−1)m−kqik
(m− k)!

)
hmy(m)(tn) +O

(
hp+1

)
.

So we obtain

y
[n−1]
i =

p∑
k=0

(
k∑

m=0

(−1)k−mqim
(k −m)!

)
hky(k)(tn)+O

(
hp+1

)
, i = 1, 2, . . . , r. (5.3)

Let us now consider the case r = p. If we define the matrix W ∈ Rr×(p+1) as
W = [q0,q1, . . . ,qp], we can recover a numerical approximation of order p for
the value y(tn) by considering a suitable linear system whose coefficient matrix
can be obtained adding a row to the matrix W. To this aim, let us define the
row vector q̃ ∈ R1×(p+1) as

q̃ =

[
k∑

m=0

(−1)k−mq1m

(k −m)!

]
k=0,...,p

.

We can consider the equality

ỹ[n] = Qỹn +O
(
hp+1

)
, Q =

[
W
q̃

]
∈ R(p+1)×(p+1),

where

ỹ[n] =
[
y

[n]
1 , y

[n]
2 , . . . , y[n]

r , y
[n−1]
1

]T
, ỹn =

[
y(tn), y′(tn), . . . , y(p)(tn)

]T
.

When the matrix Q is invertible, then ỹn = Q−1ỹ[n] +O(hp+1), and hence an
approximation for the value of y(tn) can be computed as a scalar product of
the first row of Q−1 by the vector ỹ[n]. If the matrix Q is not invertible, as
in case of GLM3333, then the linear system can be obtained by choosing in
a different way the p + 1 equations between the 2r equations given by (2.1)
and (5.3).
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Figure 1. Order verification for SSP GLMs of order p = 2 and stage order q = 1 and 2.

6 Numerical Experiments

6.1 Validation of convergence

To verify the order of convergence we apply the methods derived in this paper
to the system of ODEs obtained by first order upwind discretization in space
variable x of the test problem from [8,49]

∂y(x, t)

∂t
= −∂y(x, t)

∂x
+

t− x
(1 + t)2

, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (6.1)

with initial condition y(x, 0) = 1 + x, 0 ≤ x ≤ 1, and left boundary condition
y(0, t) = 1/(1 + t), 0 ≤ t ≤ 1. The exact solution to this problem is

y(x, t) =
1 + x

1 + t
, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.

Since this solution is linear in space variable x, the resulting system of ODEs
does not introduce any discretization error and have the solution

yi(t) = y(xi, t), 0 ≤ t ≤ 1,

for any grid point xi, i = 0, . . . , N , where xi = i∆x, i = 0, 1, . . . , N , and
N∆x = 1.

We have plotted on Figs. 1–3 in double logarithmic scale the norm of global
error at the end point tf of the interval of integration versus the temporal step-
size h for methods of order p = 2, p = 3, p = 4, and stage order q = 1, 2, . . . , p.
We can see that all methods achieve the expected order of convergence.

As already mentioned in the introduction the class of GLMs allows us to
break the order four barrier for SSPRK methods. The work on the construction
of SSP GLMs of high order and stage order will be reported elsewhere.
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Figure 2. Order verification for GLMs of order p = 3 and stage order q = 1, 2 and 3.
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Figure 3. Order verification for GLMs of order p = 4 and stage order q = 1, 2, 3 and 4.

6.2 Order preservation for high stage order methods

In order to further validate the order preservation for high stage order SSP
multistage integration methods we report in Figs. 4 and 5 the results of numer-
ical tests that point out that the constructed high order stages SSP multistage
integration methods preserve the theoretical order of convergence p, while low
stage order SSP Runge–Kutta methods suffer from the well known order re-
duction phenomenon. Specifically, following Constantinescu and Sandu [8], we
considered problem (6.1) and pointed out that, when the spatial and tempo-
ral grids are refined simultaneously, SSPRK(3,3) method [22] and SSPRK(5,4)
method [24, 44, 53] only achieve order p = 2, while GLM3333, of order p = 3
and stage order q = 3, preserves the expected order p = 3 (see Fig. 5).
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Figure 4. Order preservation for GLM3333, and for SSPRK(3,3) and SSPRK(5,4) on
problem (6.1) when only the temporal grid is refined.
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Figure 5. Order preservation for GLM3333 (top figure) and order reduction phenomenon
for SSPRK(3,3) and SSPRK(5,4) (bottom figure) on problem (6.1) when spatial and

temporal grids are refined simultaneously.

For the sake of completeness, it is worth to remark that when the space grid
is maintained fixed, i.e. the ODE problem is fixed, then the expected order is
preserved for all considered Runge–Kutta and multistage integration methods
(see Fig. 4). The order reduction phenomenon for RK methods reported in
Fig. 5 is due to naive implementation of a time-dependent Dirichlet boundary
condition. This phenomenon has been analyzed in the literature and for linear
hyperbolic equations it can be reduced or avoided by a suitable transformation
or differentiation of the boundary conditions as shown in [7, 34,48,49].
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6.3 Validation of monotonicity

To verify monotonicity properties of GLMs constructed in this paper we con-
sider, following Ferracina and Spijker [21], Constantinescu and Sandu [8] and
Ketcheson et. al. [42,43], the following problems (compare also with [34,45,53]).

Problem 1. The inviscid Burgers equation

∂y(x, t)

∂t
+

∂

∂x

(
1

2
y2(x, t)

)
= 0, 0 ≤ x ≤ X, 0 ≤ t ≤ tf , (6.2)

with X = 2, and with initial condition

y(x, 0) =
1

2
− 1

4
sin(πx) (6.3)

and periodic boundary conditions y(0, t) = y(2, t), 0 ≤ t ≤ tf .

Problem 2. We consider again the Burgers equation (6.2). In this case with
X = 1 and with discontinuous initial condition

y(x, 0) =

{
1, 0.18 ≤ x ≤ 0.44,
0, otherwise,

(6.4)

and periodic boundary conditions y(0, t) = y(1, t), 0 ≤ t ≤ tf .

Problem 3. The Buckley–Leverett equation

∂y(x, t)

∂t
+

∂

∂x

(
Φ
(
y(x, t)

))
= 0, −1 ≤ x ≤ 1, 0 ≤ t ≤ tf , (6.5)

where

Φ(y) =
y2

y2 + a(1− y)2
.

This equation models a two-phase flow through the porous media, see for ex-
ample [46]. We take a = 1/4 and assume the discontinuous initial condition

y(x, 0) =

{
1, −0.5 ≤ x ≤ 0,
0, otherwise,

(6.6)

and periodic boundary conditions

y(−1, t) = y(1, t), 0 ≤ t ≤ tf .

For all these problems the space derivative was discretized by a fifth order
finite difference weighted essentially non-oscillatory (WENO) scheme [51].

A numerical approximation obtained by the SSP multistage integration
methods of order p = 3 and stage order q = 3 whose coefficients are listed
in Section 4, is presented in Fig. 6, Fig. 7 and Fig. 8. For comparison pur-
pose we have also also plotted the numerical approximation obtained by the
SSPRK(3,3) method [22]. We can see that, using the same temporal stepsize
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Figure 6. Numerical approximations at tf = 2 to the discretization of Problem 1, with
N = 64, Nt = 44 and ν = 1.091, obtained by SSP GLM of order p = 3 and stage order

q = 3, and by SSPRK(3,3).
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Figure 7. Numerical approximations at tf = 0.23 to the discretization of Problem 2,
with N = 100, Nt = 19 and ν = 1.211,obtained by SSP GLM of order p = 3 and stage order

q = 3, and by SSPRK(3,3).

∆t for both methods, the SSP multistage integration methods exhibits smooth
behavior, while numerical solution obtained by SSPRK(3,3) method exhibits
spurious oscillations.

In the caption of Figures 6–8 we denoted with ν the so-called Courant num-
ber (or CFL number) defined as ν = |a∆t/∆x|, where a = max(y) for Problems
1 and 2, and a = max(dΦdy (y)) for Problem 3, ∆t = tf/Nt and ∆x = X/N .

As is well known, the solution of hyperbolic PDEs can develop discontinu-
ities, even if the initial data is a smooth function. In Problem 1 a shock occurs
at t = 4/π as the characteristic lines cross. For Problems 2 and 3 the presence
of shocks is due to the discontinuity in the initial data. Our numerical re-
sults confirm that the presented SSP multistage integration methods methods,
combined with appropriate spatial discretization, perform well even if a shock
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Figure 8. Numerical approximations at tf = 0.4 to the discretization of Problem 3 with
N = 80, Nt = 28 and ν = 1.493, obtained by SSP of order p = 3 and stage order q = 3, and

by SSPRK(3,3).

occurs.
Even if, for the sake of brevity, we are not reporting the results here, we

verified that for sufficiently small values of CFL number ν the behavior of the
methods derived in this paper is very similar to a SSPRK of the corresponding
order (we used SSP(2,2), SSPRK(3,3) and SSPRK(5,4) from [22]) for several
space discretization schemes (such as first, second and third order upwind,
second order ENO, Lax-Wendroff, third-order upwind-biased flux limited [34,
45]).

Finally we report the results of the investigation of the SSP property by
means of the total variation (TV) semi-norm:

TV (y(t, x)) =

N∑
i=1

∣∣y(t, xi)− y(t, xi−1)
∣∣,

(compare [8]). The preservation of the strong stability requires that the TV
norm be nonincreasing from one step to the next. It follows that the maximum
total variation change is nonpositive

max
i=1,...,Nt

(
TV

(
y(ti, x)

)
− TV

(
y(ti−1, x)

))
≤ 0, Nt = tf/∆t.

In Figure 9 we plotted the maximum TV change for the numerical solution
obtained by applying the Forward Euler method and the multistage integra-
tion methods listed in Section 4 to Problem 1 using the conservative first order
upwind scheme for the spatial discretization, with N = 100 and tf = 2. For
comparison, we also reported in Figure 10 an analogous plot obtained by the
Runge–Kutta methods SSP(2,2), SSPRK(3,3) and SSPRK(5,4) from [22]. Fig-
ures 9 and 10 show that, in this case, GLM2222 and GLM3333 preserve the
monotonicity of the numerical solution for larger Courant numbers (and hence
for larger temporal stepsize) than SSPRK(2,2) and SSPRK(3,3), respectively.
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Figure 9. Maximum change of the Total Variation vs Courant Number, for the numerical
solution to Problem 1, with N = 100 and tf = 2, obtained by Forward Euler, GL2222,

GL3333 and GL4444.
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Figure 10. Maximum change of the Total Variation vs Courant Number, for the
numerical solution to Problem 1, with N = 100 and tf = 2, obtained by Forward Euler,

SSPRK(2,2), SSPRK(3,3) and SSPRK(5,4).

A similar result holds for GLM4444 respect to SSPRK(5,4), if one take into
account that SSPRK(5,4) has order four, but it has five stages, so the Courant
number should be scaled by a factor of 4/5. Hence SSPRK(5,4) would preserve
the monotonicity of the numerical solution approximately up to an effective
Courant number of 2.4 (compare [53]).

7 Concluding Remarks

We have used the monotonicity theory of general linear methods developed by
Spijker [52] to construct methods which preserve the so-called strong stabil-
ity property. To this aim, we systematically investigated the class of GLMs
of order p = 2, 3, 4, stage order q = 1, 2, . . . , p and such that the number of
external stages r and the number of internal stages s both match the order of
the method p. We also gave a characterization of methods for which U = I,
and some useful necessary conditions to limit the search domain for the mini-
mization problem (2.5) which is described in Section 2.3.

Numerical examples illustrate that the methods derived in this paper achie-
ve the expected order of accuracy, and high stage order methods do not suffer

Math. Model. Anal., 20(5):552–577, 2015.
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from the order reduction phenomenon. Moreover, under appropriate stepsize
restrictions, these methods combined with appropriate spatial discretization,
do not produce spurious oscillations when applied to semidiscretizations of
hyperbolic conservation laws.

Future work will address the construction of implicit SSP GLMs and explicit
SSP GLMs of high order, and the efficient implementation of these methods
for semidiscretizations in space variables of partial differential equations.
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