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Abstract. Warrants with stock price dependent threshold conditions give the right
to buy specially issued stocks, if the performance of the stock price satisfies some
requirements. Existence of these derivatives changes the price process of the under-
lying. We show that in the presence of such warrants one cannot assume that the
stock market is arbitrage free and that the stock is tradeable at every time moment
with the same price for buying and selling. This means that the usual methods for
deriving fair prices for such warrants cannot be used. We start from a simple model
for the firm’s value process and discuss some ways to specify a related model for the
stock price process in the presence of warrants with threshold conditions. We also
discuss how indifference pricing approach can be used for pricing such warrants.
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1 Introduction

A traditional (or corporate) warrant is a derivative that gives its owner the
right to buy the underlying stock at a fixed time for a fixed price. It differs
from a call option contract since the issuer is the company of the underlying
and upon exercising warrants, new shares are issued. Since there are more
shares, the value of each share decreases. This is known as the dilution effect.!
These derivatives are characterized by long lifetimes and low or non-existing
trading activity on the aftermarket. This makes it difficult to estimate the
fair value by just marking them to the market. Such derivatives are suitable
for motivating employees and may occur in the literature also by the name of
employee stock options? (ESOs).

* This research has been supported by Estonian Research Council under ETF grant nr 8302,
Estonian Ministry of Education and Research under projects IUT34-5 and SF0180015s12
and by Estonian Doctoral School in Mathematics and Statistics.

I Covered (or naked) warrants do not cause dilution and are not examined in this paper.

2 Which, in this case, also issue new stocks when exercised.
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In this paper we examine warrants with stock price dependent threshold
conditions. Such warrants are not very common but have been used in practise
(see, for example, the 2010 annular report of Trigon Capital Group, [12, p. 44]).
We consider European type warrants that can be exercised only if during the
lifetime of the warrant the underlying stock price reaches a predetermined
threshold level. We use the term threshold warrant, which stresses two main
characteristics of the derivative contracts in question. Firstly, like warrants
(and unlike traditional options) they exhibit dilution effect. Secondly, (unlike
typical warrants and ESOs) exercising rights are dependent on the performance
of the underlying.

Like with every other derivative security, in order to price the warrants, we
need to model the underlying. For pricing classical warrants, it is sufficient
to model the value of the company. Usual assumptions similar to the ones
made in the option pricing theory allow the derivation of the equation (and for
simple models also the formula) for warrant prices in terms of the value of the
productive assets of the company (see [6,8]). However, in the case of threshold
warrants, we specifically need to know whether the stock price satisfies the
exercise conditions. As the exercising of warrants increases both the number
of shares and brings extra money to the firm’s balance sheet, the relationship
between firm’s value and stock price is not linear any more. For example, the
log-normality of company’s value does not imply log-normality of stock price [6].
A simple solution would be to assume that out of the two, it is the stock price
that follows some commonly used stochastic process, e.g. geometric Brownian
motion® and ignore company’s value process that remains unknown. Such
approach contradicts the viewpoint that the issuance of warrants should not
affect the value process of the productive assets of a company. For example,
if a geometric Brownian motion is used for modelling the stock price before
the issuance of warrants like in [1] and thus the value of the company also
corresponds to a geometric Brownian motion, we should use the geometric
Brownian motion to model the value of the assets of the company during the
lifetime of the warrants. Then it is the stock price process that is log-normal
before the warrants are issued, but changes after the warrants’ issuance.

It is quite well known how the dilution effect of traditional warrants impacts
the behaviour of the stock price process and how observable information about
stock prices can be used for determining the value of the warrants [4,5,9,10,13].
As shown in [7], the knowledge about the behaviour of the stock price process
in the presence of warrants is also necessary for the consistent pricing of any
outstanding common options. As far as we know, the impact of the presence
of warrants with stock price dependent threshold conditions on the stock price
process has not been studied before.

In this paper we show that in the presence of threshold warrants one cannot
have an arbitrage free stock price model that is consistent with the stock price
model in the presence of traditional warrants after the threshold condition is
met. This means that the usual methods for deriving fair prices for such war-

3 This might be a practical approach in case of complicated exercise conditions. Then the
price estimate is dominated by our ability to simulate in-the-money trajectories. Also,
computing time of the MC method can be significantly reduced with such assumption.
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rants cannot be used and some of the usual assumptions about the behaviour
of the stock market have to be relaxed in order to compute prices of threshold
warrants.

The paper is organized as follows: Section 2 introduces the notation and
the framework for our analysis. In Section 3 we demonstrate that the presence
of threshold warrants introduces arbitrage opportunities. In Section 4 we dis-
cuss the need to relax common assumptions of arbitrage fee pricing models for
the consistent pricing of threshold warrants. Section 5 introduces indifference
pricing approach. Section 6 provides a summary and directions for further
research.

2 Notation and Framework

Throughout the paper we will use the following notation:

X(t) — wvalue of the company at time ¢;

T — time to maturity;

K — exercising price;

L — threshold price level;

N — number of shares before warrants are exercised;
M — number of warrants.

By X (t) we denote the value of a company’s productive business assets. If
we assume an efficient market model (which we silently do, when we assume
that prices follow random walk model [14]), then it can be interpreted as the
market value of equity that could be observed (by multiplying stock price with
number of shares) unless the company had issued warrants at time ¢t = 0.
Later on it becomes unobservable without knowing the behaviour of stock and
warrant prices - in order to buy the whole company one needs to buy every
existing stock and warrant.

We denote two types of fractions of firm value. The first one of them
corresponds to a stock price in a situation, where warrants will certainly not
be exercised (or do not exist) and the other to a case where warrants will
certainly be exercised:

X(t) + Dy r MK
N+ M ’

where D, r is the discount factor applicable to the time period from ¢ to T,
0 < Dyr <1, Dp; = 1/D,p. By stock price we mean the price at which a
share is traded. In presence of M traditional warrants, it is denoted Sy (t).
In presence of M threshold warrants, it is denoted Sy, (t). Warrants may be
exercised if Sy, (t) > L for some ¢t € (0,7). Each warrant grants the right to
buy one share for price K. Threshold L > Sy, (0) and L > K.

St) == S't)=

(2.1)

Assumptions:
A1l. Proceeds from warrants’ issuance do not affect firm value process®;
4 Otherwise the threshold would essentially not exist.
5 They are distributed as dividends or provide the same return as the rest of the firm’s
assets.



Warrants with Threshold Conditions 519

A2. Warrant holders cannot affect the market in favourable direction;
A3. No other outstanding equity securities;

A4. No information asymmetry®;

A5. No transaction costs;

A6. No dividends.

All in all; in current setup the firm’s value X (¢) is the only source of ran-
domness. It drives the value of Sy, (t), which in turn determines the warrant
price.

3 Properties of the Stock Price Process After Warrants
Issuance

During the lifetime of a warrant, the stock price process differs before and after
reaching the threshold. First we examine the latter case.

3.1 Stock price process after reaching exercising threshold

If the exercising condition is met, then the threshold warrant is equal to a clas-
sical warrant. The stock price process changes accordingly.” This knowledge is
useful, when one is simulating price trajectories or estimating market parame-
ters. Exercising of classical warrants is only subject to profitability. Exercising
is profitable, if S’(T) > K.® The payoff function:

e (KON e ) N (KD g},

By modelling X (t) we obtain the well-known result (e.g. Galai and Schneller
1978) that the price of a warrant is a N/(N + M) fraction of a call option of
a similar firm but without warrants. This way we can work around the need
to model the changed stock price process, by simply modelling the company’s
value X (t).

For modelling X (), however, we need to estimate market parameters. Only
at time ¢ = 0 has the firm value been previously directly observable. Later we
need to know the relationship between Sy, (t) and X (¢). The general derivation
of stock price process after warrants’ issuance is given in [7]. Simply put, if the
firm value X (¢) includes proceeding from warrants’ issuance, then during the

lifetime of warrants: X() MW
Sw(t) = —=— ————= 3.2
where Sy (t) denotes stock price in the presence of M classical warrants and

W (t) is the price of one warrant. Methods for estimating unobservable X ()

6 It also means that all market participants are aware of the existence of warrants.
7 In discrete time model, if Sy, (t) > L, then Sy, (t+1) = Sy (t+1).
8 The profitability requirement can be written as

X(T)+ MK

S(T)> K <«
() N+ M

~-K>0 <+ X(T)> NK.
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volatility (by using observable stock return variance) are described in [13]
and [4].

3.2 Stock price process before reaching exercising threshold

The derivation of stock price model is complicated by the threshold condi-
tion, because the exercising condition requires the stock price to rise above a
pre-set level. We show that even when assuming the firm value is known, in
some situations the stock price is still unknown. Now we have two exercising
conditions:

e There exists a ¢t € (0, 7)) at which the stock has been traded for the price
Sw, (t) satisfying the threshold condition Sy, (t) > L;

e Exercising is profitable, i.e. S'(T) > K.

3.2.1 Existence of arbitrage opportunities

Figure 1. A tree of S(t) (black) and Sy (t) (green).

In this section we illustrate our arguments by using a discrete time market
model. Firm value and stock price processes are modelled by binomial trees as
described by Cox et al. in [3]. We will distinguish a specific node by notation
X(r1,t), where —T < 7 < T is the number of upticks from initial level by time ¢.
We omit it, if we examine an arbitrary node at time ¢t. An example of S(t) and
Sw (t) trees is given in Figure 1, where X (0) = 1000, N = 10, M =7, L = 155,
K =90 and uptick return ratio U = 1.1.

Let’s see a 2-period model. The profitability condition is examined at ¢t =
T = 2, the threshold condition is examined only at ¢t = 1. As an example, in
Figure 2 we have trees of S(t) and Sw (t), where X (0) = 1000, N = 10, M = 3,
L =108, K =95 < 5(0), uptick return ratio U = 1.1. At maturity

S(T) = X(T)/N’ SWL(l) < L,

Swu (1) = {SW(T = S(T),  Sw,(1)> L.
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Figure 2. Trees of S(t) (black) and Sy (t) (green).

If we assume that both the stock and the productive assets of the firm are
tradeable, then according to the Fundamental Theorem of Asset pricing (see,
for example, [11]) the market consisting of S(¢) and X (¢) is arbitrage free if and
only if there exists an equivalent probability measure (the so-called risk neutral
measure) under which both the discounted stock price and the discounted firm
value process are martingales. For the simplicity of the arguments, let us
assume that the risk free interest rate is 0 (Dyr = 1). Then both X (¢) and
S(t) should be martingales under a risk neutral measure.

If we derive the risk neutral probabilities from the tree, then in our exam-
ple’s upper branch

110,  Sw, (+1,1) < 108,

BE(Sw, (T)|X(+1,1)) = {106.5, Swy (8)(+1,1) > 108.

Therefore E(Sw, (t+1)|F:) # Sw,, (t) and Sy, (t) is not a martingale!
Next we will show, without specifying a probability measure, that Sy, (t)

cannot be a martingale. For that we establish a possible region for stock price
value. Note that
Sw, (t) < S(¢t).

The inequality holds, since under existence of warrants, one stock may represent
less than 1/N-th of the equity. On the other hand, all firm value trajectories
that lead to the exercising of threshold warrants belong to a set of trajectories
which lead to the exercising of similar, but classical warrants. Therefore, due
to a lesser chance of dilution realizing, we should have

Sw, (t) > Sw(t).

Therefore,

Sw, (1) € [Sw(t), S®)]. (3.3)

Math. Model. Anal., 20(4):516-528, 2015.
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Figure 3. Highlighted subtrees of S(¢) (black) and Sw (t) (green) from Figure 1, which
demonstrate that Syy, (t) is not a martingale.

Let m be the minimum number of upticks for the undiluted share price to
(theoretically) exceed the threshold L. With sufficient number of discrete time
steps,

S(m,t) > L > Sy (m,t). (3.4)

Let us take a closer look at the sections of S(¢) and Sw (t) trees near the
maturity date that correspond to the same firm values. We examine such
trajectories, where S(f) has not reached the threshold before our examined
section but is close enough to L and the number of discrete time steps is large
enough (i.e. K is low and T close enough) so that upon achieving exercising
rights, the profitable exercise will certainly occur. It means that in the subtree
of Sy (t) every node can be written as

Sw(r,t) =S (r,t) = (X(1,t) + Dyr-MK) /(N + M). (3.5)

In Figure 3, we have highlighted such subtrees from the trees in Figure 1. Let
time ¢ be the first time point, where in our subtree S(7,t) = S(m,t) > L. If
the parameters N, M and K are such that,

XoU™D S XoUmUA+Dij1r MK
N N+ M

S(m—1,t+1) = =Sw(m+1,t+1), (3.6)

and transaction price exceeds threshold at ¢, then

m def. (3.6)
Sw,(m,t)>L > S(m—1,t4+1) > Sw(m+1,t+1),

but if Sw, (t) were a martingale then Sy, (7,t) < Sw, (7+1,t+1) = Sw(7+1,
t+1).2 So if the transaction price exceeds the threshold, then the stock price
cannot be a martingale. Should Sy, (m,t) not exceed the threshold, we will

9 Recall that after attaining exercising rights, stock price should correspond to the existence
of traditional warrant.
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examine the next upticks. Assuming sufficient discretization, large enough ¢
and large enough %, for all m’ € {0,1,...,T —t — 1} upticks, following result
holds:

S(m+m/,t+m’) > L > Sw(m+m’, t+m'). (3.7)

By multiplying both sides of inequality (3.6) by U™ we get (recall Dy r=1):
Xo U=t XoUmm™ 4 MK U™ vs1 Xo U™+ + MK

N N+M ” N+M ’
ie. S(m+m'—1,t+m'+1) > Sy (m+m/+1,t+m’+1).

So, if after m’ upticks stock price would exceed L and
L > Sw(m+m'+1,t+m'+1) (3.8)

holds, it still means that stock price cannot be a martingale.

Let m/ be such that t+m’+1 = T. We saw that Sy, (m+m/,T—1) > L
means Sy, (t) cannot be a martingale but we reach the same conclusion if

Sw, (m+m/,T—1) < L. In that case the exercising condition is not met and
Sw, (T) = S(T), but assuming

m' > 1, (3.9)

we get

(

m de

£ (3.8)
Sw, (m+m'—1,T) = S(m+m'—1,T) > L > Sy, (m+m/,T—1)

and since Sy, (1,7 —1) < Sw,(7—1,T), we conclude that the stock price
cannot be a martingale. This means that the market model admits arbitrage
opportunities.

Let us recap and examine the assumptions (3.4)—(3.9), which led us to that
conclusion. Note that all assumptions hold with sufficient discretization. It is
fairly easy to describe a market model where the assumptions hold, with quite
a small number of time steps (see for example Figure 3). The validity of (3.6)
is of key importance and we will see how many discrete time steps it requires
for the inequality to hold in case of plausible market parameters.

Recall that m is the minimum number of upticks, for which

XoU™ In (LN/X
0 > L or equivalently m > M

S

N In(U)
It can be written as:
In (LN/Xo)
=———+A,, A, ,1), .
n(0) + €[0,1), meN
. logac . LN
Using formula log,c = o 5’ e Ccan write m = logU(X—U) + A, and
084
LN
XoU™ = X, (X UAn) = LNU". (3.10)
0

Math. Model. Anal., 20(4):516-528, 2015.
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By multiplying both sides of (3.6) by N + M, we get
N+ M

XoUmD > X()UmU'FDthl’TMK.

By making a substitution from (3.10), we get
(N +M)LUA" D> LNUA"U + Dyyyr MK, |-U
(N + M)LUA" > LNU?" U? 4+ Dyy1p MKU, |- U?"
(N+M)L>LNU?+ Dyyyr MKU 2 |: L

K
N+M>NW+QH$ZMW4A

Note that

K K
NW+@HTZMW>NW+ijwaﬂm

If following inequality holds:

N+ M
N+M%Dt+1,T’

K
N+M>W<N+QHIML> —= U’<

then also (3.6) holds. For uptick ratio, we will use the expression given by Cox
et al. in [3]:
U=e VT (3.11)

where n is the number of discrete time steps. We reach the conclusion that

(3.7) holds if

T
n > 5 (3.12)

(55— ) /(20)

N+M £ Dy
For example, for market parameters X (0) = 1000, N = 10, M = 4, L = 190,
K =95 T=5,0=04, r =0, the inequality holds if n > 134. All in all, we
have seen that the absence of martingale property exhibits itself with a quite
small number of discrete time steps.

4 Consistent Pricing of Threshold Warrants

Ideally we would like to have a pricing model for threshold warrants which is
consistent with arbitrage pricing principles and corresponding pricing theory
of ordinary warrants developed in [6,8]) and in many other papers. Unfortu-
nately, as we have demonstrated in this paper, this is not possible since the
corresponding stock price process cannot be arbitrage free. So we have to relax
some of the assumptions. Let us discuss some reasonable possibilities.

One of the key assumptions of arbitrage pricing models is the following;:

A7. At each time moment it is possible to buy and sell stocks for the same
price.
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Although this assumption does not hold in practice (the bid and ask prices
are different on stock markets), the differences are usually so small that they can
be ignored when developing a pricing framework for derivative instruments. In
the case of active threshold warrants, the situation can be different, especially
close to the expiration date of the warrants. Let’s assume rational behaviour of
market participants and consider a situation where the threshold condition has
not been met, but the best ask price is above the threshold L. Then nobody
would buy the stock for a price that is (noticeably) higher that Sy (¢) (the
arbitrage price of the share in the presence of ordinary warrants). At the same
time, when the expiration date is close and the threshold condition has not
been satisfied, then there does not seem to be any reasons for shareholders to
sell their shares for less than the undiluted share price S(t) = % per share.
Since close to the expiry S(t) and Sy () can be quite different, the differences
between bid and ask prices can be large and trading with the shares would stop
for certain market scenarios.

If the assumption A7 is dropped, then in order to get a pricing model
for threshold warrants that is consistent with arbitrage pricing of ordinary
warrants, it is necessary to:

1. Choose a model for X ().

2. Specify models for processes Ask(t) and Bid(t) satisfying requirements
Sw(t) < Bid(t) < Ask(t) < S(t) together with probabilities p(t) for a
trade to happen at a price that is higher than L at time ¢ so that after
the threshold condition has been met, we have Ask(t) = Bid(t) = Sw (t).

3. Choose a pricing principle.
4. Compute the price by a suitable numerical method.

By this approach it is possible to exclude arbitrage possibilities from the market
but we need to model three processes in addition to X (¢).

Another possibility is to keep A7 together with the assumption that at
least one trade happens at every time moment, but to allow limited arbitrage
opportunities for the stock price process. For this, it is necessary to:

1. Choose a model for X (t).

2. Specify models for the process Sy, (t) satisfying the requirements
Sw(t) < Sw, (t) < S(t).

3. Specify limits for the number of shares traded at each time moment.
4. Choose a pricing principle.
5. Compute the price by a suitable numerical method.

Since the first possibility leads to an incomplete market model and the sec-
ond one to a market model with arbitrage possibilities, the arbitrage (or risk-
neutral) pricing principles cannot be used to derive the fair price for threshold
warrants. We propose to use the indifference pricing principle to compute the
prices of threshold warrants.

Math. Model. Anal., 20(4):516-528, 2015.
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5 Indifference Pricing Approach

Since the stock price models discussed above are incomplete and/or admit
limited arbitrage opportunities and thus arbitrage pricing principles cannot
be applied, we introduce an alternative approach. Consider two definitions of
price:

Def A. The least amount of money to cover a claim at an acceptable level of
risk.

Def B. The least amount of money one could sell a claim for, without worsening
one’s risk profile.

The acceptable level of risk in definition A may also mean no risk at all.
In the case of complete markets, all risk can be removed by replication. Then
the least amount of money to cover a claim is simply the price of creating the
replicating portfolio. Therefore, definition A is a generalisation of the arbitrage
pricing approach that is used in the Black-Scholes framework. Definition B de-
scribes the reality where we do not sell/buy assets if it is not somehow beneficial
to us. Here we use the latter definition.'® First we describe our risk profile by
choosing a utility function. It is a nondecreasing, marginally decreasing and
concave function, which describes the usefulness of a certain sum of money for
us. For example, exponential utility:

1
u(z) = ——e 7", v > 0.
0

Then we construct a self-financing portfolio for every time step with value

~Jw(t,0), t<T,
vie.o) = {w(t,é) +C(Sw, (1), t=T,

where C(Sw, ) is a receivable claim from derivative and w; is our wealth by
time ¢, obtained by buying d shares in the previous time point:

wy = [wi—1 — 6 Sw, (t—1)] (L +7) + 8 Sw, (¢).

Risk free return for one time period is denoted by r. Our initial capital is
wp. By choosing §, we maximise our expected utility for every time step ¢t €
{0,...,T—1}. The utility of an optimal trading strategy is expressed as

o(wi—1,C) = max [E[U(V(tﬁ))]],
6€la,b)
where a and b are the fraction of shares that can be bought or sold at each
time step. Finally, indifference price at time ¢ = 0 is defined as minimal wealth
wg, for which

o(wg, 0) > ¢(0,C).

It means that we are indifferent towards owning sum wg or derivative with
claim C. For computing indifference price, dynamic programming must be

10 For further reading on the subject, see [2].
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used. This means that we compute p(wr_1,C) at time T—1 for some set of
wr_1-s. At time T'—2 we fix a certain initial wealth. The optimal trading
strategy (i.e. choice of §) is such that it provides for time T'—1 the wealth
wh_, which allows to achieve the largest p(wh_,,C). We do that for a set
of wr_s-s and reiterate the procedure at T'—3. By these steps we achieve the
optimal utility at time ¢ = 0 with given initial wealth.

110

Figure 4. Simple 1-period binomial model of a stock price.

To gain some understanding of the indifference pricing method, let us exam-
ine a very simple example. We will price a European call option with K = 100
in a 1-period model, where r = 0. We use a stock price model presented in Fig-
ure 4, where the probability of an uptick is p. Also, here we will not constrain
0 values and use the utility function in the form u(z) = —e~*. At time t =0

0(0,C) = Igléxﬂii[—pexp(—{(() —1006)(1 + 0) + 1105 4 10} )
— (1= p)exp(—{(0 —1008)(1 + 0) + 905 +0})].

Here optimal 6 = —(In(1/p—1)+10)/20. For a p = 0.7 we have § ~ —0.458
and ¢(0,C) =~ 0.006. Without the option, but with initial wealth, we can
obtain utility

©(wp,0) = rglgﬂéc[—pexp(—{(wo —1006)(1 + 0) + 1106 + 0})
— (1= p) exp(—{(wo — 1005)(1 4 0) + 905 + 0})].

For wy = 5 equality ¢(wp,0) = ¢(0,C) = 0.006 holds. Since ¢(wg,C) in-
creases monotonically with wg, our indifference price for the call option is 5. It
is easy to see that we get the same answer by the replication approach. Indeed,
in complete market models where trading is not constrained, the indifferent
prices and prices of replicable claims coincide.

In multi-period setting we have to use the dynamic programming as de-

scribed before. Also, for pricing threshold warrants, we have to set the trading
constraints and specify a model for the process Sy, ().

6 Conclusions

For pricing threshold warrants, we need a model for the stock price. By mod-
elling the value of the firm, we can derive bounds for the stock price, but can

Math. Model. Anal., 20(4):516-528, 2015.
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also demonstrate that the stock price process cannot correspond to an arbi-
trage free market. Therefore it is necessary to drop some assumptions that
are usually made when deriving warrant prices. Thus the price of a warrant
cannot be obtained by a replication argument. Instead, indifference pricing can
be used. Suitable continuous time models for describing the stock price process
in the presence of threshold warrants and methods for consistently estimating
market parameters are the aim of our future research.
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