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Abstract. Approximation of the sections of the set of trajectories of the control
system described by a nonlinear Volterra integral equation is studied. The admissible
control functions are chosen from the closed ball of the space Lp, p > 1, with radius µ
and centered at the origin. The set of admissible control functions is replaced by
the set of control functions, which includes a finite number of control functions and
generates a finite number of trajectories. It is proved that the sections of the set of
trajectories can be approximated by the sections of the set of trajectories, generated
by a finite number of control functions.
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1 Introduction

Control systems arise in various fields of theory and applications. Depending
on the type of equation which describes the system’s behavior, control sys-
tems can be classified as linear or nonlinear control systems, control systems
described by ordinary differential equations or control systems described by
partial differential equations or control systems described by integral equations
and etc. Control systems can also be classified by the character of control
functions, say as control systems with geometric constraints on the controls,
control systems with integral constraints on the control functions and control
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systems with mixed type constraints on the control functions. In general, geo-
metric constraints on the controls arise in cases, where control resource is not
exhausted by consumption. But in the case, when control resource is exhausted
by consumption, then integral constraint on the control functions is inevitable.
These kinds of controls take place, if control resource is energy, fuel, finance,
food and etc. (see, e.g. [5,7,16,20,24] and references therein). For example, the
mathematical model of flying objects with rapidly changing mass is described
as a control system with integral constraint on controls (see, [7, 16,26]).

The theory of control systems with geometric constraints on the controls
is a well investigated part of the control system’s theory. The problems of
existence of the optimal trajectories, controllability of the control systems,
necessary and sufficient conditions for optimality of given processes, numerical
methods for calculation of optimal trajectories and attainable sets of control
systems described by an ordinary differential equation are studied in numerous
papers (see, e.g. [6,9,12,17,18,23] and references therein). The same problems
for the systems described by a Volterra type integral equation are considered
in papers [1, 2, 3, 21, 25, 29] (see, also the references in these papers). Various
properties, including numerical methods for construction of the attainable sets
of the control systems described by an ordinary differential equations with
integral constraints on the controls are studied in papers [5, 7, 10,11,16,19,20,
24]. Note that integral constraint on the controls is essentially different than
geometric constraint. The systems with geometric constraint on the controls
can be reduced to the suitable, differential or integral inclusion (see, [6,9,12,17]).
However, the same technic is not always applicable for the system with integral
constraint on the controls, since integral boundedness of control functions does
not guarantee the geometric boundedness of the controls, and therefore in the
investigation of the control systems with integral constraints on the controls
arise additional difficulties.

The mathematical models of many processes in mechanics, physics, econ-
omy, biology and etc. are described by integral equations. The Volterra inte-
gral equations are an important tool for description of mathematical models of
various types of complex processes (see, e.g. [4, 8, 15, 22, 27, 28] and references
therein). Some properties of the set of trajectories of the control systems de-
scribed by a nonlinear Volterra integral equation with integral constraint on the
controls are discussed in [13] and [14]. Precompactness of the set of trajectories
of the control systems described by a nonlinear Volterra integral equation with
integral constraint on the control functions is considered in [14]. In [13] an
approximation of the sections of the set of trajectories of the control systems
described by a nonlinear Volterra integral equation with integral constraint on
the controls is investigated, where the sections of the set of trajectories is ap-
proximated by the sections of the set of trajectories generated by the compact
set of control functions. In this paper, developing the result obtained in [13],
the sections of the set of trajectories are approximated by the sections of the
set of trajectories which consists of a finite number of trajectories.

The paper is organized as follows. In Section 2 the basic conditions are
formulated which satisfy the system (Conditions 2.A, 2.B and 2.C). The known
result from [13] is given which is used in the following arguments (Theorem 1).

Math. Model. Anal., 20(4):502–515, 2015.
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In Section 3, the sections of the set of trajectories are approximated by the
sections of the set of trajectories, generated by the set of control functions which
are piecewise constant and have mixed, i.e. integral and geometric constraints
(Theorem 2).

In Section 4, an evaluation for the Hausdorff distance between the set of
trajectories, generated by the piecewise constant and mixed constrained control
functions and the set of trajectories, generated by the mixed constrained and
piecewise constant control functions the norm of which are the node points of
the given uniform mesh, is obtained (Proposition 3).

In Section 5, a new class of control functions is introduced which consists
of a finite number of control functions. These control functions generate the
set of trajectories consisting of a finite number of trajectories. The Hausdorff
distance between the set of trajectories generated by the mixed constrained and
piecewise constant control functions the norm of which are the node points of
the given uniform mesh, and the set of trajectories consisting of a finite number
of trajectories is evaluated (Proposition 4).

In Section 6, the main result of the paper is given. It is proved that the
sections of the set of trajectories of the system can be approximated by the sec-
tions of the set of trajectories, which consists of a finite number of trajectories
(Theorem 3).

The Hausdorff distance between the sets E ⊂ Rn and F ⊂ Rn is de-
noted by hn(E,F ), where Rn is n-dimensional Euclidean space. The Haus-
dorff distance between the sets G ⊂ C ([a, b];Rn) and W ⊂ C ([a, b];Rn) is
denoted by hC(G,W ), where C ([a, b];Rn) is the space of continuous functions
x(·) : [a, b]→ Rn with norm ‖x(·)‖C = max{‖x(ξ)‖ : ξ ∈ [a, b]} and ‖x‖ is the
Euclidean norm of x ∈ Rn. We set

Bn =
{
x ∈ Rn : ‖x‖ ≤ 1

}
, BC =

{
x(·) ∈ C

(
[a, b];Rn

)
:
∥∥x(·)

∥∥
C
≤ 1
}
.

2 Preliminaries

The control system described by a nonlinear Volterra integral equation

x(ξ) = f
(
ξ, x(ξ)

)
+ λ

∫ ξ

a

K
(
ξ, s, x(s), u(s)

)
ds (2.1)

is considered, where x(s) ∈ Rn is the state vector of the system, u(s) ∈ Rm is
the control vector, ξ ∈ [a, b], λ ≥ 0 is a real number.

For given p > 1 and µ > 0 we set

Up,µ =
{
u(·) ∈ Lp

(
[a, b];Rm

)
:
∥∥u(·)

∥∥
p
≤ µ

}
,

where ‖u(·)‖p = (
∫ b
a
‖u(s)‖p ds)

1
p , Lp ([a, b];Rm) is the space of Lebesgue mea-

surable functions u(·) : [a, b] → Rm such that ‖u(·)‖p < ∞. The set Up,µ ⊂
Lp ([a, b];Rm) is called the set of admissible control functions and every function
u(·) ∈ Up,µ is called admissible control function.

From now on, it will be assumed that the functions f(·) : [a, b]×Rn → Rn,
K(·) : [a, b]× [a, b]× Rn × Rm → Rn and number λ ∈ [0,∞) given in equation
(2.1) satisfy the following conditions:
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2.A. The functions f(·) : [a, b] × Rn → Rn and K(·) : [a, b] × [a, b] × Rn ×
Rm → Rn are continuous;

2.B. There exist L0 ∈ [0, 1), L1 ≥ 0, H1 ≥ 0, L2 ≥ 0, H2 ≥ 0, L3 ≥ 0 and
H3 ≥ 0 such that ∥∥f(ξ, x1)− f(ξ, x2)

∥∥ ≤ L0 ‖x1 − x2‖

for every (ξ, x1) ∈ [a, b]× Rn, (ξ, x2) ∈ [a, b]× Rn, and∥∥K(ξ1, s, x1, u1)−K(ξ2, s, x2, u2)
∥∥ ≤ [L1 +H1

(
‖u1‖+ ‖u2‖

)]
|ξ1 − ξ2|

+
[
L2 +H2

(
‖u1‖+ ‖u2‖

)]
‖x1 − x2‖+

[
L3 +H3

(
‖x1‖+ ‖x2‖

)]
‖u1 − u2‖

for every (ξ1, s, x1, u1) ∈ [a, b]× [a, b]×Rn×Rm, (ξ2, s, x2, u2) ∈ [a, b]× [a, b]×
Rn × Rm;

2.C. 0 ≤ λ(L2 (b− a) + 2H2(b− a)
p−1
p µ) < 1− L0.

Note that if the function K(·) : [a, b]× [a, b]× Rn × Rm → Rn is Lipschitz
continuous, then it satisfies the conditions 2.A and 2.B.

Let us define the trajectory of the system (2.1) generated by an admissible
control function u(·) ∈ Up,µ. Let u∗(·) ∈ Up,µ. A continuous function x∗(·) :
[a, b]→ Rn satisfying the equation

x∗(ξ) = f
(
ξ, x∗ (ξ)

)
+ λ

∫ ξ

a

K
(
ξ, s, x∗ (s) , u∗ (s)

)
ds

for every ξ ∈ [a, b] is said to be a trajectory of the system (2.1) generated by
the admissible control function u∗(·) ∈ Up,µ.

The conditions 2.A–2.C guarantee that every admissible control function
generates a unique trajectory of the system (2.1) (see [14]). We denote by
Xp,µ the set of all trajectories of the system (2.1) generated by all admissible
control functions u(·) ∈ Up,µ. The set Xp,µ is called the set of trajectories of
the system (2.1).

For each fixed ξ ∈ [a, b] we set

Xp,µ(ξ) =
{
x(ξ) ∈ Rn : x(·) ∈ Xp,µ

}
. (2.2)

According to [14] the set of trajectories Xp,µ is a precompact subset of the
space C ([a, b];Rn) , and hence there exists r∗ > 0 such that∥∥x(·)

∥∥
C
≤ r∗ (2.3)

for every x(·) ∈ Xp,µ. Denote

R∗ =
λ (L3 + 2r∗H3)

1− L0
· exp

[
λ(L2(b− a) + 2H2µ (b− a)

p−1
p )

1− L0

]
, (2.4)

where r∗ is defined by (2.3).
The validity of the following proposition follows from conditions 2.A and

2.B.

Math. Model. Anal., 20(4):502–515, 2015.
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Proposition 1. Let x(·) ∈ Xp,µ and x∗(·) ∈ Xp,µ be arbitrary trajectories of
the system (2.1) generated by the admissible control functions u(·) ∈ Up,µ and
u∗(·) ∈ Up,µ respectively. Then∥∥x(ξ)− x∗(ξ)

∥∥ ≤ R∗

∫ ξ

a

∥∥u(s)− u∗(s)
∥∥ds

for every ξ ∈ [a, b].

For given H > 0, K > 0 we denote

UHp,µ =
{
u(·) ∈ Up,µ :

∥∥u(ξ)
∥∥ ≤ H for every ξ ∈ [a, b]

}
,

UH,lip,Kp,µ =
{
u(·) ∈ UHp,µ : u(·) : [a, b]→ Rm is Lipschitz continuous and

Lipschitz’s constant is not greater than K
}
,

and let XH,lip,K
p,µ be the set of all trajectories of the system (2.1) generated by

all control functions u(·) ∈ UH,lip,Kp,µ . For given ξ ∈ [a, b] we set

XH,lip,K
p,µ (ξ) =

{
x(ξ) ∈ Rn : x(·) ∈ XH,lip,K

p,µ

}
. (2.5)

Theorem 1. [13] For each ε > 0 there exist H (ε) > 0 and K∗(ε)
= K∗

(
ε,H(ε)

)
> 0 such that for every K > K∗(ε) the inequality

hn
(
Xp,µ(ξ),XH(ε),lip,K

p,µ (ξ)
)
<
ε

4

is verified for every ξ ∈ [a, b], where Xp,µ(ξ) is defined by (2.2).

3 The Set of Trajectories Generated by the Piecewise
Constant Control Functions

Let Γ = {a = ξ0, ξ1, . . . , ξN = b} be a uniform partition of the closed interval
[a, b] and ∆ = ξi+1− ξi, i = 0, 1, . . . , N − 1. For given H > 0 and K > 0 we set

UH,Γp,µ =
{
u(·) ∈ UHp,µ : u(ξ) = ui, ξ ∈ [ξi, ξi+1), i = 0, 1, . . . , N − 1

}
,

V H,Γ,Kp,µ =
{
u(·) ∈ UHp,µ : u(ξ) = ui, ξ ∈ [ξi, ξi+1), i = 0, 1, . . . , N − 1,

‖ui+1 − ui‖ ≤ K∆, i = 0, 1, . . . , N − 2
}

and let XH,Γ
p,µ and ZH,Γ,Kp,µ be the set of trajectories of the system (2.1) generated

by the control functions u(·) ∈ UH,Γp,µ and v(·) ∈ V H,Γ,Kp,µ respectively. For given
ξ ∈ [a, b] we denote

XH,Γ
p,µ (ξ) =

{
x(ξ) ∈ Rn : x(·) ∈ XH,Γ

p,µ

}
, (3.1)

ZH,Γ,Kp,µ (ξ) =
{
x(ξ) ∈ Rn : x(·) ∈ ZH,Γ,Kp,µ

}
. (3.2)

Since V H,Γ,Kp,µ ⊂ UH,Γp,µ then we obtain that

ZH,Γ,Kp,µ ⊂ XH,Γ
p,µ (3.3)

for every H > 0, K = 1, 2, . . . and uniform partition Γ of the closed interval
[a, b].
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Proposition 2. For every H > 0, K > 0 and uniform partition Γ =
{
a = ξ0,

ξ1, . . . , ξN = b
}

of the interval [a, b] the inclusion

XH,lip,K
p,µ ⊂ ZH,Γ,Kp,µ +R∗K(b− a)∆ ·BC

holds, and hence

XH,lip,K
p,µ (ξ) ⊂ ZH,Γ,Kp,µ (ξ) +R∗K(b− a)∆ ·Bn

for every ξ ∈ [a, b], where R∗ is defined by (2.4), XH,lip,K
p,µ (ξ) and ZH,Γ,Kp,µ (ξ)

are defined by (2.5) and (3.2) respectively, ∆ = ξi+1 − ξi, i = 0, 1, . . . , N − 1.

Proof. Let us choose an arbitrary x(·) ∈ XH,lip,K
p,µ and let u(·) ∈ UH,lip,Kp,µ be

the control function, generating x(·). We define new control function u∗(·) :
[a, b]→ Rm, setting

u∗(ξ) =
1

∆

∫ ξi+1

ξi

u(s)ds, ξ ∈ [ξi, ξi+1), i = 0, 1, . . . , N − 1,

u∗(ξN ) = u∗(ξN−1). (3.4)

It is obvious, that ‖u∗(ξ)‖ ≤ H for every ξ ∈ [a, b]. Let ξ ∈ [ξi, ξi+1) ,
i = 0, 1, . . . , N − 1. It follows from (3.4) and Hölder’s inequality that

∥∥u∗(ξ)
∥∥ ≤ 1

∆

∫ ξi+1

ξi

∥∥u(s)
∥∥ds ≤ 1

∆
1
p

(∫ ξi+1

ξi

∥∥u(s)
∥∥pds) 1

p

and hence ∫ ξi+1

ξi

∥∥u∗(s)
∥∥pds ≤ ∫ ξi+1

ξi

∥∥u(s)
∥∥pds.

Since the last inequality is satisfied for every i = 0, 1, . . . , N − 1 and u(·) ∈
UH,lip,Kp,µ ⊂ Up,µ then, we have∫ b

a

∥∥u∗(s)
∥∥pds ≤ ∫ b

a

∥∥u(s)
∥∥pds ≤ µp,

which means that u∗(·) ∈ Up,µ. Since ‖u∗(ξ)‖ ≤ H for every ξ ∈ [a, b], we
conclude that u∗(·) ∈ UHp,µ.

Since u(·) ∈ UH,lip,Kp,µ , then ‖u(ξ∗)− u(ξ∗)‖ ≤ K |ξ∗ − ξ∗| for every ξ∗ ∈
[a, b] and ξ∗ ∈ [a, b]. Let i < N − 1. According to (3.4) we obtain

∥∥u∗ (ξi+1)− u∗ (ξi)
∥∥ =

∥∥∥∥ 1

∆

∫ ξi+2

ξi+1

u(s)ds− 1

∆

∫ ξi+1

ξi

u(s)ds

∥∥∥∥
≤ 1

∆

∫ ξi+1

ξi

∥∥u(s+∆)− u(s)
∥∥ds ≤ K∆. (3.5)

Math. Model. Anal., 20(4):502–515, 2015.
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Since u∗(·) ∈ UHp,µ, then from (3.4) and (3.5) it follows that u∗(·) ∈ V H,Γ,Kp,µ .
Let x∗(·) be the trajectory of the system (2.1) generated by the control function
u∗(·) ∈ V H,Γ,Kp,µ . Then, x∗(·) ∈ ZH,Γ,Kp,µ and by virtue of Proposition 1 we have

∥∥x(ξ)− x∗(ξ)
∥∥ ≤ R∗

∫ ξ

a

∥∥u(s)− u∗(s)
∥∥ds (3.6)

for every ξ ∈ [a, b], where R∗ is defined by (2.4).
Let us choose an arbitrary ξ ∈ [a, b). Then there exists i = 0, 1, . . . , N − 1

such that ξ ∈ [ξi, ξi+1). Lipschitz continuity of the control function u(·) and
(3.4) imply that

∥∥u (ξ)− u∗ (ξ)
∥∥ =

1

∆

∥∥∥∥∫ ξi+1

ξi

u(ξ)ds−
∫ ξi+1

ξi

u(s)ds

∥∥∥∥
≤ 1

∆

∫ ξi+1

ξi

∥∥u(ξ)− u(s)
∥∥ds ≤ 1

∆
K

∫ ξi+1

ξi

|ξ − s| ds ≤ K∆. (3.7)

Since ξ ∈ [a, b) is arbitrarily chosen, we obtain from (3.6) and (3.7) that∥∥x(ξ)− x∗(ξ)
∥∥ ≤ R∗K(b− a)∆

for every ξ ∈ [a, b] and consequently∥∥x(·)− x∗(·)
∥∥
C
≤ R∗K(b− a)∆, (3.8)

where R∗ is defined by (2.4). Thus, for arbitrarily chosen x(·) ∈ XH,lip,K
p,µ it is

possible to define x∗(·) ∈ ZH,Γ,Kp,µ such that the inequality (3.8) is verified. This
completes the proof. ut

The following theorem characterizes the Hausdorff distance between the
sections of sets of trajectories Xp,µ and XH,Γ

p,µ .

Theorem 2. For each ε > 0 there exist H (ε) > 0 and ∆∗ (ε) > 0 such that for
every uniform partition Γ of the closed interval [a, b], where ∆ < ∆∗(ε), the
inequality

hn
(
Xp,µ(ξ),XH(ε),Γ

p,µ (ξ)
)
≤ ε

2

is verified for every ξ ∈ [a, b]. Here ∆ is the diameter of the partition Γ.

Proof. According to the Theorem 1 for given ε > 0 there exist H (ε) > 0 and
K (ε) > 0 such that the inequality

hn
(
Xp,µ(ξ),XH(ε),lip,K(ε)

p,µ (ξ)
)
≤ ε

4
(3.9)

is satisfied for every ξ ∈ [a, b]. By virtue of Proposition 2, for given H(ε) > 0,
K(ε) > 0 and for every uniform partition Γ = {a = ξ0, ξ1, . . . , ξN = b} of the
interval [a, b] the inclusion

XH(ε),lip,K(ε)
p,µ (ξ) ⊂ ZH(ε),Γ,K(ε)

p,µ (ξ) +R∗K(ε)(b− a)∆ ·Bn (3.10)
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holds for every ξ ∈ [a, b], where ∆ = ξi+1 − ξi, i = 0, 1, . . . , N − 1.
Let ∆∗(ε) = ε

4R∗K(ε)(b−a) . (3.10) implies that if ∆ < ∆∗(ε), then

XH(ε),lip,K(ε)
p,µ (ξ) ⊂ ZH(ε),Γ,K(ε)

p,µ (ξ) +
ε

4
Bn (3.11)

for every ξ ∈ [a, b].
By virtue of (3.3) we have that for every uniform partition Γ =

{
a =

ξ0, ξ1, . . . , ξN = b
}

of the interval [a, b] the inclusion

ZH(ε),Γ,K(ε)
p,µ (ξ) ⊂ XH(ε),Γ

p,µ (ξ) (3.12)

is satisfied for every ξ ∈ [a, b]. (3.9), (3.11) and (3.12) imply that if ∆ < ∆∗(ε),
then

Xp,µ(ξ) ⊂ XH(ε),Γ
p,µ (ξ) +

ε

2
Bn (3.13)

for every ξ∈[a, b], where∆ is the diameter of the partition Γ. Since XH(ε),Γ
p,µ (ξ) ⊂

Xp,µ(ξ) for every ξ ∈ [a, b], then (3.13) completes the proof. ut

4 The Set of Control Functions with Norms from Uniform
Mesh

Let Γ = {a = ξ0, ξ1, . . . , ξN = b} be a uniform partition of the closed interval
[a, b], H > 0 and Λ = {0 = w0, w1, . . . , wq = H} be a uniform partition of the
closed interval [0, H], δ = wj+1 − wj , j = 0, 1, . . . , q − 1. Denote

UH,Γ,Λp,µ =
{
u(·) ∈ UHp,µ : u(ξ) = ui, ξ ∈ [ξi, ξi+1),

‖ui‖ ∈ Λ, i = 0, 1, . . . , N − 1
}
.

The set of trajectories of the system (2.1) generated by the control functions
u(·) ∈ UH,Γ,Λp,µ is denoted by XH,Γ,Λ

p,µ . For given ξ ∈ [a, b] we denote

XH,Γ,Λ
p,µ (ξ) =

{
x(ξ) ∈ Rn : x(·) ∈ XH,Γ,Λ

p,µ

}
. (4.1)

Proposition 3. For every H > 0, uniform partition Γ = {a = ξ0, ξ1, . . . , ξN =
b} of the interval [a, b] and uniform partition Λ = {0 = w0, w1, . . . , wq = H} of
the interval [0, H] the inequality

hC
(
XH,Γ
p,µ ,X

H,Γ,Λ
p,µ

)
≤ R∗(b− a)δ

holds, and hence

hn
(
XH,Γ
p,µ (ξ),XH,Γ,Λ

p,µ (ξ)
)
≤ R∗(b− a)δ

for every ξ ∈ [a, b], where R∗ is defined by (2.4), XH,Γ
p,µ (ξ) and XH,Γ,Λ

p,µ (ξ) are
defined by (3.1) and (4.1) respectively, δ = wj+1−wj , j = 0, 1, . . . , q− 1 is the
diameter of the partition Λ.

Math. Model. Anal., 20(4):502–515, 2015.
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Proof. Choose an arbitrary x(·) ∈ XH,Γ
p,µ generated by the control function

u(·) ∈ UH,Γp,µ . Since u(·) ∈ UH,Γp,µ , then u(ξ) = ui for every ξ ∈ [ξi, ξi+1),
i = 0, 1, . . . , N − 1, and moreover

∆

N−1∑
i=0

‖ui‖p ≤ µp, ‖ui‖ ≤ H for every i = 0, 1, . . . , N − 1, (4.2)

where ∆ = ξi+1− ξi, i = 0, 1, . . . , N − 1, is the diameter of the partition Γ. We
assume that u(b) = u(ξN−1).

If ‖ui‖ < H (i = 0, 1, . . . , N − 1), then there exists wji ∈ Λ such that

‖ui‖ ∈ [wji , wji+1) . (4.3)

Now, using control function u(·) ∈ UH,Γp,µ define a new control function
u∗(·) : [a, b]→ Rm, setting

u∗(ξ) =

{ ui
‖ui‖

wji , if 0 < ‖ui‖ < H,

ui, if ‖ui‖ = 0 or ‖ui‖ = H,
(4.4)

where ξ ∈ [ξi, ξi+1), i = 0, 1, . . . , N − 1, and wji ∈ Λ is defined by (4.3).
In addition, we set that u∗(b) = u∗(ξN−1). It follows from (4.3) and (4.4)
that ‖u∗(ξ)‖ ≤ ‖u(ξ)‖ for every ξ ∈ [a, b], and hence (4.2) implies that u∗(·) ∈
UH,Γ,Λp,µ . Let x∗(·) be the trajectory of the system (2.1) generated by the control

function u∗(·). Then x∗(·) ∈ XH,Γ,Λ
p,µ and according to the Proposition 1

∥∥x(ξ)− x∗(ξ)
∥∥ ≤ R∗

∫ ξ

a

∥∥u(s)− u∗(s)
∥∥ds (4.5)

for every ξ ∈ [a, b], where R∗ is defined by (2.4).
By virtue of (4.3) and (4.4) it is not difficult to verify that∥∥u(ξ)− u∗(ξ)

∥∥ ≤ δ (4.6)

for every ξ ∈ [a, b], where δ is the diameter of the partition Λ. (4.5) and (4.6)
yield ∥∥x(ξ)− x∗(ξ)

∥∥ ≤ R∗(b− a)δ

for every ξ ∈ [a, b], and consequently∥∥x(·)− x∗(·)
∥∥
C
≤ R∗(b− a)δ. (4.7)

The inequality (4.7) implies that

XH,Γ
p,µ ⊂ XH,Γ,Λ

p,µ +R∗(b− a)δ ·BC . (4.8)

The inclusion XH,Γ,Λ
p,µ ⊂ XH,Γ

p,µ and (4.8) imply the proof of the theorem.
ut
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5 Finite Number of Trajectories

Let σ > 0 be a given number and S = {u ∈ Rm : ‖u‖ = 1} . Since S ⊂ Rm is
a compact set, then it has a finite σ-net. Let Sσ = {s1, s2, . . . , sg} be a finite
σ-net on S. We define new set of control functions, setting

UH,Γ,Λ,σp,µ =
{
u(·) ∈ UH,Γ,Λp,µ : u(ξ) = wjisli , ξ ∈ [ξi, ξi+1),

wji ∈ Λ, sli ∈ Sσ, i = 0, 1, . . . , N − 1
}
.

Note that the set of control functions UH,Γ,Λ,σp,µ can be redefined as

UH,Γ,Λ,σp,µ =
{
u(·) ∈ Lp

(
[a, b] ;Rm

)
: u(ξ) = wjisli , ξ ∈ [ξi, ξi+1), wji ∈ Λ,

sli ∈ Sσ, i = 0, 1, . . . , N − 1, ∆

N−1∑
i=0

wpji ≤ µ
p
}
,

where ∆ is the diameter of the partition Γ.
It is obvious that the set UH,Γ,Λ,σp,µ consists of a finite number of control

functions. By XH,Γ,Λ,σ
p,µ we denote the set of trajectories of the system (2.1)

generated by the control functions u(·) ∈ UH,Γ,Λ,σp,µ . It is obvious that the set

XH,Γ,Λ,σ
p,µ also consists of a finite number of trajectories. For given ξ ∈ [a, b] we

set
XH,Γ,Λ,σ
p,µ (ξ) =

{
x(ξ) ∈ Rn : x(·) ∈ XH,Γ,Λ,σ

p,µ

}
. (5.1)

Proposition 4. For every H > 0, uniform partition Γ = {a = ξ0, ξ1, . . . ,
ξN = b} of the interval [a, b], uniform partition Λ = {0 = w0, w1, . . . , wq = H}
of the interval [0, H] and σ-net Sσ, the inequality

hC
(
XH,Γ,Λ
p,µ ,XH,Γ,Λ,σ

p,µ

)
≤ R∗H(b− a)σ

holds, and hence

hn
(
XH,Γ,Λ
p,µ (ξ),XH,Γ,Λ,σ

p,µ (ξ)
)
≤ R∗H(b− a)σ

for every ξ ∈ [a, b], where R∗ is defined by (2.4), XH,Γ,Λ
p,µ (ξ) and XH,Γ,Λ,σ

p,µ (ξ)
are defined by (4.1) and (5.1) respectively.

Proof. Let us choose an arbitrary x(·) ∈ XH,Γ,Λ
p,µ generated by the control

function u(·) ∈ UH,Γ,Λp,µ . Since u(·) ∈ UH,Γ,Λp,µ , then ‖u(ξ)‖ = wji for every ξ ∈
[ξi, ξi+1), i = 0, 1, . . . , N −1, wji ∈ Λ, ∆ ·

∑N−1
i=0 wpji ≤ µ

p, where ∆ = ξi+1− ξi,
i = 0, 1, . . . , N − 1, is the diameter of the partition Γ.

Since ‖u(ξ)‖ = wji for every ξ ∈ [ξi, ξi+1), i = 0, 1, . . . , N − 1, then there
exist bi ∈ S, i = 0, 1, . . . , N − 1, such that

u(ξ) = wjibi for every ξ ∈ [ξi, ξi+1), i = 0, 1, . . . , N − 1. (5.2)

Since bi ∈ S, i = 0, 1, . . . , N−1, then there exist sli ∈ Sσ, i = 0, 1, . . . , N−1,
such that

‖bi − sli‖ ≤ σ, i = 0, 1, . . . , N − 1. (5.3)
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Define new control function u∗(·) : [a, b]→ Rm setting

u∗(ξ) = wjisli for every ξ ∈ [ξi, ξi+1), i = 0, 1, . . . , N − 1. (5.4)

It is not difficult to verify that u∗(·) ∈ UH,Γ,Λ,σp,µ . Let x∗(·) be the trajectory,

generated by the control function u∗(·). Then x∗(·) ∈ XH,Γ,Λ,σ
p,µ and according

to the Proposition 1 we have

∥∥x(ξ)− x∗(ξ)
∥∥ ≤ R∗

∫ ξ

a

∥∥u(s)− u∗(s)
∥∥ds (5.5)

for every ξ ∈ [a, b], where R∗ is defined by (2.4). (5.2), (5.3) and (5.4) yield
that

∥∥u(ξ) − u∗(ξ)
∥∥ ≤ Hσ for every ξ ∈ [a, b). From this inequality and (5.5)

we obtain ∥∥x(ξ)− x∗(ξ)
∥∥ ≤ R∗H(b− a)σ

for every ξ ∈ [a, b], and hence∥∥x(·)− x∗(·)
∥∥
C
≤ R∗H(b− a)σ. (5.6)

(5.6) implies that

XH,Γ,Λ
p,µ ⊂ XH,Γ,Λ,σ

p,µ +R∗(b− a)Hσ ·BC . (5.7)

Since XH,Γ,Λ,σ
p,µ ⊂ XH,Γ,Λ

p,µ , then from (5.7) we obtain the proof of the theo-
rem. ut

6 Approximation

The following theorem asserts that the sections of the set of trajectories Xp,µ(ξ),
ξ ∈ [a, b], can be approximated by the sets XH,Γ,Λ,σ

p,µ (ξ), ξ ∈ [a, b], which consists
of a finite number of points.

Theorem 3. For each ε > 0 there exist H (ε) > 0, ∆∗ (ε) > 0, δ∗(ε) > 0
and σ∗(ε) > 0 such that for every uniform partition Γ of the closed interval
[a, b], uniform partition Λ of the closed interval [0, H(ε)] and σ-net Sσ, where
∆ < ∆∗(ε), δ < δ∗(ε), σ < σ∗(ε), the inequality

hn
(
Xp,µ(ξ),XH(ε),Γ,Λ,σ

p,µ (ξ)
)
≤ ε

is satisfied for every ξ ∈ [a, b]. Here ∆ is the diameter of the partition Γ, δ is
the diameter of the partition Λ.

Proof. According to the Theorem 2, for given ε > 0 there exist H (ε) > 0 and
∆∗ (ε) > 0 such that for every uniform partition Γ of the closed interval [a, b],
where ∆ < ∆∗(ε), the inequality

hn
(
Xp,µ(ξ),XH(ε),Γ

p,µ (ξ)
)
≤ ε

2
(6.1)
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is verified for every ξ ∈ [a, b], where ∆ is the diameter of the partition Γ.
Now, by virtue of Proposition 3, for given H(ε) > 0, for every uniform

partition Γ of the interval [a, b] such that ∆ < ∆∗(ε), and for every uniform
partition Λ of the interval [0, H(ε)] the inequality

hn
(
XH(ε),Γ
p,µ (ξ),XH(ε),Γ,Λ

p,µ (ξ)
)
≤ R∗(b− a)δ (6.2)

holds for every ξ ∈ [a, b], where R∗ is defined by (2.4), XH,Γ
p,µ (ξ) and XH,Γ,Λ

p,µ (ξ)
are defined by (3.1) and (4.1) respectively, ∆ is the diameter of the partition
Γ, δ is the diameter of the partition Λ. If δ < δ∗(ε) = ε

4R∗(b−a) , then it follows

from (6.2) that for given H(ε) > 0, for every uniform partition Γ of the interval
[a, b] such that ∆ < ∆∗(ε), and for every uniform partition Λ of the interval
[0, H(ε)] such that δ < δ∗(ε), the inequality

hn
(
XH(ε),Γ
p,µ (ξ),XH(ε),Γ,Λ

p,µ (ξ)
)
≤ ε

4
(6.3)

is satisfied for every ξ ∈ [a, b].
From Proposition 4 we obtain that, for given H(ε) > 0, for every uniform

partition Γ of the interval [a, b] such that ∆ < ∆∗(ε), for every uniform par-
tition Λ of the interval [0, H] such that δ < δ∗(ε), and for every σ-net Sσ the
inequality

hn
(
XH(ε),Γ,Λ
p,µ (ξ),XH(ε),Γ,Λ,σ

p,µ (ξ)
)
≤ R∗H(ε)(b− a)σ (6.4)

is verified for every ξ ∈ [a, b], where R∗ is defined by (2.4), XH,Γ,Λ
p,µ (ξ) and

XH,Γ,Λ,σ
p,µ (ξ) are defined by (4.1) and (5.1) respectively, ∆ is the diameter of

the partition Γ, δ is the diameter of the partition Λ. If σ < σ∗(ε) = ε
4R∗H(ε)(b−a) ,

then it follows from (6.4) that for given H(ε) > 0, for every uniform partition
Γ of the interval [a, b] such that ∆ < ∆∗(ε), for every uniform partition Λ of
the interval [0, H(ε)] such that δ < δ∗(ε), and for every σ-net Sσ such that
σ < σ∗(ε) the inequality

hn
(
XH(ε),Γ,Λ
p,µ (ξ),XH(ε),Γ,Λ,σ

p,µ (ξ)
)
≤ ε

4
(6.5)

is held for every ξ ∈ [a, b].
(6.1), (6.3) and (6.5) imply that for given ε > 0 there exist H (ε) > 0,

∆∗ (ε) > 0, δ∗(ε) > 0 and σ∗(ε) > 0 such that for every uniform partition Γ
of the closed interval [a, b], for every uniform partition Λ of the closed interval
[0, H(ε)], for every σ-net Sσ, where ∆ < ∆∗(ε), δ < δ∗(ε), σ < σ∗(ε), the
inequality

hn
(
Xp,µ(ξ),XH(ε),Γ,Λ,σ

p,µ (ξ)
)
≤ ε

2
+
ε

4
+
ε

4
= ε

is satisfied for every ξ ∈ [a, b]. ut

7 Conclusion

In the paper an approximation method for construction of the sections of the
set of trajectories of the control system described by a nonlinear Volterra type
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integral equation with integral constraint on the control functions is given.
The convergence of the approximations is proved. Using the algorithm pre-
sented in [11], which allows to align the finite number of piecewise constant

control functions from the set of controls U
H(ε),Γ,Λ,σ
p,µ , and an arbitrary numer-

ical method for calculation of the solution of nonlinear Volterra type integral

equation, it is possible to carry out calculation of the section X
H(ε),Γ,Λ,σ
p,µ

(
ξ
)
.

The approximate construction of the sections permits the solution of various
types of optimal control problems arising in different fields of theory and ap-
plications.
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