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Abstract. This paper discusses new simulation algorithms for stochastic chemical
kinetics that exploit the linearity of the chemical master equation and its matrix
exponential exact solution. These algorithms make use of various approximations of
the matrix exponential to evolve probability densities in time. A sampling of the
approximate solutions of the chemical master equation is used to derive accelerated
stochastic simulation algorithms. Numerical experiments compare the new methods
with the established stochastic simulation algorithm and the tau-leaping method.
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1 Introduction

In many biological systems the small number of participating molecules make
the chemical reactions inherently stochastic. The system state is described
by probability densities of the numbers of molecules of different species. The
evolution of probabilities in time is described by the chemical master equation
(CME) [8]. Gillespie proposed the Stochastic Simulation Algorithm (SSA),
a Monte Carlo approach that samples from CME [8]. SSA became the standard
method for solving well-stirred chemically reacting systems. However, SSA sim-
ulates one reaction and is inefficient for most realistic problems. This motivated
the quest for approximate sampling techniques to enhance the efficiency.

The first approximate acceleration technique is the tau-leaping method [9]
which is able to simulate multiple chemical reactions appearing in a pre-selected
time step of length τ . The tau-leap method is accurate if τ is small enough
to satisfy the leap condition, meaning that propensity functions remain nearly
constant in a time step. The number of firing reactions in a time step is
approximated by a Poisson random variable [10]. Explicit tau-leaping method is
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numerically unstable for stiff systems [5]. Stiffness systems have well-separated
“fast” and “slow” time scales present, and the “fast modes” are stable. The
implicit tau-leap method [12] overcomes the stability issue but it has a damping
effect on the computed variances. More accurate variations of the implicit
tau-leap method have been proposed to alleviate the damping [1, 3, 4, 7, 9, 13].
Simulation efficiency has been increased via parallelization [2].

Direct solutions of the CME are computationally important specially in
order to estimate moments of the distributions of the chemical species [11].
Various approaches to solve the CME are discussed in [6].

Sandu re-drives the SSA algorithm from CME in [14]. The analysis reveals
the hidden approximations made by the SSA and the tau-leap methods. The
approach explains the explicit tau-leap method as an exact sampling procedure
from an approximate solution of the CME. The numerical solver is obtained
by first discretizing the CME in time, advancing the probability density by one
time step, and then sampling the new probability density from the approxima-
tion.

This paper extends the study [14] and proposes new approximations to the
CME solution based on various approximations of matrix exponentials. Differ-
ent approximation techniques of the matrix exponential lead to various algo-
rithms that have their own strengths and weaknesses with regard to accuracy,
stability and computational complexity. Numerical experiments are performed
with two different chemical systems to assess the accuracy and stability of each
of the algorithms.

The paper is organized as follows. Section 2 reviews the stochastic simula-
tion of chemical kinetics. Section 3 developed the new approximation methods.
Numerical experiments to illustrate the proposed schemes are carried out in
Section 4. Conclusions are drawn in Section 5.

2 Simulation of Stochastic Chemical Kinetics

Consider a chemical system in a constant volume container. The system is
well-stirred and in thermal equilibrium at some constant temperature. There
are N different chemical species S1, . . . , SN . Let Xi(t) denote the number of
molecules of species Si at time t. The state vector x(t) = [X1(t), . . . , XN (t)]
defines the numbers of molecules of each species present at time t. The chemical
network consists of M reaction channels R1, . . . , RM . Each individual reaction
destroys a number of molecules of reactant species, and produces a number of
molecules of the products. Let νij be the change in the number of Si molecules

caused by a single reaction Rj . The state change vector νj = [ν1
j , . . . , ν

N
j ]

describes the change in the entire state following Rj .

A propensity function aj(x) is associated with each reaction channel Rj .
The probability that one Rj reaction will occur in the next infinitesimal time
interval [t, t+dt) is aj(x(t))·dt. The purpose of a stochastic chemical simulation
is to trace the time evolution of the system state x(t) given that at the initial
time t̄ the system is in the initial state x (t̄).

Math. Model. Anal., 20(3):382–395, 2015.
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2.1 Chemical Master Equation

The Chemical Master Equation (CME) [8] has complete information about
time evolution of probability of system’s state

∂P (x, t)

∂t
=

M∑
r=1

ar (x− vr)P (x− vr, t)− a0 (x)P (x, t) . (2.1)

Let Qi be the total possible number of molecules of species Si. The total
number of all possible states of the system is:

Q =

N∏
i=1

(
Qi + 1

)
.

We denote by I(x) the state-space index of state x = [X1, . . . , XN ]

I(x) =
(
QN−1 + 1

)
· · ·
(
Q1 + 1

)
·XN + · · ·

+
(
Q2 + 1

) (
Q1 + 1

)
·X3 +

(
Q1 + 1

)
·X2 +X1 + 1.

One firing of reaction Rr changes the state from x to x̄ = x − vr. The
corresponding change in state space index is:

I(x)− I (x− vr) = dr,

dr =
(
QN−1 + 1

)
· · ·
(
Q1 + 1

)
.vNr + · · ·

+
(
Q2 + 1

) (
Q1 + 1

)
.v3
r +

(
Q1 + 1

)
.v2
r + v1

r . (2.2)

The discrete solutions of the CME (2.1) are vectors in the discrete state space,
P (t) ∈ RQ. Consider the diagonal matrix A0 ∈ RQ×Q and the Toeplitz matri-
ces A1, . . . , AM ∈ RQ×Q [14]

(A0)i,j =

{
−a0 (xj) if i = j,
0 if i 6= j,

(Ar)i,j =

{
ar(xj) if i− j = dr,
0 if i− j 6= dr,

as well as their sum A ∈ RQ×Q with entries

A = A0 +A1 + · · ·+AM , Ai,j =

−a0(xj) if i = j ,
ar(xj) if i− j = dr, r = 1, . . . ,M ,
0 otherwise ,

(2.3)
where xj denotes the unique state with state space index j = I(xj). In fact
matrix A is a square (Q×Q) matrix which contains all the propensity values
for each possible value of all species or let’s say all possible states of reaction
system. All possible states for a reaction system consists of N species where
each specie has at most Qi i = 1, 2, . . . , N value.

The CME (2.1) is a linear ODE on the discrete state space

P ′ = AP , P(t̄) = δI(x̄) , t ≥ t̄ , (2.4)
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where the system is initially in the known state x(0) = x̄ and therefore the
initial probability distribution vector P(0) ∈ RQ is equal to one at I(x̄) and is
zero everywhere else. The exact solution of the linear ODE (2.4) is follows:

P (t̄+ T ) = exp (T A)P (t̄) = exp

(
T

M∑
r=0

Ar

)
P (t̄) . (2.5)

2.2 Approximation to chemical master equation

Although the CME (2.1) fully describes the evolution of probabilities it is
difficult to solve in practice due to large state space. Sandu [14] considers the
following approximation of the CME:

∂P (x, t)

∂t
=

M∑
r=1

ar (x̄)P (x− vr, t)− a0 (x̄)P (x, t) , (2.6)

where the arguments of all propensity functions have been changed from x or
x − vj to x̄. In order to obtain an exponential solution to (2.6) in probability
space we consider the diagonal matrix Ā0 ∈ RQ×Q and the Toeplitz matrices
Ā1, . . . , ĀM ∈ RQ×Q [14]. Ār matrices are square (Q×Q) matrices are built
upon the current state of system in reaction system which is against Ar matrices
that contain all possible states of reaction system.

(Ā0)i,j =

{
−a0 (x̄) if i = j,
0 if i 6= j,

(Ār)i,j =

{
ar(x̄) if i− j = dr,
0 if i− j 6= dr,

(2.7)

together with their sum Ā = Ā0 + · · ·+ ĀM . The approximate CME (2.6) can
be written as the linear ODE

P ′ = ĀP , P(t̄) = δI(x̄) , t ≥ t̄ ,

and has an exact solution

P (t̄+ T ) = exp
(
T Ā

)
P (t̄) = exp

(
T

M∑
r=0

Ār

)
P (t̄) . (2.8)

2.3 Tau-leaping method

In tau-leap method the number of times a reaction fires is a random variable
from a Poisson distribution with parameter ar (x̄) τ . Since each reaction fires
independently, the probability that each reaction Rr fires exactly kr times,
r = 1, 2, . . . ,M , is the product of M Poisson probabilities.

P (K1=k1, . . . ,KM=kM ) =

M∏
r=1

e−ar(x̄)τ (ar(x̄τ)
kr

Kr!
=e−a0(x̄)τ

M∏
r=1

(ar (x̄τ))
kr

Kr!
.

The state vector after these reactions changes as follows:

X (t̄+ τ) = x̄+

M∑
r=1

Krvr. (2.9)
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The probability to go from state x̄ at t̄ to state x at t̄ + τ , P (X (t̄+ τ)) = x,
is the sum of all possible firing reactions which is:

P (X, t̄+ τ) = e−a0(x̄)T ·Σk∈K(x−ξ)

M∏
r=1

(ar (x̄T ))
kr

Kr!
.

Equation (2.8) can be approximated by product of each matrix exponential:

P (t̄+ T ) = exp
(
TĀ0

)
exp

(
TĀ1

)
exp

(
TĀr

)
P (t̄) . (2.10)

It has been shown in [14] that the probability given by the tau-leaping method
is exactly the probability evolved by the approximate solution (2.10).

3 Approximations to the Exponential Solution

3.1 Strang splitting

In order to improve the approximation of the matrix exponential in (2.10) we
consider the symmetric Strang splitting [15]. For T = nτ Strang splitting
applied to an interval of length τ leads to the approximation

P (t̄+ iτ) = eτ/2Ār eτ/2Ā1eτĀ0 eτ/2Ā1 eτ/2Ār P (t̄+ (i− 1)τ) , (3.1)

where the matrices Ār are defined in (2.7).

3.2 Column based splitting

In column based splitting the matrix A (2.3) is decomposed in a sum of columns

A =

Q∑
j=1

Aj , Aj = cje
T
j .

Each matrix Aj has the same j-th column as the matrix A, and is zero every-
where else. Here cj is the jth column of matrix A and ej is the canonical vector
which is zero every where except the jth component. The exponential of τAj
is:

eτAj =
∑
k≥0

τk (Aj)
k

k!
. (3.2)

Since eTj cj is equal to the j-th diagonal entry of matrix A:

eTj cj = −a0 (xj) ,

the matrix power Akj reads

Akj = cje
T
j cje

T
j · · · cjeTj = (−a0 (xj))

k−1
cje

T
j = (−a0 (xj))

k−1
Aj .

Consequently the matrix exponential (3.2) becomes

eτAj = I+
∑
k≥1

(−τa0 (xj))
k−1

k!
(τAj) = I+Sj τAj , Sj =

∑
k≥1

(−τa0 (xj))
k−1

k!
.
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We have

eτA = eτ
∑Q

j=1 Aj ≈
Q∏
j=1

eτAj ≈
Q∏
j=1

(I + SjτAj)

and the approximation to the CME solution reads

P (t̄+ iτ) ≈
Q∏
j=1

(I + SjτAj) P (t̄+ (i− 1)τ) .

3.3 Accelerated tau-leaping

In this approximation method we build the matrices

(Br)i,j =

−ar(xj) if i = j,
ar(xj) if i− j = dr,
0 otherwise,

where ar(x) are the propensity functions. The matrix A in (2.3) can be written
as

A =

M∑
r=1

Br .

The solution of the linear CME (2.5) can be approximated by

P (t̄+ τ) = eτA P (t̄) ≈ eτB1eτB2 · · · eτBM P (t̄) . (3.3)

Note that the evolution of state probability by eτBj ·P (t̄) describes the change
in probability when only reaction j fires in the time interval τ . The correspond-
ing evolution of the number of molecules that samples the evolved probability
is

x (t̄+ τ) = x (t̄) + Vj K (aj (x (t̄)) τ) ,

where K (aj (x (t̄)) τ) is a random number drawn from a Poisson distribution
with parameter aj (x (t̄)) τ , and Vj is the j-th column of stoichiometry ma-
trix.

The approximate solution (3.3) accounts for the change in probability due
to a sequential firing of reactions M , M − 1, down to 1. Sampling from the
resulting probability density can be done by changing the system state se-
quentially consistent with the firing of each reaction. This leads to algorithm
(3.4). The accelerated tau-leap method (3.4) provides accurate and stable
results especially for large time steps since the change in state is accomplished
through a sequential firing of reactions. From the complexity point of view,
the number of propensity function calculations and Poisson random numbers
generated are the same as for traditional tau-leap. We note that in traditional
tau-leap a vector of Poisson random variables is generated at once, which is
possibly more efficient than generating the random numbers one at a time.

X̂M = x (t̄)

for i = M,M − 1, . . . , 1

X̂i−1 = X̂i + ViK
(
ai(X̂i)τ

)
x(t̄+ τ) = X̂0.

(3.4)

Math. Model. Anal., 20(3):382–395, 2015.
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Moreover, (3.3) can also be written as:

P (t̄+ τ) ≈ eτB1eτB2 · · · eτBM P (t̄)

≈
(
eτB1eτB2 · · · eτBM

2
−1
)(
e
τBM

2 e
τBM

2
+1 · · · eτBM

)
P (t̄) (3.5)

Then, (3.4) can be written as:

X̂M = x (t̄)

for i = M,M − 1, . . . , M2
X̂i−1 = X̂i + ViK

(
a(X̂M )τ

)
for i = M

2 − 1, . . . , 1

X̂i−1 = X̂i + ViK
(
a(X̂M

2 −1)τ
)

x(t̄+ τ) = X̂0.

(3.6)

3.4 Symmetric accelerated tau-leaping

A more accurate version of accelerated tau-leaping can be constructed by us-
ing symmetric Strang splitting (3.1) to approximate the matrix exponential
in (3.3). Following the procedure used to derive (3.4) leads to the following
sampling algorithm:

X̂M = x (t̄)

for i = M,M − 1, . . . , 1

X̂i−1 = X̂i + ViK
(
ai(X̂i)τ/2

)
for i = 1, 2, . . . ,M

X̂i = X̂i + Vi−1K
(
ai(X̂i−1)τ/2

)
x(t̄+ τ) = X̂M .

(3.7)

The symmetric accelerated tau-leap algorithm (3.7) is twice as expensive as
the accelerated tau-leap (3.6) for the same value of τ since is computes the
propensity functions and generates Poisson random variables two times per
step.

4 Numerical Experiments

The above approximation techniques are used to solve two test systems, re-
versible isomer and the Schlogl reactions [5]. The experimental results are
presented in following sections.

4.1 Isomer reaction

The reversible isomer reaction system is [5]

x1

c1−−⇀↽−−
c2

x2 · (4.1)
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Figure 1. Histograms of the isomer system (4.1) results at the final time T = 10.

The stoichiometry matrix and the propensity functions are:

V =

[
−1 1

1 −1

]
,

a1(x) = c1x1,
a2(x) = c2x2.

The reaction rate values are c1 = 10, c2 = 10 (units), the time interval is
[0, T ] with T = 10 (time units), initial conditions are x1(0) = 40, x2(0) = 40
molecules, and maximum values of species are Q1 = 80 and Q2 = 80 molecules.

The exact exponential solution of CME obtained from (2.5) is a joint prob-
ability distribution vector for the two species at final time. Figure 1a shows
that the histogram of 10,000 SSA solutions is very close to the exact exponen-
tial solution. The approximate solution using the sum of exponentials (2.8) is
illustrated in Figure 1b. This approximation is not very accurate since it uses
only the current state of the system. Other approximation methods based on
the product of exponentials (2.10), Strang splitting, (3.1) and column based
splitting are not very accurate, and consequently we choose not to report their
results. The reason of poor approximation of product of exponentials and
Strang splitting methods is due to the error propagation that occurs during
successive matrix vector multiplications.
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Figure 2. Isomer system (4.1) solutions provided by the traditional tau-leap (2.9) and by
accelerated tau-leap (3.4) methods at the final time T = 10 (units). A small time step of

τ = 0.01 (units) is used. The number of samples for both methods is 10,000.
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Figure 3. Histograms of isomer system (4.1) solutions obtained with SSA, traditional
tau-leap (2.9), and symmetric accelerated tau-leap (3.7) methods at the final time T = 10.

The number of samples is 10,000 for all methods.

The results reported in Figure 2 indicate that for small time steps τ the
accelerated tau-leap (3.4) solution is very close to the results provided by tra-
ditional explicit tau-leap.

Symmetric accelerated tau-leap method (3.7) yields even better results, as
shown in Figure 3. For small time steps the traditional and symmetric accel-
erated methods give similar results, however, for large time steps, the results
of the symmetric accelerated method is considerably more stable.

To assess accuracy we measure the numerical error as the the difference
between the PDF of each algorithm and the PDF of SSA:

error =

∑Q(1)
i=0 |SSAmolecules(i)−NewAlgorithmmolecules(i)|

Q(1)
.
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2

2.5

3

3.5

4

4.5

5

CPU time

E
rr

or
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Symmetric accelerated tau−leap

Figure 4. Plot of errors vs. CPU times for different algorithms. The points on the
graphs correspond to the following five time steps: τ = 0.01, τ = 0.05, τ = 0.075, τ = 0.1,
and τ = 0.15 (units). The final time T = 10 (units). Each point is obtained from 10,000

samples/runs.

Figure 4 plots the errors given by different algorithms versus computational
time. Each point on the curves corresponds to a different time step τ ; specifi-
cally, 10,000 simulations with that value of τ are carried out and the samples
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are used to obtain a histogram that approximates the PDF. For larger time
steps τ (smaller CPU times) the errors of symmetric accelerated tau-leap and
accelerated tau-leap are smaller than the error of traditional tau-leap. The two
new algorithms are more effective for lower accuracy computations. For small
time steps τ (;target CPU times) the traditional tau-leap is the most efficient.
The CPU time for the symmetric accelerated tau-leap the largest among the
three methods for a given time step since it requires computing propensity
functions twice per step.

4.1.1 Absolute stability and stiffness

To assess the stability of the new algorithms we apply them to solve the isomer
reaction [5]. It turns out that for this test problem the mean and variance
of the solution obtained by accelerated tau-leap and by symmetric accelerated
tau-leap are the same as for traditional tau-leap, since the only change in these
algorithms is the sequential firing of reactions. The procedure outlined in [5]
for obtaining the absolute stability is to fix τ and let the number of steps n
tend to infinity. Having X∗ = Xtheoretical(∞) = Xtheoretical

1 (∞) and λ = c1 +c2
in isomer reaction, the following asymptotic values of the mean and variance
are obtained [5]

E[X(∞)] = E(X∗), Var [X(∞)] =
2

2− λτ
V ar(X∗).

The mean value given by tau-leap method converges to the theoretical mean
value, while the variance does not. The same conclusions hold for the acceler-
ated tau-leap and symmetric accelerated tau-leap methods.

4.2 Schlogl reaction

We next consider the Schlogl reaction system [5]

B1 + 2 x
c1−−⇀↽−−
c2

3 x, B2

c3−−⇀↽−−
c4

x, (4.2)

whose solution has a bi-stable distribution. Let N1, N2 be the numbers of
molecules of species B1 and B2, respectively. The reaction stoichiometry matrix
and the propensity functions are:

V =
[
1 −1 1 −1

]
,

a1(x) =
c1
2
N1x(x− 1), a2(x) =

c2
6
N1x(x− 1)(x− 2),

a3(x) = c3N2, a4(x) = c4x.

The following parameter values (each in appropriate units) are used:

c1 = 3× 10−7, c2 = 10−4, c3 = 10−3,

c4 = 3.5, N1 = 1× 105, N2 = 2× 105

with the final time T = 4 (units), the initial condition x(0) = 250 molecules,
and the maximum values of species Q1 = 900 molecules.

Math. Model. Anal., 20(3):382–395, 2015.
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Figure 5. Histograms of Schlogl system (4.2) results at final time T = 4 (units).
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Figure 6. Histograms of Schlogl system (4.2) solutions with τ = 0.0001 (units), final time
T = 4 (units), and 10,000 samples.

Figure 5a illustrates the result of exact exponential solution (2.5) versus
SSA. Figure 5b reports the sum of exponentials (2.8) result which is not a very
good approximation. The product of exponentials (2.10) and Strang splitting
(3.1) results are not reported here since they provide inaccurate approxima-
tions.

Figures 6a and 6b present the results obtained with the accelerated tau-leap
and the symmetric tau-leap, respectively. For small time step the results are
very accurate. For large step sizes the results become less accurate but continue
to be more stable than tau-leap. Systems having a large number of reactions
may be more affected by the low accuracy, and improvements such as the ones
described in equations (3.5) and (3.6) may prove helpful.

5 Conclusions

This study proposes new numerical solvers for stochastic simulations of chemi-
cal kinetics. The proposed approach exploits the linearity of the CME and the
exponential form of its exact solution. The matrix exponential appearing in
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the CME solution is approximated as a product of simpler matrix exponentials.
This leads to an approximate (“numerical”) solution of the probability density
evolved to a future time. The solution algorithms sample exactly this approx-
imate probability density and provide extensions of the traditional tau-leap
approach.

Different approximations of the matrix exponential lead to different numer-
ical algorithms: Strang splitting, column splitting, accelerated tau-leap, and
symmetric accelerated tau-leap. Numerical results illustrate that the new ap-
proximation methods are more stable than explicit tau-leap especially for large
time steps, but are less accurate for some reaction systems. Despite this fact
the class novel numerical solvers proposed herein is of interest since it is based
on a totally different approach than the one used to derive classical schemes.
Specifically, one first discretizes the chemical master equation, then draws sam-
ples from the resulting probability density. Current work by the authors focuses
on improving the accuracy of the new family of approximation techniques.
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Appendix A. Example

We exemplify the process of building matrix A (2.3) for the Schlogl and isomer
reactions.

Isomer reaction Here for simplicity, we exemplify the implementation of
the system for the maximum values of species Q1 = 2 and Q2 = 2. According
to (2.1), Q = (Q1 + 1)× (Q2 + 1) = 32.

The vector d according to (2.2) is [2,−2]. The state matrix which contains
all possible states has dimension 812 × 2 matrix:

x =

[
0 1 2 0 1 2 0 1 2

0 0 0 1 1 1 2 2 2

]>
∈ R32×2.

The matrix A ∈ RQ·Q×Q·Q As an example for a maximum number of species
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Q1 = 2, Q2 = 2 the matrix A is:

A=



−a0(x1,:) 0 a2(x3,:) 0 0 0 0 0 0

0 −a0(x2,:) 0

.
.
. 0 0 0 0 0

a1(x1,:) 0 −a0(x3,:) 0

.
.
. 0 0 0 0

0 a1(x2,:) 0

.
.
. 0

.
.
. 0 0 0

0 0 a1(x3,:) 0

.
.
. 0 a2(x7,:) 0 0

0 0 0

.
.
. 0

.
.
. 0 a2(x8,:) 0

0 0 0 0

.
.
. 0 −a0(x7,:) 0 a2(x9,:)

0 0 0 0 0

.
.
. 0 −a0(x8,:) 0

0 0 0 0 0 0 a1(x7,:) 0 −a0(x9,:)



∈R9×9
.

Schlogl reaction Here for simplicity, we exemplify the implementation of the
system for the maximum value of the number of molecules Q1 = 5. According
to (2.1) the dimensions of A are:

(
Q1 + 1×Q1 + 1

)
= 6×6. The vector d (2.2)

for this system [1,−1, 1,−1]. All possible states for this system are contained
in the state vector

x = [0, 1, 2, · · · , 5]> ∈ R1×6.

As an example matrix A for maximum number of molecules Q = 5 is the
following tridiagonal matrix:

A =



−a0(x1) a2(x2) + a4(x2) 0 0 0 0

a1(x1) + a3(x1) −a0(x2)

.
.
. 0 0 0

0 a1(x2) + a3(x2)

.
.
.

.
.
. 0 0

0 0

.
.
.

.
.
. a2(x5) + a4(x5) 0

0 0 0

.
.
. −a0(x5) a2(x6) + a4(x6)

0 0 0 0 a1(x5) + a3(x5) −a0(x6)



∈ R6×6
.
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