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This article is devoled o the solvability of two models of nonmigrating nonlimited populations
propased in [1]. These models takes into account age and sex of individuals, the panmiction mating and
the destruchion of the foelus {abortions). One of these models ipnored but other one deals with the fernals
restoration periods after abortions and deliveries. Exstence and unigqueness theorems are proved as well as
the estimate of salution is obtaned

1. The model ignoring females restoration imbervals. We first pul in remembeance the following notions
used in |1}

'l: 2Ty and T, are ages of males, females and embrycs, respectively, [ Is Ume;

y(n } J{I_.‘,txj and z{! 'I:J,,tx,'l:._,J aré densities of numbers of males, single and fecundated
fernales, respectively;

p{.t,'l: r!1x} is the fernales’ fecumdation rate;

v"{r,-:r}, v¥{t,t,) and v’{l,1_,,,1,,1:1] are death rates of males, single and fecundated females,
respectively;

1{-!‘,.1:},, t_t) is the abortions rate;

o,=(0x], 0<x <00 is the females’ gostation interval &, =[0x], O (T )=(t)+75 T2 +1,],
0<t <ty

o, l0), Oy =(T}.T3;], where 0<1), <7y, <o0, and () are the females’ fecundation interval,
the
males' sexual activity interval and the females' reproductivity interval, respectively;

b'v(f,'l:}.,l:r} and -‘.I:{.E,‘I:J.,TI:] are the numbers of males and females, bom from a female on a

L

dd‘[‘:a',-r,-]] is & jump of the fumction X at the line T,="T;;
2712y 27 V2% ana 3 Y2D%2 reprezent diroctional derivatives along the positive direction
of characteristioa of operators
D=dlot+dion,, — [F=dlo+0/0y, L=L+dld,
respectively,
o=6,x0,(x), [=(0x), [=[0,x), E7 {[I‘:}, E.!’:-:I]

={(1,v.)el x[ﬁUtj} T =Tips T3= Ty +K, T3= Tryy Ty =Top +K, T3— 1 >K }
i=]

E'= {r,t_,,,tx,'l:zj] el x5, xo,(1;)x -::3}.
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[0t =1), T e(t3.12),
wlt,) =0, s (1 5}[1:}1-: [0x], 7, €(T2,72),

[te-tax} teelra gl
The inequality Ty3—T;>K means the multiple deliveries. In this section the females organism
rostoration periods after abortions and deliveries will be ignored. The system {ge2[1])

Dy=—w’ i EY (n
Diz=—zd®, d*=V+y i E* (2
DFx=—xd"+X,+X, inE" (3)
0, 7 & 0(0),
d =V 4+ fypde,, n= [yde,, T e0,(0), N
'ﬂ'_., ﬂ'j,
0, t e0,(x),
A=\ [dy ;. T €0.(x)- (5
ﬂ?
0, T, eo(t,14)
Xo=9 szdt,d:z, Ty {17, 4] (6)
el
suplernented by the conditions -
H0=2 He0=)’. FAo=? ™
o= V2, dryde, A o= [VH, _ duydh,, )
o oF
2 —o=n""0p ©
[He =g =0, i=id (10

;nmuﬂwnululinnﬁhmﬂm.hm&mﬁuwmv}'.ﬁ.vz.ﬂf.
b"'.xﬂlﬂhﬁtﬂﬁnﬂﬁms}'o. .rﬂ.za are agsumed to be given, It is also assumed, that xﬂyﬂzﬂ
satisfy the reconcilable conditions, ie. conditions () — (10) for {=0). As it follows from the hiclogical
meaning, unknown functions ¥, X and Z must be nonnegative. We note , that {l,tx}, {J‘,tj,) and
[.I',’I'._‘,._.t_‘.,'l:z} are the arguments of functions o™, Ay, Xg. v, mnd o, respectively.
Now we consider the solvability problem of the model (1) —(10), Defining
a=supx’, p*=supp, 1*=  dE=infd®, +&=infv",
px, p? m.pp L*=supy nf nf

m!‘l] .
W=infv’, b'=max [ sup¥er,, g=2 [sup ek, (11)
E” i'=.t.rux{ﬂf x@, L a, iy

where =1 x5, x6,(0), wy=0,(1,)x0,, we formulate the following statement

THEOREM 1. Acmume that
13 -1 7K,



2 the nonmegative bounded functions b* . B are continuows in { and plecewise continuous with respect
o T={T,,T,) in Ixa,

3) demographic functions p, v©, W, V', % and initial functions . yﬂ A satigfying the recon-
cilable-conditions { Ty—{ 10} for =0, are continuous and bounded,

4) the constans @, p*, 1%, de, va , va, b*, g, defined by (11), are finite, posittve and such that
b* p“axp{—mf}iqsl, g/ b*+1* p*rmaxilg/{ p*b*))2w 1 * p”icﬁtﬁ'{l -cxp[—m:f})

Then the prodlem (1—( 100 har a wnkgue mnnemhmhmnmhmr
1) ¥, X and Z are continuous functions in [ > 1, [x1 and I xc !UI{'I: ]RG respectively,

mm{suﬂp.x{r,ﬂj], 5??}{f,ﬂj£ﬂqk+], krg<t<(k+l)ny, (12)
] W, -rlexpl-nd}, 0<ts,<on,
aqk”larp{—'tj,vf]', kry<t—t s(k+l)y, T el
(Hx, ~texp{-n#}, 0<rse,, 1, e(013)
a, 0<ist,, 1. &(t, 1l
P, ~texp{-nE], 0<tst,—14, 1,51, (14)
g, krg<t—v s+, seennl
ad W{‘(T:‘Tit"{}}: (k=1Ljrg<t—1ySktg, 1,>7q,

(13)

ag’ +|El'q:!{-";x‘l£}, ktg<t—tos(k+1)y, 1,.e(0,15])

k=012,..

Proof. Let's denote: Tp=0, T5=00, d¥ =+, ¥ =X_+X,,
%(e)=4 o P()=rh 0. Elt:1,10)=2k o,

F(y)2h( fn)exp{ [ r")dr&+ﬂexp[ J';ﬂ"' r*}dn} (e k.,
Ffy, ul%(&)ﬂﬁ*bﬂ ?\Jﬂ"'l}ﬁp’ﬁm{*ﬁ’ﬂ” ()} x (A ke, (15

Whee X{’J)ED- X{'ﬂ)“ﬂ for Y=}, Z and -"ff=(fl=1'l+'l=.;"f}+ hﬁ=fﬂ+f-'t,.nl S=X.y,

ré:{mtrﬂ-}tr-—hﬂ-{-tr-—f}_ }é:(n+t—~1=,t},,q+1r—tf.ﬂ} If in (15) the letter ¥ i not
index, then it denotes the respective function. Let X, ¥ and Z be the continuous functions and assume

d* and X are continuous functions except lines T, =1;. f=f,ﬁ. Then from (1)=(3), (T, (15) we
cbtain the following integral representations



Fl(y) y(rg{’):yo(ty-—t), 0<<n,,

V= (16)
LEZ(y,O), y(lg)=f(t—ty), 0<t,<f,
Fi(z) z(rg)=zo(ry,tx—t,tz—t), (lsf<v <%

z= amn
F(z,0), z(lfé) (t TR ) 0<1,<t,
A, A= e -1), 0050, — 1y T e(tni1)

x= (18)
B(xt), t>1,-1,1, e(‘c,,t,+1],x(i(§) ¥(t-1.), t>1,€[01],

where i=14.

The appearance of the index i is conditioned by the jumps of functions &, X 2 Xp Appending to

(15)—(18) the formulas (4)—(6), (8), (9) we obtain the system of integral equations.
By using (17) we can write Egs. (8), (5) and (6) in the form

izjbyﬁ(z)Tzzxdtydnx, y=x,y in[0x], (19)
(o)
¥=[6"Fy (2,0} dt,dr,, Y=x,y in(x,), (20)
G
Xp= JF](z)lT —dty, in [O0x]xo,(x), (1)
0'
Xy = Jla(z O) —cdty, m&x 0)x 6, (k) (22)
X, = o in I x(I\o,(x)), (23)
X,=F(2,0,09) in I x(1,5,], (24)
X,=F(2,0,x) in Ix(15,13], (25)
Xa=Fé(Z,az,K) in [(1/2, 00))((‘53,‘54], (26)
where 0| =T, — T, Ay=T,—T3,
BE) .
Fzp2)= |1 | w(e 0t [uR(oxh, by, BE=min(se) an
o, p A&)

There is the delay argument /—K in Egs. (19) and (21). Therefore we can consider the problem (15)
— (27), (4), (9) gomng in the consecutive order along the axis ¢ by step K.

Let t€(0,k]. From Egs. (15), (19) and (21) it easy to see, that functions X, ¥ and X} are
expressed by the values of ﬁ(z]t —x and, consecuently, are known. Thus y given by (16), is also
known and the estimates (12), (l3)zare true. From (15), (9) and (22) we see, that terms, depending on
}72(2 0) in (24)—(26) for ¢ <K involve the function X/ —‘tz,‘tx—‘l:z). For <K in Egs. (24) and (25)
t-t,<t, 1,~1,<1,, while in BEq. (26) T,—71,<73. Therefore Xa involves x(t,‘tx), and (17),
where T, €(T),T3], is the linear integral equation for X. When T, €(0,7;], the right—hand side of the
Eq. (18) is known, while for T,.>173 it involves the only unknown function x(f,73). When x(f,73) is
obtained the right—band side of (17) is also known. We will obtain x(t,t3) by solving the Bq. (18) for
T, €(13,13].
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Now we consider the Eq (I8) for T, &(T.T3]. Let I3x be its right—hand side By using the
conditions of Theorem 1, we can prove, that the operator 1"| acts in the class A of nonnegative
comtinuous and bounded by the constant & functions and is contractive. The norm of X €4 is defined as
sup|x. Therefore the equation x=D[\x has in A a unique solution. We directly can prove the estimate
{14).

Let 1 €(k,2x ] By using the known functions X, 3 and Z, when { <K, we obtain for X an integral

equation X=15x when T, E(‘ll,'l:;}, and the certain cxpression when ‘:Iil[tt,tg]. The function y is

alao kmown. By using the Banach's principle a8 abowe we can prove the unique solvability of equation
x=[3x and the estimates (12)—(14).

Going along the ads ! and using the same argumentations as above we prove the unique solvahbility of
the problem (15)—(26), (4), (9) and estimates (12)—(14) for £ €] . The functions X, ¥, Z, D]"y, ¥z
are continuous, while 1" x is continuous except the lines T, =1, i=1L4. This ends the proof of our

theorem.
From (12)—(14) one can see, that for qr-r.:l the population vanishes as f—» 00

MOTE. We consdered the case t;-1pk.1‘1wnppuﬂlum¢mhemmb&:mdin the same way.

2. The model taking imto account females resioration imtervals. We first briefly define the following
noticns used in [1]:

t}., T, and T, are ages of males, fernales and embryos, respectively;

T, and T,, are time passed after an abortion and a delivery, respectively, I 1s time:

oy, =Ty Tapl, 0<%, <Tgy is the males' sexual activity interval;

o,=(0,x,], 0<x, <o is the femnales’ gestation interval, T, =[ﬂ,|c3] :

a,=(0x,]. O<x,<w amd ge={0x,;], (<K< arc the females' restoration intervals after
abortions and deliveries, respectively, T, =[0,k,], Ty =[0.x,];

ﬁn(t=}={'l:h. +1,, T2+ 1], 0<T), <1y, <%, TEC,;

“n(n} and ﬁ_‘._,{trj are the females’ fecundation and reproductivity intervals;

“xu{‘u}ﬁ':‘lx""‘u: Tox+Tyls Ty €0y

'E‘ru(fu]"h]: Ry Ty Toe HK,H Ty ) Ty €5y,

;{l.‘ij;,‘tx] is the fermales’ fecundation rate;

v"{r.ty}. v(1,1,) md v‘[:.t,,t,,;r:} are death rates of males, single and fecundated females,
regpectively;

Mttt md W(11,7,1,) am death rates of females from restoration intervals ater
abortions and deliveries, respectively;

I[I.T,J,,‘I::,I ;} is the abortions rate;

F(I.TJ,,‘!I:] and bx[:l.t:_,,‘tr] are the numbers of males and females, bom from a female on a
delivery,

EAMD"}', 7 V2pke 3TV2p8 3V2pMy e 317DV represent directional derivatives
along the positive direction of characteristics of operators I'=0/0t+0/0v,, [F=0/01+d/dr,,

=[5 +dlor,, 1= +8/in, ad [°=LF+] Br,,. respectively;
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6
O=0y X0y, (x,). I=(0,0), I=[0,00), E¥= {(tty)elxl} E¥={(t,x,) el x(I\| ),

1=1
U= To=Te TKy, T3= T tK, +K,,,  Ty=Toy,  T5=T KK, Tg=Ty, +K, TK,,
Ky <K<K, Ky+X,+K,<Top —T1y ),

EZ={(I Ty, x,'tz)el XG xcxz(rz)xcz}, E"={(1 ty,rx,tu)el xcyxcxu( )xou}
E® :{(t,’l:y,'[x,to) el xoyx Gyl Ty )X 00};

[.\:{t,ti): is a jump of the function x at the line T, =7T;, i=Ijé; _

O(T,I), yo(ty) zo(ty,tx,t ) uO( y’ x’tu) and UO(’I:y,tx,tu) are the initial funictions;
(0,1, — 1], Te €(T1. 7 4%,]

Q(tx)=1[0,v<z], T (K, 14

[te—T4,%; ) Tp €(T4,T4+K,]
The case K, <K,, <K, biologically is frequent and the inequality K, +K,,+K,<T4—1T| means the multiple
deliveries. The system (see [1])

D’y=—yW in E7, (28)
D’z=—zd? d*=v*+y,in E?, (29)
D'u=-w" in E*, (30)
DPv=—° in E’, (31)
D*x=—xd*+ X+ X} in E¥, (32)
0, 1, #0,,(0),
d =v'+{,1 jypd:y, ne Jydty, 1, €6,,(0) (33)
0)' Gy
0, 1, écxu(}cu),
Xa= j"‘tu:rcud"y’ Tx ec’xu(‘(u)’ (4
07
07 tx ¢°xu(ku)a
Xp= J"‘tv:kudtya T, eoxu(xu)’ (35)
O'y :
suplemented by the conditions
Yeeo=3, dio=2"s theg=t’, Wio0=V", Hpog=2", (36
)’1:,:0=Iby z’tzzxzdtydtx’ xf‘[x:0='[bxz112:1<zdr fhx: 3D
ag g
U"Tl’:O:z“tz—’Kz’ .jtz:():n_lxyp, ultu:0= IXZdTZv (38)
A1)
[)dtx:n]:o, i=16 (39)
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governs the evolution of the population. The nonnegative demographic functions v}', vx, v’r, '.r"', v,
P i'.'r. b]'r. %, and initial functions }ﬂ Jﬂ ZD un, u.:] are assumed to be given. It is assumed also,
that inital functions satisfy the reconcilable conditions, i.e. conditions (37)—(39 for #=0_ As it follows
from the biclogical meaning, unknown Amections X, ¥, Z, 1V must be nonnegative,

We note, that {I,TI} and (f,t},,t:,'l::) are the arpuments of fAimcbons dr, Iﬂ* .1:'& and dz,

respectively.
How we will consider the solvability problem of the model (28)—(39). Defining

a=supx’, p*=supp, 1":5;1]1 &= mfdf vﬂ:-mfvr W= lrl.ﬁ-”'

[0.7] iy
b =max _[ supb'dr,. q- ma:n:( _[ supzﬂmr. Jsupvndt {40)
I=X.Y {kz}fxcr,
wg=1 ““y"‘“nm]- m‘F“n(‘s}x“:: Wa= (Tu}xﬁw @3=0 ': }Kﬂ'", Tox=Tar+¥;

we can formulate the following statement.
THEDREM 2. Awume that

1) K <K, <K;, T4—T>K, +K, +Ky
iammmmmmmb’f,ﬂ are continwous in § and piecewise continuows with rexpect i

1:=(1:_._,,1:x in [ xao;

3) demographic fimctions p, 3., v, V., V*, VX V' and inital fimctons x°, 37, 2°, o ©°
satifving the reconcilable conditions (3Ty—(3) jor § =0, are continwows and bounded,

4} the conviantr @, p*, 1*, &b, V&, va . b*, q. defined by (40), are finite, positive and such that
j supu’dh = 1* p*x,max(Lg/ p*b*), b* p‘exp{—u,cﬁ}iqﬂl,
@,
“J
g/b*+1* p*x ;max(lg/ p*b*)<w
Then the problem (28)—(30) hay @ wnigue nonnegative solution such that
) ¥, X, Z, ¥, U are continuous functions in the domains [x I, FxI, [xo,x0,(t,)x5,,

[xoy,x0.,(t,) %8y, and I x0,x0,,(t1,) %5, rspectively,
2) max{supx(1,0)), supp(t.0)<ag"*!, k%, <t<(k+1)7,,, (1)
(v, 1)expl -}, 0st<t, <em,

vs
+1exp{——1y'£}, kiy <t-v,S(k+1)Ty,, 1y €l,

(42)
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e, ewpl -], 0<151, 5, c0.3)

a,0<t<,, 1, 6(15,16),

xo(tx—t)cxp{-txvff}, 0<t<T, — 16, T, > T6,

xﬂ aq’”lexp{—'cx\ﬁ}, kT, <t—t, <(k+1)%5, 1, €(0,15] (43)
agt kT <t -1, <(k+1)Roy, 1, €(ThT6)

agt expl—(x,~ T |, (k=g <t -1, <k, 1,516,

Laexp{-(tx— TGM}’ T, —Tg<I<T,— Ty, T > Tg,

k=012,..

Proof. The problem (28)—(39) can be solved by the method used in section 1. Assume To=0,
T19=00
By usmg the condmons of our theorem and the functions F(y), F(y,1L), defined by (15), where

0 for Y #Xx, we can write the solution of the problem (28)—(39) in the integral form:

E(y) y yo(t ) 0<t<t),

(44)
B0, WR)=5t-1,) o<t <1,
F](z) z(r(f zo( y,‘tx 11—t ) 0<¢<1,<K,,
(45)
Fz(z 0), z(hf t 15Ty Ty ), 0<1,<t,
E(x) x(’d: tx_t) O0<t<te -1, T &(t)Tin)
(46)
Féxt 1>t -1, T, €(, T x(h)) x(1—1,), t>1,.€[0,1,]
for i=0,6,
K(u), u(ré‘)— 0 tx—t,'cu—t), 0<t<t,<x,,
u= (47)
Fu,0), 11(}6‘) t T Ty =T ), 0<r,<f,
K(v), 0(10 )=Uo(ty,‘tx—t,1:u—!), 0<1<1, <k,
V= (48)

F5(0,0), U(h‘)’)zﬁ[t—tu,ry,tx —‘ED), 0<1t, <4,
where rﬁz(n,n+t5-t), h,iz(n+t—ts,n) for s=x,y and r;]‘=(n,ty,n+~cx—t,n+rs—t),
h;::(‘r]+t—‘ts,ty,r|+'tx—ts,1]) for $=2z,u,L while

B(t,ry,tx)zﬂtzz,(z, ﬁ(t,ty,rx)z szd‘tz. (49)

T.)

X
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Consider the functions Xp,X,y,X, in detail. Formulas (45),(43) show, that X} is known for
(t,tx) €(0,x, +x, ] x (13,1¢], while for (t,tx) €(K,, +K,,0) x(T3,Tg] it is represented by formula

‘ —1
Xbuatx)= J (n x)’)(ébtyﬂh)ﬁ(t’ty’tx)dty’ (50)
Gy
where ‘gl:t_‘(u —X,, M=Ty—K,—X,, and fl is known. The functions X,} are represented by
(19),(20) where K must be replaced by X,. Egs. (47) and (50) show, that X, is known for
(t1,)€(0,x,]x (19,15 and

)dt dr (51)

.M, T, A

Xa(t> tx)z J f2(g27 1:y > 712) (Xz)k&
g, nz) B
for (t,‘tx)e(Ku,OO)X(tz,‘tS], where &y =1—K,, Th=T,—K,and f; is known,
Using (45) from (20) with K replaced by K, and (51) we can eliminate Z and, cosecuently, obtain
for y and X the equations with delay arguments. We can solve these equations going along the axis
1 with the step p=min(1<u,‘t:1), because X,y for 16[0, p] are known.

The continuity of the solution, mentioned in our theorem, and its differentiability along the respective
characteristics are ensured by the conditions of theorem. The estimates (41)—(43) may be obtained
directly by using the Gronwall's inequality. The estimate (43) shows, that for q<1 the population
vanishes as £—>00. This ends the proof.
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