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1. Introduction.

The method of computational experiment requires finding numerical approximation of the solution of
given problem. Similar to physical experiments it not sufficient to find only particular value of this solu—
tion. We must give boundaries of the error of obtained discrete. solution. The key ingredient of such me—
thodology is a reliable method of assessing the accuracy of computed approximation. Such aposteriori
error estimation must be computed using the data for the given problem and discrete approximation itself.

Computational efficiency is the second requirement for numerical methods used in computational
experiments. Realisation of the basic numerical method must be economical and the costs of obtaining
the error estimation must be small compared with the computation of numerical solution.

The development of such methods for numerical simmulation of aberrated laser beam propagation is
considered in this article. Algorithms and their computational performance are given.

2. Problem formmlation.

Modelling of diffraction and propagation of laser beams is one of the most difficult computational
problem of non—linear optics [1—3]. Such phenomena is very important for many laser applications (see
[4—6]) and laser technology [7.8]. High quality laser beams must be generated for industrial applications
and computational experiments are widely used to investigate this process.

The propagation properties of a light beam after it has passed through a focussing lens are assumed to
be governed by the equation €
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We want to evaluate the field at a typical plane Z=Z #0, when a prescribed field at 2=0 is given.

The direct application of numerical methods for evaluation of diffraction integrals is not efficient ap—
proach [9,10]. Here we must use special numerical algorithms for accurate integration of the rapidly
oscillating diffraction integrands. Many modifications of such methodology are proposed. They are based
on methods in which the integrand of the diffraction formula is replaced locally by expressions that can
by integrated analytically or calculated by finite—element methods. The other approach is based on the
Hermite—Gaussian and Laguarre—Ganssian wave expansion [11—13]. We have used this method for si—
mulation of non—linear laser beam propagation and interaction [14,15]. Only sufficiently smooth field and
phase radial distributions were considered in these cases. Hence we had no problems with the selection of
basis functions. The situation becomes much more difficult in the case of numerical simulation of
aberrated laser beam propagation.

The primary objective of this paper is to optimise the selection of basis functions in wave expansions
and to give aposteriori error estimations of the obtained numerical solution. These results were used in
software package for the numerical analysis of laser beam quality [16].

3. Laguerre-Gauss expansion.

We find the solution of problem (1)—(3) as a series expansion
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and LFdMum:meagmcpnhnnniui. We have two free parameters, ie, Wo and f | in the
definition of basis functions. The selection of these parameters enables us fo minimize the costs of
calculation of needed approsximation. Fmr;tima.ﬁ" obey the orhonommality condition
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Now we will estimate the costs of caloulation at the solution svaluation stage. Usually we need to fimd
mwﬂnﬂmdﬂ;r}uwmmﬂrﬂﬁﬁaﬁnﬁpﬂmug, i=],..N. There is no fast
glgorithm for the calculation of Laguerre’s series expansion like the Fast Fourier Transform Hence
realization costs of the algorithm are estimated by (J(NP) floating point operations. This makes the

Laguerre expangion method not efficient in the case of non—linear laser beam propagation when we need
to calculate sums (4) at N, distinct planes 2=2, k=L.. N>

By using basis orthonomality condition (5) we find that i-'P iz defined by

cp=(ulr)W,(0,r)). 6

MNumerical approximation of Cp is obtained by using some method of numenical integration, e.g,the
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The value of constant Af; is not known in most cases, hence we can't estimate the numerical integration

error by this inequality. We are interested in cbtaining an aposierion’ error estimate. Two well—known
methods wers wsed in our experiments.
The first aposterion emor estimate is given by the Runge rule

IC C
p~Col=r5" “[m“[ )

=0




where Cp is the numerical value of cp obtained by the same Simpson’s integration method with the

number of knots N /2:
N/2
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The calculation of C P 18 economical, because we do not need to calculate additional values of the
integrand function g{7).
The second aposteriori error estimate is evaluated as follows
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where CII,i is the approximation of C,,, which is calculated by high order numerical integration method of

p
I th order, I>5.
Now lets consider the errors introduced in series expansion (4) when the series is truncated after the

P th term. This gives rise to the P th order approximation of #(r)
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where “.“ 4 i8 some norm, e. g, the L, or L, nomm, and a.>0 is the convergence order which depends

on the smoothness of u(z,r). The estimate given above is again apriori and constants ., A 4 are

usually not known for a given problem. We note that some simple rules of apriori estimation of P are
given in [17] for the evaluation of the diffracted field emerging from a circular function.

In order to obtain aposteriori error estimate of the truncated solution U(P)(Z,r) we propose to use
the fact that the free—space propagation operator (1) is unitary, i.e.

|,¢z)-U(P)(z)||= lu(O)—U(P)(O)“,
where “" is the L norm, Mz:(v,v).

The intensity distribution of the initial field u(O,r) is given explicitly. Once the requested error level

has been fixed, the number of terms P in the truncated series can be obtained by direct numerical
procedure, in order to fulfill the estimate

‘u(O)—U(P)(O)LSS.

It remains to determine parameters ®¢ and f in the definition of basis functions Vp(z,t). The

relation for Z; is exact only for a pure Gaussian beamn but it remains a good approximation for other
distributions with small aberrations (see [18], where analysis for low—order super—Gaussian beams is
given).

The parameter ®( provides an essential degree of flexibility and we can optimize the costs of
calculation by selecting appropriate value of ®q. This problem was studied in detail in [11, 12, 17]. For
smooth distributions such as low—order super—Gaussian fields

I(r)=1I,exp, _(%)Zn

the relation Wp=d is used. For other beams of width d;) the scale factor COONaO/ PO'S is optimal.

Numerical Laguerre—Gaussian calculations are carried out using numerical values calculated at discrete
points of quasiuniform space mesh. An aposteriori error estimation of this discretization error is obtained
by testing numerical integration formula for overlapping integrals
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It is sufficient to test a few larpest values of 2, f as the ermor is very much less for smaller values of mode
numbers.

4. lwicegral representation.

The solution of laser beam free propagation problem (1)—(3) can be represented by diffractional

integral as follows s |
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where J; is the Bessel function. The adaptive integraion method is used to find numerical
approximation of  w(z,7). Two adaptivity techniques are tested,

We denote by [/{@,b.8,) the approximation of the integral (7) at (2,F) over interval [a.B], which is
comrect to some error lolerance €. Our goal is find U(0,R.€).

Algorithe 1 (a divide and conguer approach).
|. Calculate & numerical approximation of U{abg) by same quadratre nie, eg, the Simpson

method
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where [ is the integrand function.
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3. If error<s then Sy (or & ) is a needed approximation of U/(@,b,€), which is comrect to the

specified accuracy tolerance. Otherwise we define two new problems

ulasdg),  u(2:9,5.5)

The algorithm is recursive and we start with {/(0,K,€).

The second algorithm requires more memory for storage of a kst of subdivisions, but it can give more
efficient results in many cases. We note that sirmilar strategy is also wed in NAG standard integration
rotine.

Algorithm 2. Let assume that we have a subdivision of the interval [0,R]

N
(0&1=Ulay]

and numerical approximations of the integrals [J l:a J-,.bj-,e j} are defined.
. Calculate the totsl ermror
o
error= ZE '
J=1
If error S€ then the approximation I7(0, R,€) is given by

N
U(O,Re)= 3 Ula;by,).
J=1
2. Otherwise find an interval [rI -,ﬁ'}] with the largest error estimate, bisect it, and apply quadrature and

aposterioni ermor estimation rules to both of them
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Numnerical calculation of integrals at many discrete points 4, , k=1..M demands for large amounts

of computing time. Hence parallel adaptive algorithms were also irnplemented. These algorithms will be
reported in separate paper, as well as detailed results of numerical experirnents.
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