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Abstract. This paper illustrates a procedure to generate pareto optimal solutions
of multi-objective linear fractional programming problem (MOLFPP) with closed in-
terval coefficients of decision variables both in objective and constraint functions.
ε-constraint method is applied to produce pareto optimal solutions comprising most
preferred solution to satisfy all objectives. A numerical example is solved using our
proposed method and the result so obtained is compared with that of fuzzy program-
ming which justifies the efficiency and authenticity of the proposed method.
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1 Introduction

Mathematical optimization is described as the science of determining the best
solution to the mathematically modelled real world problems. Generally, it
is the process of formulation and solution of constrained or unconstrained
optimization problems occurring in every branch of science and engineering
designed problems. Various real world problems concerned with decision mak-
ing situations can be modelled as constrained or unconstrained multi-objective
optimization (i.e., vector optimization or pareto optimization) problems. In
multi-objective optimization problems, usually there does not exist single so-
lution which satisfies all the objectives, however a set of pareto optimal(non-
inferior, non-dominated) solutions can be generated from which the decision
maker (DM) has a choice to decide the most preferred pareto optimal so-
lution. In the recent past, researchers have given more emphasis on multi-
objective techniques to handel fractional optimization problems. In fractional
programming problems, the numerators and denominators of the objectives or
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the constraints are considered as linear or nonlinear functions. In order to
optimize a multi-objective fractional programming problem, several ratios of
functions need to be optimized simultaneously. It has wide range of applica-
tion in numerous important fields like finance, engineering, business, economics,
management, and so forth. Various mathematical optimization problems com-
prising fractional objectives are frequently encountered [1,20] in many real life
situations like optimization of profit/cost, output/employee, cost/time, inven-
tory/sale, etc. Linear fractional programming problem (LFPP) contains some
linear constraints and a fractional objective function i.e., fraction of two linear
functions was developed by Hungarian mathematician B.Martos [14] in 1960.
Several methods have been proposed in literature for obtaining the optimal
solution of LFPP. Charnes and Cooper [5] developed a variable transformation
technique in 1960 which converts the fractional objective function to a non-
fractional linear form with an additional variable and a constraint. Costa [7]
proposed weighted sum technique to solve linear fractional programming prob-
lem. Jain and Arya [12] proposed an inverse optimization model to find out the
solutions of a linear fractional programming problem. Borza et al. [3] derived
a method to solve LFPP with interval coefficients in the objective function.
Effati and Pakdaman [8] converted the objective function with interval coef-
ficients to an interval valued objective function. Some important concepts on
interval coefficients in the constraints and the objective functions are explained
by H.C. Wu. [22]. Multi-objective LFPP comprises many fractional objective
functions to be optimized subject to a certain set of linear constraints. Many
methods have been proposed for solution in this regard. Pal and Sen [19] pro-
posed goal programming method to solve interval valued MOLFPP. Milan [11]
discussed linear fractional programming problem under interval uncertainty
to obtain a range for optimal values of the objective functions. Nykowski
and Zolkiewski [17] proposed a compromise procedure to determine the non-
dominated solution whereas Caballero and Hernandez [4] developed a method
to find a set of weakly efficient solutions of MOLFPP. Suprajitno [21] proposed
a method to solve multiobjective linear programming with interval coefficients.
Bellman and Zadeh [2] presented some basic concepts regarding fuzzy program-
ming which is widely followed. Luhandjula [13] proposed fuzzy approach to find
the efficient solution of MOLFPP.

Many real world problems when are mathematically modelled, do not carry
certain values as coefficients. In such situations, intervals of fixed values are
better to be assumed as the coefficients of the decision variables. In this paper,
closed intervals of certain values are assumed as the coefficients of the decision
variables both in objective and constraint functions of a multi-objective LFPP.
Relative minimum and maximum values of each objective function with respect
to others are determined then ε-constraint method due to Haimes et al. [10] is
used to derive a set of non-inferior solutions from which the decision maker(DM)
decides the most preferred optimal solution to satisfy all the objectives with
best compromising objective values on preference basis. Efficiency of our pro-
posed method is ensured by comparing the results with the existing fuzzy
programming(Zimmermann’s max-min operator) method through an example.
The organisation of the paper is as follows: Following introduction, some useful
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results regarding interval arithmetic have been presented in Section 2. Some
brief ideas of multi-objective optimization problem and existence of it’s opti-
mal solution have been concisely interpreted in Section 3 whereas ε-constraint
method has been incorporated in Section 4. Fuzzy programming method to
solve a multi-objective minimization problem has been explained in Section 5.
Our proposed method for solving multi-objective linear fractional programming
problem with interval coefficients has been discussed in Section 6. An illustra-
tive example has been solved using both the proposed method and existing
fuzzy programming method separately then some remarks regarding the solu-
tions obtained are added in Section 7. Finally, some conclusions are drawn
from the discussion have been incorporated in Section 8.

2 Preliminaries of Interval Arithmetic

Assume that I denotes the colletion of all closed intervals in real line R. Let
b, c ∈ I such that b = [bL, bU ], c = [cL, cU ], where bL, cL, bU , cU ∈ R are lower
and upper bounds of b and c. The results of interval arithmetic given by [16]
are interpreted as follows.

• b+ c = [bL + cL, bU + cU ].

• for α ∈ R, αb =

{
[αbL, αbU ], α ≥ 0,

[αbU , αbL], α < 0.

• b− c = [bL − cU , bU − cL].

• bc = [bL, bU ][cL, cU ] = [MinD1,MaxD1],
where D1={bLcL, bLcU , bUcL, bUcU}.

• b/c=[bL, bU ]/[cL, cU ] = [MinD2,MaxD2], where D2=[ b
L

cL
, b

L

cU
, b

U

cL
, b

U

cU
] and

0 /∈ c .

3 Multi-Objective Optimization Problem (MOOP)

Optimization is an important activity in many fields of science and engineering.
The classical frame work for optimization is to find optimal value of objective
functions with respect to given constraints. A multi-objective optimization
problem [9,15] can be stated as:

max/min f(x) =
(
f1(x), f2(x), . . . , fk(x)

)
(3.1)

subject to x ∈ Ω,

where Ω is a nonempty compact feasible region. Usually, there does not exist a
single solution which optimizes all the objective funtions simultaneousely with
cent percent satisfaction. Therefore, an appropriate method is used to generate
a set of non-inferior or pareto optimal solutions from which the most preferred
optimal solution(that satisfies all the objective functions with best possibility)
can be determined by the decision maker (DM).

Math. Model. Anal., 20(3):329–345, 2015.



332 S. Nayak and A.K. Ojha

Definition [See [15]]. x∗ ∈ Ω is a pareto optimal solution of MOOP (3.1) if
there does not exist another feasible solution xf ∈ Ω such that fi(x

f ) ≤ fi(x∗)
∀i and fj(x

f ) < fj(x
∗) for at least one j.

4 ε-Constraint Method

The ε-constraint method was proposed by Haimes et al. [10] for generating
pareto optimal solutions of a MOOP . It is a posteriori preference based method
that generates the non-inferior solutions [6, 18] by considering one objective
function at a time as primary one and converting the remaining objective func-
tions as constraints. In other words, it minimizes one objective function and
simultaneously maintains the maximum acceptability level for other objective
functions. The ε-constraint method is defined as:

Min fs(x), s ∈ {1, 2, . . . , k} (4.1)

subject to

fi(x) ≤ εi, i = 1, 2, . . . , s− 1, s+ 1, . . . , k, x ∈ Ω,

where, εLi ≤ εi ≤ εUi , εLi = Min fi(x) ∀x ∈ Ω, εUi = Max fi(x) ∀x ∈ Ω, i.e.,
the nonempty compact feasible region of the problem. Taking the value of εi
in [εLi , ε

U
i ], a sequence of optimal solutions for the objective function of high

priority can be generated from which the most preferred optimal solution is
determined.

5 Fuzzy Programming

The concept of fuzzy set theory was first proposed by Zadeh in 1965 which rep-
resents the imprecise expressions of real world problems in precise mathemati-
cal forms. Zimmermann proposed max-min operator in fuzzy approach [23] to
solve multi-objective linear optimization problem. Each fuzzy set is associated
with a membership function that determines the degree of membership of it’s
elements in the range [0, 1]. Several types of membership functions are available
in fuzzy programming to solve a multi-objective optimization problem but a
suitable one is to be chosen in order to determine the optimal solution. The fol-
lowing steps are followed by fuzzy programming(max-min operator technique)
to determine the optimal solution of an MOOP as defined in (3.1).

Step 1. Obtain the values of relative minimum(Li) and relative maximum(Ui)
of each objective fi(x) with respect to other objective functions such that
Li ≤ fi ≤ Ui, i = 1, 2, . . . , k.

Step 2. We consider the following membership function in our proposed method
to determine the optimal solution of an MOOP. Define the fuzzy membership
function µ(x) for each objective fi of the problem (3.1) as:

µi(x) =


1, fi(x) ≤ Li,
Ui − fi(x)

Ui − Li
, Li ≤ fi(x) ≤ Ui,

0, fi(x) ≥ Ui.

(5.1)
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Step 3. Construct the following crisp model using Zimmermann’s max–min op-
erator and solve it to obtain the optimal compromise solution of MOOP (3.1).

Max
{

min
1≤i≤k

µi(x)
}

(5.2)

subject to x ∈ Ω.

This multi-objective optimization problem (5.2) is equivalent to the following
problem (5.3) defined as:

Max λ (5.3)

subject to

µi(x) =
Ui − fi(x)

Ui − Li
≥ λ, i = 1, 2...k, x ∈ Ω,

where λ is an auxiliary variable and the constraints µi(x) ≥ λ can be replaced
by fi(x) + λ(Ui − Li) ≤ Ui, i = 1, 2, . . . , k for simplicity.

Step 4. Use an appropriate method to solve the above single objective optimiza-
tion problem (5.3) to obtain the optimal solution x∗ and evaluate the functional
values of the objectives fi(x) (i = 1, 2, . . . , k) at this solution to be considered
as their optimal objective values.

6 Multi-Objective LFPP with Interval Coefficients

Multi-objective LFPP with interval coefficients of decision variables both in
objective and constraint functions can be generally formulated as follows.

Min f(x) =
(
f1(x), f2(x), . . . , fk(x)

)
subject to

Ω =
{
x = (xj) ∈ Rn | Ax ≤ b, x ≥ 0

}
,

where

fi(x) =

∑n
j=1 cijxj + αi∑n
j=1 dijxj + βi

, i = 1, 2, . . . , k,

A = (atj)m×n and b = (bt) ∈ Rm, t = 1, 2, . . . ,m.

Assume that

n∑
j=1

dijxj + βi > 0 ∀ i, j and cij , dij , αi, βi, atj ∈ I,

cij = [cLij , c
U
ij ], dij = [dLij , d

U
ij ], αi = [αLi , α

U
i ], βi = [βLi , β

U
i ], atj = [aLtj , a

U
tj ]

∀i, j, t. Let dLij , β
L
i > 0 for satisfying the positivity assumption of the denomi-

nator objective functions.
The above multi-objective LFPP can be stated as follows.

Math. Model. Anal., 20(3):329–345, 2015.
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Problem P.

Min fi(x) =

∑n
j=1[cLij , c

U
ij ]xj + [αLi , α

U
i ]∑n

j=1[dLij , d
U
ij ]xj + [βLi , β

U
i ]
, i = 1, 2, . . . , k

subject to
n∑
j=1

[
aLtj , a

U
tj

]
xj ≤ bt, t = 1, 2, . . . ,m and xj ≥ 0.

As the values of bt mostly remains in knowledge of DM, we assume here fixed
values for it but can be considered in interval form regarding the necessity of
the real world problem.

The objective functions and the constraints of the above Problem P are
formulated into the following forms.

6.1 Objective functions

The objective functions of Problem P can be simplified into the following forms:

fi(x) =

[∑n
j=1 c

L
ijxj + αLi ,

∑n
j=1 c

U
ijxj + αUi

]
[∑n

j=1 d
L
ijxj + βLi ,

∑n
j=1 d

U
ijxj + βUi

] , i = 1, 2, . . . , k.

We use the following notations for convenience.

fi(x) =
fNi (x)

fDi (x)
=

[fNLi (x), fNUi (x)]

[fDLi (x), fDUi (x)]
, i = 1, 2, . . . , k.

Since fDi (x) > 0 ∀x ∈ Ω (assumed), the following are the possible cases:

• Case-I: If 0 ≤ fNLi (x) ≤ fNUi (x) then fi(x) =
[
fNL
i (x)

fDU
i (x)

,
fNU
i (x)

fDL
i (x)

]
.

• Case-II: If fNLi (x) ≤ fNUi (x) ≤ 0 then fi(x) =
[
fNL
i (x)

fDL
i (x)

,
fNU
i (x)

fDU
i (x)

]
.

• Case-III: If fNLi (x) ≤ 0 ≤ fNUi (x) then fi(x) =
[
fNL
i (x)

fDL
i (x)

,
fNU
i (x)

fDL
i (x)

]
.

Selection criterion of the cases:
The affine functions fNLi (x) and fNUi (x) can be both positive and negative

for different values of x ∈ Ω. Since fDi (x) > 0 (assumed), depending on the
values of fNLi (x) and fNUi (x), the following criteria are undertaken for the
problem to decide the cases that occur. As it is a minimization problem, the
numerators of the objectives need to be minimized. So the signs of fNLi (x),
fNUi (x) are considered about their individual minimal points to obtain the left
and right end points of the interval form of fi(x). The minimum values of
fNLi (x) and fNUi (x) are evaluated with the given constraints treating them as
individual objectives and depending on the signs of their individual optimal
objective values i.e., fNL∗i and fNU∗i , the following observations are made.

Observations:
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1. If fNL∗i ≥ 0 and fNU∗i ≥ 0 then Case-I occurs.

2. If fNL∗i ≤ 0 and fNU∗i ≤ 0 then Case-II occurs.

3. If fNL∗i ≤ 0 and fNU∗i ≥ 0 then Case-III occurs.

4. If fNL∗i ≥ 0 and fNU∗i ≤ 0 then Not Possible.

Special observations:

1. If cLij , α
L
i ≥ 0 ∀j = 1, 2, . . . , n then Case-I occurs.

2. If cUij , α
U
i ≤ 0 ∀j = 1, 2, . . . , n then Case-II occurs.

We consider Case-I to illustrate the procedure for computing pareto optimal
solutions of the interval-valued objective functions of the MOLFPP and for the
Cases-(II, III), it can be done in a similar manner.

For Case-I i.e., minx∈Ω [
fNL
i (x)

fDU
i (x)

,
fNU
i (x)

fDL
i (x)

] the optimal objective value must

remain in interval form as the objective function fi(x) is interval-valued. How-
ever the following real-valued fractional programming problems can be consid-
ered to obtain the pareto optimal solutions for Case-I problem as we have a
minimization problem.

• minx∈Ω
fNL
i (x)

fDU
i (x)

(Best-case problem).

• minx∈Ω
fNU
i (x)

fDL
i (x)

(Worst-case problem).

• minx∈Ω f
ND
i (x) where

fNL
i (x)

fDU
i (x)

≤ fNDi (x) ≤ fNU
i (x)

fDL
i (x)

(Other-case problem).

Particularly, minx∈Ω
fNL
i (x)

fDL
i (x)

and minx∈Ω
fNU
i (x)

fDU
i (x)

belong to the class of Other-

case problem, solving which the optimal objective values can be obtained in
between the range of its best and worst values. Each case problem generates
pareto optimal solutions but the theoretical explanation to compute the pareto
optimal solutions by the proposed method is presented for the Worst-case prob-
lem.

6.2 Constraints

Proposition. Let (x1, x2, . . . , xn) be a feasible point of Problem P and λj ∈
[aLmj , a

U
mj ], j = 1, 2, . . . , n then the following results hold true.

• If λ1x1+λ2x2+ · · ·+λnxn ≤ bm then aLm1x1+aLm2x2+ · · ·+aLmnxn ≤ bm.

• If λ1x1+λ2x2+ · · ·+λnxn ≥ bm then aUm1x1+aUm2x2+ · · ·+aUmnxn ≥ bm.

Using the above proposition, the constraints of Problem P can be stated
as:

∑n
j=1 a

L
tjxj ≤ bt, t = 1, 2, . . . ,m. This reduction of constraints can be

used for computing each (Best, Worst and Other)-case problm of the objective
functions. If bt is considered as an interval [bLt , b

U
t ] then both sides of each

constraint of Problem P exist in form of intervals. As [bLt , b
U
t ] is considered

Math. Model. Anal., 20(3):329–345, 2015.
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the range for existence of the interval
∑n
j=1[aLtj , a

U
tj ]xj , the constraints can be

stated as
∑n
j=1[aLtj , a

U
tj ]xj ⊆ [bLt , b

U
t ] which can be further splitted into the

following two constraints [22]:

n∑
j=1

aLtjxj ≥ bLt and

n∑
j=1

aUtjxj ≤ bUt .

6.3 Solution procedure by the proposed method

Thus, the Problem P is transformed into Problem P∗ using aforementioned
objective assumptions and constraint rules.

Problem P∗.

Min fi(x) =

∑n
j=1 c

U
ijxj + αUi∑n

j=1 d
L
ijxj + βLi

, i = 1, 2, . . . , k

subject to
n∑
j=1

aLtjxj ≤ bt, t = 1, 2, . . . ,m and xj ≥ 0.

A sequence of pareto optimal solutions of Problem P∗ can be generated
using relative minimum and maximum of the functional values of each objective
function which can be evaluated through constructing the pay-off tables by
following the procedure described below.

Step 1.

Min fNi (x) =

n∑
j=1

cUijxj + αUi

subject to
n∑
j=1

aLtjxj ≤ bt, t = 1, 2, . . . ,m, xj ≥ 0.

Solve the above problem individually for each objective numerator function
fNi (x) with i = 1, 2 . . . k. Let XN∗

i be the optimal solutions of the above
problem.

Step 2.

Max fDi (x) =

n∑
j=1

dLijxj + βLi

subject to
n∑
j=1

aLtjxj ≤ bt, t = 1, 2, . . . ,m, xj ≥ 0.

Solve the above problem individually for each objective denominator function
fDi (x) with i = 1, 2, . . . , k. Let XD∗

i be the optimal solutions of the above
problem.
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Step 3. Construct the pay-off table for objective numerator functions. Find
fNLj = fNj (XN∗

j ) and fNUj = max{fNj (XN∗
i ) | i = 1, 2, . . . , k} for each objec-

tive numerator fNj (x), j = 1, 2 . . . k from the minimum and maximum values
of each column of the following pay-off Table 1.

Table 1. Pay-off table for numerator functions.

XN∗
i fN1 (XN∗

i ) fN2 (XN∗
i ) . . . fNk (XN∗

i )

XN∗
1 fN1 (XN∗

1 ) fN2 (XN∗
1 ) . . . fNk (XN∗

1 )

XN∗
2 fN1 (XN∗

2 ) fN2 (XN∗
2 ) . . . fNk (XN∗

2 )
...

...
...

...

XN∗
k fN1 (XN∗

k ) fN2 (XN∗
k ) . . . fNk (XN∗

k )

Step 4. Similarly construct another pay-off table for the denominator functions
to determine the relative minimum and maximum of each objective denomina-
tor fDj (x), j = 1, 2, . . . , k as:

• fDLj = min{fDj (XD∗
i ) | i = 1, 2, . . . , k}.

• fDUj = fDj (XD∗
j ).

Step 5. Since fNLi ≤ fNi (x) ≤ fNUi where fNi (x) ≤ fNUi holds true for x =
XN∗
j , j = 1, 2, . . . , k and fDLi ≤ fDi (x) ≤ fDUi where fDLi ≤ fDi (x) holds

true for x = XD∗
j , j = 1, 2, . . . , k, it can be considered as fi(x) =

fN
i (x)

fD
i (x)

∈
[fNL

i ,fNU
i ]

[fDL
i ,fDU

i ]
= [εLi , ε

U
i ]. The values of εLi and εUi can be determined using interval

arithmetic (defined in Section 2).

For each objective function fi(x), the value of εi is restricted as εLi ≤ εi ≤
εUi . If fs(x) is highest prioritized by the DM, using ε-constraint method, Prob-
lem P∗ is transformed into the following Problem P∗s.

Problem P∗s.

Min fs(x) =

∑n
j=1 c

U
sjxj + αUs∑n

j=1 d
L
sjxj + βLs

, s ∈ {1, 2, . . . , k}

subject to

fl(x) ≤ εl, l = 1, 2, . . . , s− 1, s+ 1, . . . , k and Ω.

For fl(x) ≤ εl, l = 1, 2, . . . , s− 1, s+ 1, . . . , k∑n
j=1 c

U
ljxj + αUl∑n

j=1 d
L
ljxj + βLl

≤ εl,

i.e.,
∑n
j=1(cUlj − εldLlj)xj ≤ (εlβ

L
l − αUl ).

Math. Model. Anal., 20(3):329–345, 2015.
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Using the above results, Problem P∗s can be reformulated in generalised
form as,

Min fs(x) =
cUs1x1 + cUs2x2 + · · ·+ cUsnxn + αUs
dLs1x1 + dLs2x2 + · · ·+ dLsnxn + βLs

subject to Ω,(
cUl1 − εldLl1

)
x1 +

(
cUl2 − εldLl2

)
x2 + · · ·+

(
cUln − εldLln

)
xn ≤

(
εlβ

L
l − αUl

)
.

Charnes and Cooper transformation technique
Consider the following optimization problem with fractional objective:

Optimize g(xi) =

∑n
i=1 d

′
ixi + γ′∑n

i=1 d
′′
i xi + γ′′

subject to Ω. (∗1)

Assuming 1∑n
i=1 d

′′
i xi+γ′′

= z and xiz = yi, the fractional objective is trans-

formed into non-fractional linear form with an additional variable i.e.,

optimize g(yi, z) =

n∑
i=1

d′iyi + γ′z (∗2)

subject to

n∑
j=i

d′′i yi + γ′′z = 1 and Ω.

If (y∗i , z
∗) is the optimal solution of problem (∗2) then x∗ = (x∗i ) = (

y∗i
z∗ ) is

considered as the optimal solution of problem (∗1).
Using the aforesaid transformation technique, reformulated Problem P∗s can

be stated as:

Problem P∗∗s .

Min fs(y, z) =

n∑
j=1

cUsjyj + αUs zs

subject to
n∑
j=1

dLsjyj + βLs zs = 1,

n∑
j=1

(
cUlj − εldLlj

)
yj ≤

(
εlβ

L
l − αUl

)
zs, l = 1, 2, . . . , s− 1, s+ 1, . . . , k,

aLtjyj ≤ btzs, t = 1, 2, . . . ,m, yj ≥ 0, zs > 0.

Changing the values of each εl in the interval [εLl , ε
U
l ] and substituting in the

constraints of the above Problem P∗∗s , we can generate a sequence of solutions
by using any suitable method. If (y∗1 , y

∗
2 , . . . , y

∗
n, z
∗
s ) be the optimal solutions

of the above problem then (
y∗1
z∗s
,
y∗2
z∗s
, . . . ,

y∗n
z∗s

) = (x∗1, x
∗
2, . . . , x

∗
n) are considered

as the optimal solutions of the Problem P∗s and pareto optimal(non-inferior)
solutions of the Problem P. Here ε-constraint method generates k number of
single objective LFPP i.e., Problem P∗s as ‘s’ varies in {1, 2, . . . , k}. From the
sequence of pareto optimal solutions the DM can choose the most preferred
optimal solution for the given multi-objective LFPP.
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6.4 Algorithm for solving MOLFPP

We adopt the following steps for solving MOLFPP with interval coefficients.

Step 1. Convert the given Problem P into Problem P∗.

Step 2. Determine [εLi , ε
U
i ] for each objective function fi(x) using the approach

described in our proposed technique.

Step 3. Choose the objective function fs(x) of highest priority and solve Prob-
lem P∗∗s by changing the value of εi in [εLi , ε

U
i ].

Step 4. Obtain a sequence of pareto optimal solutions and determine the most
preferred optimal solution.

Step 5. The objective function of highest priority is altered to obtain another
single objective LFPP and a new set of pareto optimal solutions can be gener-
ated using ε-constraint method.

7 Numerical Example

Let us consider the following bi-objective LFPP with interval coefficients of the
decision variables both in the objective and constraint functions.

Problem P.

Min f1(x) =
[−3,−2]x1 + [1, 3]x2 + [−1, 1]

[7, 8]x1 + [5, 7]x2 + [8, 9]
,

f2(x) =
[1, 3]x1 + [−3,−2]x2 + [1, 2]

[5, 6]x1 + [4, 7]x2 + [7, 9]

subject to

[2, 4]x1 + [3, 5]x2 ≤ 6, [1, 3]x1 + [−4, 1]x2 ≤ 3, x1, x2 ≥ 0.

Using the selection criteria of the proposed technique (as described in Sub-
section 6.1), it is observed that the objective functions f1(x) and f2(x) both
belong to Case-II category i.e.,

fi(x) =

[
fNLi (x)

fDLi (x)
,
fNUi (x)

fDUi (x)

]
, i = 1, 2.

For Problem P,

f1(x) =

[
−3x1 + x2 − 1

7x1 + 5x2 + 8
,
−2x1 + 3x2 + 1

8x1 + 7x2 + 9

]
,

f2(x) =

[
x1 − 3x2 + 1

5x1 + 4x2 + 7
,

3x1 − 2x2 + 2

6x1 + 7x2 + 9

]
.

So Problem P can be formulated into the following real model problems:

Best-case problem: min
x∈Ω

{
−3x1 + x2 − 1

7x1 + 5x2 + 8
,
x1 − 3x2 + 1

5x1 + 4x2 + 7

}
.
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Worst-case problem: min
x∈Ω

{
−2x1 + 3x2 + 1

8x1 + 7x2 + 9
,

3x1 − 2x2 + 2

6x1 + 7x2 + 9

}
.

Each case can be individually solved, however we solve a case

min
x∈Ω
{f

NU
1 (x)

fDL1 (x)
,
fNU2 (x)

fDL2 (x)
}

in between them to generate the pareto optimal solutions i.e., Problem P∗

which belongs to the category of Other-case problem as it is interpreted for
Case-I category in Subsection 6.1.

Problem P∗.

Min f1(x) =
fN1 (x)

fD1 (x)
=
−2x1 + 3x2 + 1

7x1 + 5x2 + 8
,

f2(x) =
fN2 (x)

fD2 (x)
=

3x1 − 2x2 + 2

5x1 + 4x2 + 7

subject to

Ω =


2x1 + 3x2 ≤ 6,

x1 − 4x2 ≤ 3,

x1, x2 ≥ 0.

Optimizing fN1 (x), fD1 (x), fN2 (x) and fD1 (x) individually subject to the con-
straints set Ω, the following results are obtained:

min fN1 (x) = −5 at XN∗
1 = (3, 0),

min fN2 (x) = −2 at XN∗
2 = (0, 2),

max fD1 (x) = 29 at XD∗
1 = (3, 0),

max fD2 (x) = 22 at XD∗
2 = (3, 0).

Constructing the pay-off table for both objective numerator and denomina-
tor functions as defined in our proposed technique, the relative minimum and
maximum values of the objectives are obtained, as

−5

29
=
fNL1

fDU1

≤ f1(x) ≤ fNU1

fDL1

=
7

29
,

−2

22
=
fNL2

fDU2

≤ f2(x) ≤ fNU2

fDL2

=
11

22
.

Thus, ε1 ∈ [εL1 , ε
U
1 ] = [−0.1724, 0.2414] and ε2 ∈ [εL2 , ε

U
2 ] = [−0.0909, 0.5].

The DM prioritizes best to either f1(x) or f2(x). Pareto optimal solutions
are generated for both the cases using ε-constraint method by mathematically
modelling them as Problem P∗1 and Problem P∗2.
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Problem P∗1. (The objective function f1(x) is prioritized best.)

Min f1(x) =
−2x1 + 3x2 + 1

7x1 + 5x2 + 8

subject to

Ω and f2(x) ≤ ε2.

Using transformation technique, it can be reformulated as:

Min f1(y) = −2y1 + 3y2 + z1

subject to

2y1 + 3y2 − 6z1 ≤ 0, y1 − 4y2 − 3z1 ≤ 0,

(3− 5ε2)y1 + (−2− 4ε2)y2 − (7ε2 − 2)z1 ≤ 0,

7y1 + 5y2 + 8z1 = 1, y1, y2, z1 ≥ 0.

If (y∗1 , y
∗
2 , z
∗
1) be the optimal solution of the above reformulated problem

then Problem P∗1 has optimal solution, x∗1 =
y∗1
z∗1

and x∗2 =
y∗2
z∗1

. Now substituting

different values of ε2 in reformulated form of Problem P∗1 such that −0.0909 ≤
ε2 ≤ 0.5, a sequence of solutions (x∗1, x

∗
2) can be obtained in Table 2 which are

considered as the pareto optimal solutions of Problem P.

Table 2. Solution of problem P∗
1.

ε2 y∗1 y∗2 z∗1 x∗1 x∗2 f∗1 = f1(x∗1, x
∗
2)

−0.0812 0.0093 0.1011 0.0537 0.1732 1.8827 0.3385

−0.0636 0.0133 0.0968 0.0528 0.2519 1.8334 0.3168

0.0069 0.0246 0.0847 0.0505 0.4871 1.6772 0.2555

0.0773 0.0366 0.0718 0.0481 0.7609 1.4927 0.1903

0.1830 0.0541 0.0530 0.0445 1.2157 1.1910 0.0953

0.2182 0.0598 0.0469 0.0434 1.3779 1.0806 0.0645

0.2887 0.0711 0.0348 0.0411 1.7299 0.8467 0.0033

0.3591 0.0821 0.0230 0.0388 2.1160 0.5928 −0.0564

0.3943 0.0875 0.0171 0.0377 2.3210 0.4536 −0.0860

0.4824 0.1008 0.0028 0.0350 2.8800 0.0800 −0.1583

Prioritizing best to f1(x) and comparing the obtained Table 2 values of
ε2 and f∗1 , it is observed that |ε2 − f∗1 | i.e., |f∗2 − f∗1 | is minimum at x∗ =
(1.2157, 1.1910) as compared to the other solutions. Since at this solution the
optimal objective values f∗1 and f∗2 remain in most compromised state i.e.,
at a shortest distance from each other, the most preferred optimal solution
is considered as x∗ = (1.2157, 1.1910) where the optimal objective values are
f1(x∗) = 0.0953 and f2(x∗) = 0.1830.
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Problem P∗2. (The objective function f2 is prioritized best.)

Min f2(x) =
3x1 − 2x2 + 2

5x1 + 4x2 + 7

subject to

Ω and f1(x) ≤ ε1.

Using transformation technique, Problem P∗2 can be reformulated as:

Min f2(y) = 3y1 − 2y2 + 2z2

subject to

2y1 + 3y2 − 6z2 ≤ 0, y1 − 4y2 − 3z2 ≤ 0,

(−2− 7ε1)y1 + (3− 5ε1)y2 − (8ε1 − 1)z2 ≤ 0,

5y1 + 4y2 + 7z2 = 1, y1, y2 ≥ 0, z2 > 0.

If (y∗1 , y
∗
2 , z
∗
2) be the optimal solution of the above reformulated Problem P∗2

then (x∗1, x
∗
2) = (

y∗1
z∗2
,
y∗2
z∗2

) is considered as the optimal solution of Problem P∗2.

Now substituting different values of ε1 in the reformulated Problem P∗2 such that
−0.1724 ≤ ε1 ≤ 0.2414, the following pareto optimal solutions of Problem P
can be obtained in Table-3.

Prioritizing best to f2(x) and comparing the values of ε1 and f∗2 from the
set of non-inferior solutions(in Table-3), the most preferred optimal solution
can be considered as x∗ = (0.9948, 1.3380) where the optimal objective values
are f1(x∗) = 0.1397 and f2(x∗) = 0.1332.

Table 3. Solution of Problem P∗
2.

ε1 y∗1 y∗2 z∗2 x∗1 x∗2 f∗2 = f2(x∗1, x
∗
2)

−0.1408 0.1280 0.0082 0.0468 2.7350 0.1752 0.4610

−0.1097 0.1198 0.0162 0.0480 2.4958 0.3375 0.4231

−0.0473 0.1037 0.0319 0.0505 2.0535 0.6317 0.3484

0.0150 0.0879 0.0473 0.0530 1.6585 0.8925 0.2752

0.0773 0.0725 0.0624 0.0554 1.3087 1.1264 0.2035

0.1397 0.0574 0.0772 0.0577 0.9948 1.3380 0.1332

0.2020 0.0426 0.0917 0.0600 0.7100 1.5283 0.0644

0.2130 0.0400 0.0942 0.0604 0.6623 1.5510 0.0526

0.2332 0.0353 0.0988 0.0612 0.5768 1.6144 0.0307

0.2401 0.0337 0.1004 0.0614 0.5488 1.6352 0.0232

Table-2 and Table-3 represent the set of non-inferior or pareto optimal solu-
tions of the given multi-objective LFPP from which the most preferred optimal
solution is ascertained by the DM assigning highest priority to only one objec-
tive function and accordingly optimal objective values are determined.
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7.1 Result by fuzzy programming

Our example stated as Problem P is formulated to Problem P∗ implementing
some propositions. Using the pay-off tables (both for numerator and denom-
inator objective functions) of our proposed technique, the values of relative
minimum and maximum of each objective function with respect to others are
ascertained as −0.1724 = L1 ≤ f1(x) ≤ U1 = 0.2414 and −0.0909 = L2 ≤
f2(x) ≤ U2 = 0.5. According to the algorithm of max-min operator in fuzzy
programming (defined in Section 5) the following crisp model obtained from
Problem P∗ is to be solved.

Max λ

subject to

fi(x) + (Ui − Li)λ ≤ Ui, (i = 1, 2) and Ω.

Substituting the values and on simplifying, it can be reformulated as:

Max λ

subject to

− 3.6898x1 + 1.793x2 + 0.438λ(7x1 + 5x2 + 8) ≤ 0.9312,

0.5x1 − 4x2 + 0.5909λ(5x1 + 4x2 + 7) ≤ 1.5,

2x1 + 3x2 ≤ 6, x1 − 4x2 ≤ 3,

λ > 0, x1, x2 ≥ 0.

The fuzzy optimal solution is obtained as λ = 0.4435, x1 = 1.4740 and x2 =
1.0170. Thus considering the example (converted to problem P∗), the optimal
solution obtained by fuzzy programming is x∗ = (x∗1, x

∗
2) = (1.4740, 1.0170)

where the optimal objective values are f1(x∗) = 0.0471 and f2(x∗) = 0.2380.

7.2 Remarks

In the example defined as Problem P, our method provides the most preferred
optimal solution (Table-2) by changing the values of ε2 in the constraints
as x∗ = (1.2157, 1.1910) and the corresponding optimal objective values are
(f∗1 , f

∗
2 ) = (0.0953, 0.1830). Changing the values of ε1 in the constraints, the

most preferred optimal solution is considered as x∗ = (0.9948, 1.3380) (Table-3)
and the corresponding optimal objective values are (f∗1 , f

∗
2 ) = (0.1397, 0.1332).

But using fuzzy programming(max-min operator) method the optimal solution
is obtained as x∗ = (1.4740, 1.0170) and the corresponding optimal objective
values are (f∗1 , f

∗
2 ) = (0.0471, 0.2380).

Comparing the optimal objective values, it is clear that our method has
several better options to choose the optimal solution and also the optimal
objective values exist in more compromising state that reduces the feasibility of
conflict among the objectives whereas fuzzy programming gives single optimal
solution so that the DM has no choice to choose. So our method may be
considered as helpful to determine the most preferred optimal solution of a
MOLFPP.
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8 Conclusions

In this paper, ε-constraint method is applied to generate a number of pareto
optimal solutions of the multi-objective LFPP with interval coefficients both
in the obective and constraint functions. As a result, several choices are avail-
able to select the most preferred optimal solution in order to satisfy all the
objectives with own desired level of satisfation as all the objectives can not be
fully satisfied at single solution. MATLAB programming language has been
used to obtain the computational results presented in the aforementioned ex-
ample. The proposed method generates set of optimal solutions which have
been compared with that of fuzzy technique in the illustrated example. The
pareto optimal solutions obtained by our method can be approximated with
the solution due to fuzzy by adjusting the value of εi in the constraints. Our
method gives some other better solutions than fuzzy approach so that the DM
has several options to choose the best one according to own desire on prefer-
ence basis. As a few methods are available in literature to solve such type of
problems, our proposed method is expected to assist in this regard.
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