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ABSTRACT

In papers ����
 there were consider di�erent assumptions for averaging methods along the
vertical coordinate�These methods were applied for the mathematical simulation of the
mass transfer process in multilayered underground systems� A speci�c feature of these
problems is that it is necessity to solve the ��D initial�boundary�value problems for
parabolic type partial di�erential equations of second order with piece�wise parameters in
multilayer domain�Therefore here an e�ective �nite�di�erence method for solving a
problem of the above type is developed�This method may be considered as a
generalization of the method of �nite volumes ��
 for the layered systems� In the case of
constant piece�wise coe�cients we obtain the exact discrete approximation of steady�state
��D boundary�value problem�This procedure allows to reduce the ��D problem to a system
of ��D problems and the ��D problem to a system of ��D problems�

�� FORMULATION OF PROBLEM

The process of �ltration we will consider in ��D domain of parallelepiped
D � f�x� y� z� � �x� y� � �� H� � z � HNg� where � � f�x� y� � �lx � x �
lx��ly � y � lyg is rectangle in the horizontal x� y directions with length of
edges 	lx� 	ly 
 HN �H� is the height of domain in the vertical z � direction�
The domain D consist of multilauer medium of N layers �cylinders�

Dk � f�x� y� z� � �x� y� � �� Hk�� � z � Hkg k � �� N� ���

with horizontal interfaces

Sk � f�x� y�Hk� � �x� y� � �g k � �� N � �� �	�
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where Hk�Hk�� is the height of layer Dk� We will to �nd the distribution of
physical magnitudes uk � uk�x� y� z� t� in every layerDk at the point �x� y� z� �
Dk and time t � � by solving the partial di�erential equation in the following
form �	�

���k�uk��z���z � Lk�uk� � �Fk�x� y� z� t� k � �� N� ���

where Fk is continuously di�erentiable function of external sources in every
layer Dk�The physical parameters �k of heat conductivity
 di�usion coe��
cients or coe�cients of �ltration and the di�erential operator Lk are depends
only of x
y
t ��k � ��� We assume that the function �k and the coe�cients of
di�erential operator are piece�wise constants functions of the vertical coordi�
nate z with discontinuity on the surface Sk� The operator Lk we can consider
in the form

Lk�uk� � ���k�uk��x���x� ���k�uk��y���y
� dk�uk��t� ak�uk��x� bk�uk��y � ckuk k � �� N�

���

where an example wk � �ak� bk� is the velocity of �ltering for the �ow of
the underground water in layer Dk
 dk� ck mass transfer coe�cients�dk � ���
The equations��
�� are considered in every layer Dk of di�erent properties of
medium�The physical magnitude uk and the �ux �k�uk��z must be continu�
ous on the interior boundary� Therefore we have on the Sk following continuity
conditions

uk � uk��� �k�uk��z � �k���uk����z� k � �� N � �� �
�

We assume that the whole N�layered system is bounded above and below with
the plane surfaces S�� SN �	��The boundary conditions on the S�� SNmay be
written corresponding as

�����u���z � ��u� � ������x� y� t�� ���

���N�uN��z � �NuN � �N���x� y� t�� ���

where �x� y� � �� t � �

�� � � or �� � � for the corresponding Dirichlet boundary conditons� u� � ��

or uN � ���
�� � � or �� � � for the corresponding Neumann ��� � � or �N � �� or
general form of boundary conditions�
�� � �� �N � �
 ����� are given continuosly di�erentiable functions� The
equations��
�� with conditions �
��� along the z�coordinate has been solved
in a domain D with di�erent boundary conditions in the x� y directions at
x � �lx� y � �ly and with initial condition at t � � in the case of time
depending problem�The form of this conditions are not assential for obtaining



�� H� Kalis

the numerical algorithm�

�� FINITE VOLUMES METHOD

The approximation of di�erential problem is based on the conservation law
approch�Therefore it develops the monotonous di�erence scheme using a phys�
ical conservation law� This method is based of the application of the method of
�nite volumes ���� We consider the nonuniform grid in the z�direction placed
on the interval �H�� HN � with blocks centered at the grid points zj � j �
��M� M � N �z� � H�� zM � HN �� We shall refer to the endpoints
of the interval about the point zj as zj�����This interval �zj����� zj����� is
refered to as the control volume associated with the grid point zj �the j�
th cell�� The grid contain the z�coordinates Hk of surfaces Sk
 k � �� N
and in addition some grid points in layers Dk� k � �� N when this is nec�
essary for demonstrating the behaviour of discrete solution in this layers�
To derive a di�erence equation associated with the j�th grid point zj we
integrate di�erential equation ��� to the j�th cell�We de�ne the functions
Gk � ��Fk � Lk�uk��� W � ��u��z� Wj����

and the integrals Bj � ��j�
��

R zj
zj��

dz
R z
zj����

Gjd	�

where Wj���� �W jz�zj���� � hj � zj � zj��� zj���� � �zj � zj����	�
We shall consider corresponding from central grid point zj � cases for the ap�
plying the �nite volumes method� zj � Sk� k � �� N � � � zj � Dk� k � �� N
� zj � S� if �� � � and zj � SN if �� � ��
���� Let zj � Hk � Sk is the central grid point and zj��� zj�� are the others
grid points� We integrate the equation ��� from zj���� to zj and zj to zj�����
We get

Wj���� �Wj���� �

Z zj

zj����

Gjdz �

Z zj����

zj

Gj��dz� ���

where W jzj���W jzj���
This is the integral form of the conservation law to the interval �zj����� zj������
In the classical formulation for �nite volumes method ��� it is assumed that
the �ux termsWj���� in ��� are approximated with the di�erence expressions�
Then the corresponding di�erence scheme is not exact for given functions Gj �
Here we have the possibility to make the exact di�erence scheme� Therefore
we integrate equation ��� from zj���� to z � �zj��� zj�� divid this expres�
sion by �k and integrating from zj�� to zj � We obtain uk�zj� � uk�zj��� �
�Aj�

��Wj���� � Bj � where Aj � �k�hj and uk�zj�� uk�zj��� represents the
value of function uk at zj � zj��� Hence

Wj���� � Aj�uk�zj�� uk�zj�����AjBj � ���
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Similarly the �ux term

Wj���� � Aj���uk���zj���� uk���zj�� �Aj��Bj��� ����

where Aj�� � �k���hj�� and uk���zj�� uk���zj��� are the value of function
uk�� at zj � zj��� To derive a ��point di�erence equation associated with the
central grid point zj � Hk we want to apply equation ��� in the form

Aj���uk���zj���� uk���zj���Aj�uk�zj�� uk�zj���� � Rj � ����

where Rj � R�

j �R�

j � R
�

j � �hj�
��

R zj
zj��

�z � zj���Gjdz�

R�

j � �hj���
��

R zj��
zj

�zj�� � z�Gj��dz�

����If zj � Dk� hj � hj�� 
 then di�erence equation ���� associated with point
zj has the form

�
�z�uk�j � h��j Rj � ��	�

where 
�z�v�j � �vj�� � 	vj � vj����h
�
j denotes a central di�erence expression

of second order for approximation the derivative ��v��z� at the central grid
point zj �
���� Let zj � z� � H� � S� and �� � �� We apply the integral form of the
conservation law to the half interval �z�� z���� marked o� to the right of the
boundary point z�� We get

A��u��z��� u��z���� ���u��z������ � R�� ����

where A� � ���h� and u��z��� u��z�� represents the value of function u� at
z�� z�
 R� � �h��

��
R z�
z�
�z� � z�G�dz�

���� If zj � HN � SN � �� � �� then similarly in advance we obtain

��N �uN �HN ������AN �uN �HN �� uN�zj���� � RN � ����

where AN � �N�hN and uN�zj��� represent the value of function uN at zj��


RN � �hN �
��

R HN

zj��
�z � zj���GNdz�

We see that the di�erence equations ������� are exact approximations for
solving steady�state ��D boundary � value problem ���
�
 � �� depending only
of z� �Lk�uk� � �� lx � ly ��� ck � ���

�� ONE�DIMENSIONAL EXACT DIFFERENCE SCHEME

Suppose that Lk�uk� � �� uk � uk�z�� Fk � Fk�z�� �k� ��� �� are constants
and the grid points are zk � Hk� k � �� N� If vj � uj�zj� is the value of
function uj at the grid point zj � j � �� N 
 then
evaluating the integral Rj in
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the right side of �������
 one obtains exact ��D steady�state di�erence scheme
��� � �� � ��

Aj���vj�� � vj��Aj�vj � vj��� � Rj � j � �� N� ��
�

where A� � �� � �� AN�� � �N � �� v�� � ��� vN�� � ��� Aj � �j�hj �
�� j � �� N� Therefore
 the di�erence scheme ��
� is monotone and has an
unique solution ���� We can to consider in addition the new grid points or in�
terpolating points for approximationof functions uk in layersDk�In the case of
uniform grid we use the di�erence equations ��	� �The �nite�di�erence scheme
��
� can be solving by factorisation method for tri�diagonal matrix �Thomas
algorithm �����

�� SOLUTION OF ONE�DIMENSIONAL PROBLEM

We can solve the di�erence scheme ��
� also in a more simplest form� For this
purpose from the �rst equation ��
� we conclude that A��v� � v��� ��� �v� �
��� � ��� ����

��R�� where �
�

� �
�� � ����

�� � A��

� is the inverse value of the
interaction coe�cient of the two layers in directe direction� Further more
 from
the second equations ��
� follows A��v� � v���A��v� � v�� � R�� Therefore
A��v� � v��� ��� �v� ���� � ��� R

�

� � where R
�

� � R���
�

� �R����� Hence

Am���vm�� � vm�� ��m�vm ���� � ��mR
�
m� ����

where

���m�
�� � ���m���

�� �A��
m � ����

�� �A��

� � � � ��A��
m �

R�
m � Rm��

�
m �R�

m����
�

m�� � R���� �R���
�

� � � � ��Rm��
�
m

m � �� N � ��

From the last equation ��
� and from ���� for m � N � � follows ��N��
��� �

vN���� ��N��
�vN�� ���� � R�

N��
and

vN�� �
��N��

�� � ��N��
�� �R�

N��

��N��
� ��N��

� ����

where R�

N��
� R�

N��
��N��

���N��
��N �

��RN � Similarly can be obtained vN �

��N�����N���R�

N����N ���N �� where R
�

N � RN ���NR
�

N��
� For Dirichlet

boundary condition � �� � � or �� � � � we can take �� � � or �N � �
�v� � �� or vN � ����
We can also consider the opposite direction� Then similary ���� follows

��N�n��� � vN�n��AN�n�vN�n � vN�n��� � R�

N�n�
�

N�n� ����
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where ���N�n�
�� � ��N �

�� � �AN �
�� � � � �� �AN�n���

���

R�

N�n � RN�n��
�

N�n �RN�n����
�

N�n�� � � � ��RN��N �
From the �rst equation ��
� and from ���� by n � N � � follows
��� ��� � v���A��v� � v�� � ��� ����

��R� and

v� �
��� �� � ��� �� �R�

�

��� � ���
� ����

where R�

� � R�

� �
�

� � ��� ����
��R�� The value of v� can be obtained in the

form v� � ���� �� � ���� �R�

� ����
�

� � ���� where R
�

� � R� �R�

� �
�

� � �From
the expression ����
���� by m � k � � and n � N � k follows ��k ��� � vk� �
Ak�vk � vk��� � ��k R

�

k�� and

vk �
��k �� � ��k �� �R�

k

��k � ��k
� �	��

where R�

k � R�

k �
�

k � ��k R
�

k��� k � �� N � ��

We can consider in addition for example the grid point zi with steps h�i � h
�

i

between the nearests grid points zi � h�i � Then we have also the terms in the
corresponding summ
���k �

�� � ����
�� �A��

� � � � �� h�i ��
�

i � h�i ��
�

i � � ��A��

k �
���k �

�� � ��N �
�� �A��

N � � � �� h�i ��
�

i � h�i ��
�

i � � ��A��

k���

R�

k � R���� �R���
�

� � � � ��Ri��
�

i � � � ��Rk��
�

k �
R�

k � RN��N � � � ��Ri��
�

i � � � ��Rk��
�

k �
where ��i � �

�

i are the corresponding parameters of layers�

�� DISCRETE APPROXIMATION OF FIRST AND SECOND

ORDER

If Lk�uk� �� � and the functions �� Fk ������ are depends of others variable

then the di�erence scheme ��
� is not exact � this is the case of 	�D or ��D
problems with lx �� �� ly �� � � � In this cases is the accuracy of order
O�hx � hy � hz� or O�h

�
x � h�y � h�z�
where hx� hy� hz are the steps of uniform

grid in the corresponding directions� We consider di�erent approximations
for right side function Rj in equations ��������
���� To approximate Rj of ���� on the nonuniform we consider the following
Taylor series expansions of function Gk �
Gk�z� � Gk�zj� � �z � zj�G

�

k�zj� � O�z � zj�
�� z � �zj��� zj�

Gk���z� � Gk���zj� � �z � zj�G
�
k���zj� �O�z � zj�

�� z � �zj � zj���
where G�

k � �Gk��z� zj � Hk�
Then Rj �

�

�
�Gk���zj�hj���Gk�zj�hj��

�

�
�G�

k���zj�h
�
j���G

�

k�zj�h
�
j � �O�h

���
where h � max�hj � hj���� � � zj � HN � Since G�

k�� � �Gk���zj��� �
Gk���zj���hj�� �O�hj����
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G�

k � �Gk�zj� � Gk�zj�����hj � O�hj� the expression can to obtain in the
form

Rj �
hj��
�

�Gk���zj����	Gk���zj���
hj
�
�Gk�zj����	Gk�zj���O�h

��� �	��

With hj � hj�� in the case of uniform grid the expression for Rj can be
rewritten in the form

Rj � ��G��jhj �
�

�
�G��jh

�
j �O�h�j �� �		�

where ��G��j � �Gk���zj� �Gk�zj���	 is the averaged value of G�
�G��j � G�

k���zj��G�

k�zj�� is the jump of G� at the point zj �
In this case �zj � Hk� �

��G��j � ����F ��jhj � ��������uk��x���x� ��������uk��y���y
� ��d���uk��t� ��a���uk��x� ��b���uk��y � ��c��uk�

�	��

where
��F ��j � �hj�

��
R zj
zj��

�z � zj���Fjdz � �hj���
��

R zj��
zj

�zj�� � z�Fj��dz�

The expressions �	�
		� approximates Rj to the second order in hj �
���� From ���� evaluating R� we se 
 using a Taylor series expansion
 that
G��z� � G��z�� � �z � z��G

�
��z�� �O�z � z��

�� z � �z�� z���
So R� � ��
�G��z��h� � �G�

��z��h
�
��� �O�h��� or

R� �
h�
�
�G��z�� � 	G��z��� �O�h���� �	��

The expressions �	�� approximate R� to the second order in h��
���� Similarly from ����
 evaluating RN we can show that
RN � ��
�GN �HN �hN � �G�

N �HN �h
�
N�� �O�h�N �� or

RN �
hN
�
�GN �zj��� � 	GN �HN �� �O�h�N �� �	
�

The second order of accuracy in x� y directions can be obtain by the cen�
tral di�erence approximation for derivatives in the expressions �	� � 	
�� If
ak �� �� bk �� � then the monotonous di�erence schemes can be consider ����

�� SOME EXAMPLES

In the following examples we discuss the applications the �nite� di�erence
scheme ��
��
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���� We assume that the boundary�value problem of mathematical physics
��� � ��� for the two�layered system �N � 	 � is steady�state �ck � �� with the
boundary conditions at the side x � �lk� y � �ly�
�uk��x � �uk��y � �� Let H� � �� H� � ��H� � �� �� � �� �� � ��
�� � �� � �� F� � ����� F� � ���� � �� � �� Then from ��
� follows
the system of two equations
���

���v� � v��� ��v� � R�� ������ ����v� � ���
���v� � v�� � R��

where R� � ���
R �
�
��� z���dz � ���

R �
�
z��dz � ��
�

We obtain the exact values of solution at the � grid points z� � �� z� � �� z� �
� in the form
v� � ���� ���� � ��
�����p� v� � ��
��� ������� 	����p� v� � ��
where p � ������� �� � ����� � �����
��� We consider the 	�dimensional steady �state process with conditions
�uk��x jx��lx� �� uk � uk�y� z�� bk � ck � �� Fk � Fk�y� z�� �k � const
and of uniform grid in the y direction with points yi � �ly � ihy� i �
�� 	Ny�hyNy � ly�� Since the functions �k� Fk������ are continously di�er�
entiable in the x� y� t directions the continuity condition �
� can to derivate
with respect to x� y� t one or more time�Then from ��
�
 �	��	
� follows the
�nite�di�erence scheme
����h

��

� �vi�� � vi���� ��h
��

� �vi�� � ����i� � ������	
�h������


�
y�v��i � �F �

� �i i � �� 	Ny � ��

�zvi�j ��yvi�j � ��F �
j �i� j � �� N � �� i � �� 	Ny � ��

�Nh
��

j �����i � vi�N �� ���Nh
��

N �vi�N � vi�N���

�����N�	 � hN�����

�
y�vN �i � �F �

N �i� i � �� 	Ny � ��
where
vi�j � uj�yi� zj�� �p�i � p jy�yi � 


�
y�p�i � ��p�i�� � 	�p�i � �p�i����h

�
y� p �

Fj � vj � ��� ��� �F
�
� �i � �����h�


�
y����i��� �F��i�	� h��F

�
��i����

�F �
N �i � ����NhN


�
y����i��� �FN �i�	 � hN �F

�
N �i����

�F �
j �i � ��Fj�ihj � �Fj���ihj�����	�hj��

�zvi�j � ��hj�
����j���hj���vi�j�� � vi�j�� �j�hj�vi�j � vi�j�����

�yvi�j � ��jhj � �j��hj�����	�hj�

�
y�vj�i�

�hj � ��
�hj � hj���� F �
j � �Fj��z jz�zj �
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