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ABSTRACT

In papers [1,2] there were consider different assumptions for averaging methods along the
vertical coordinate.These methods were applied for the mathematical simulation of the
mass transfer process in multilayered underground systems. A specific feature of these
problems is that it is necessity to solve the 3-D initial-boundary-value problems for
parabolic type partial differential equations of second order with piece-wise parameters in
multilayer domain.Therefore here an effective finite-difference method for solving a
problem of the above type is developed.This method may be considered as a
generalization of the method of finite volumes [3] for the layered systems. In the case of
constant piece-wise coefficients we obtain the exact discrete approximation of steady-state
1-D boundary-value problem.This procedure allows to reduce the 3-D problem to a system
of 2-D problems and the 2-D problem to a system of 1-D problems.

1. FORMULATION OF PROBLEM

The process of filtration we will consider in 3-D domain of parallelepiped
D = {(z,y,2) : (z,y) € Q,Hy < z < Hy}, where Q = {(z,y) : =1, <z <
lo,—l, <y <,} is rectangle in the horizontal z,y directions with length of

edges 2[,,2l, , Hy — Hp is the height of domain in the vertical z - direction.
The domain D consist of multilauer medium of N layers (cylinders)

Dy ={(z,y,2) : (v,y) € Q, H—1 <2< Hy} k=1N, (1)
with horizontal interfaces

Sk = {(may)Hk) : (may) € Q} k= ]-)N - ]-> (2)
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where Hy, — Hy,_1 is the height of layer Dy,. We will to find the distribution of
physical magnitudes ug, = ug(z,y, z,t) in every layer Dy, at the point (z,y,2) €
Dy, and time t > 0 by solving the partial differential equation in the following
form [2]

O(AOu/02)/0z + Li(ug) = —Fi(z,y,2,t) k=1,N, (3)

where F}, is continuously differentiable function of external sources in every
layer Dy.The physical parameters A of heat conductivity, diffusion coeffi-
cients or coefficients of filtration and the differential operator L are depends
only of x,y,t (A > 0). We assume that the function A, and the coefficients of
differential operator are piece-wise constants functions of the vertical coordi-
nate z with discontinuity on the surface Sj. The operator L; we can consider
in the form

Li(ur) = 0(AxOuy /Ox) [0z + O( Ak Ouy /Dy) /Dy (4)
- dkauk/c’)t - akauk/ax - bkauk/c‘)y — CrUg k= ]., N,

where an example wy = (ag,br) is the velocity of filtering for the flow of
the underground water in layer Dy, dj, ¢, mass transfer coefficients(dy > 0).
The equations(3,4) are considered in every layer Dy of different properties of
medium.The physical magnitude u; and the flux ApOuy/0z must be continu-
ous on the interior boundary. Therefore we have on the Sy following continuity
conditions

Uk = Uk+1, Akauk/c’)z = /\k+16uk+1/az, k= ].,N — 1. (5)

We assume that the whole N-layered system is bounded above and below with
the plane surfaces Sy, Sy (2).The boundary conditions on the Sy, Symay be
written corresponding as

Vo/\lc’)ul/az — Qoul = —a0<1>0(a:,y,t), (6)

I/1>\N8’U/N/82'+OZNUN:aN(I)l(mayat)a (7)

where (z,y) € Q,t >0,

vy = 0 or v; = 0 for the corresponding Dirichlet boundary conditons: u; = ®q
or uy = ®q;

vg = 1 or v = 1 for the corresponding Neumann (ag = 0 or ay = 0) or
general form of boundary conditions;

ag > 0,ay > 0, ®g,P; are given continuosly differentiable functions. The
equations(3,4) with conditions (5-7) along the z-coordinate has been solved
in a domain D with different boundary conditions in the z,y directions at
x = *£l;;y = *l, and with initial condition at ¢ = 0 in the case of time
depending problem.The form of this conditions are not assential for obtaining
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the numerical algorithm.

2. FINITE VOLUMES METHOD

The approximation of differential problem is based on the conservation law
approch.Therefore it develops the monotonous difference scheme using a phys-
ical conservation law. This method is based of the application of the method of
finite volumes [3]. We consider the nonuniform grid in the z-direction placed
on the interval (Hy, Hy) with blocks centered at the grid points z;, j =
1,M, M > N (z0 = Ho,zy = Hpy). We shall refer to the endpoints
of the interval about the point z; as z;j1+0.5.This interval (z;_0.5,%j+0.5) is
refered to as the control volume associated with the grid point z; (the j-
th cell). The grid contain the z-coordinates Hj of surfaces Sg, k = 0, N
and in addition some grid points in layers Dy, k = 1, N when this is nec-
essary for demonstrating the behaviour of discrete solution in this layers.
To derive a difference equation associated with the j-th grid point z; we
integrate differential equation (3) to the j-th cell. We define the functions
Gy, :—(Fk-FLk(uk)), W:)\Qu/az, . Witos

and the integrals B; = (\;)™" [ dz [0 Gjdg,

Zj

where Wjtos =W i=z0050  hy =25 —2j-1,  zjz0s = (2 + 2j+1)/2.

We shall consider corresponding from central grid point z; 4 cases for the ap-
plying the finite volumes method: z; € Sy, k=1,N —1; z; € Dy, k=1,N
i zj€Syifvy=1and z; € Sy if 1y = 1.

2.1. Let z; = Hj, € Sy is the central grid point and z;_1, zj4+1 are the others
grid points. We integrate the equation (3) from z;_¢.5 to z; and z; to zj40.5.
We get,

zj Zj40.5
Wj+0_5 — Wj_0_5 = / G]dZ +/ G]’_Hdz, (8)

Zj-0.5 zj

where W |.,_o=W |, to0-

This is the integral form of the conservation law to the interval (z;_0.5, 2j+0.5)-
In the classical formulation for finite volumes method [3] it is assumed that
the flux terms Wj4o.5 in (8) are approximated with the difference expressions.
Then the corresponding difference scheme is not exact for given functions G;.
Here we have the possibility to make the exact difference scheme. Therefore
we integrate equation (3) from zj_gs5 to z € (zj-1,%;), divid this expres-
sion by A and integrating from z;_1 to z;. We obtain ug(z;) — ur(zj—1) =
(A4;)"*W;_o5 + Bj, where A; = \;/h; and ug(z;),ux(zj_1) represents the
value of function uy at z;,2;_1. Hence

Wi o5 = Aj(ur(zj) —ur(zj-1)) — A;B;. (9)
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Similarly the flux term
Witos = Ajr1 (ukt1(2+1) — ukt1(25)) — Aj1 Bt (10)

where A1 = Apy1/hjr1 and wgy1(25), ug1(2541) are the value of function
Ug41 at 2j,2j41. To derive a 3-point difference equation associated with the
central grid point z; = Hj we want to apply equation (8) in the form

Ajir(urs1(zj41) — untr(25)) — Aj(un(zj) —u(zj—1)) = R;,  (11)

where R; = R; + R;, R; = (hj)_l fzj 1(2’ - Zj_l)doZ,

Zj—
B = (hisa) ™! [0 (21 — 2) G dz.
2.2.If z; € Dy, hj = hjq1 , then difference equation (11) associated with point
zj has the form

/\53(11416)] = h;le, (12)

where 07(v); = (vj41 — 2v; +v;_1)/h7 denotes a central difference expression
of second order for approximation the derivative 9*v/9z? at the central grid
point z;.

2.3. Let z; = 20 = Hy € Sy and vy = 1. We apply the integral form of the
conservation law to the half interval (zp, z0.5) marked off to the right of the
boundary point zy. We get

Ay (Ul(zl) - Ul(Zo)) - ao(ul(zo) - q’o) = Ry, (13)

where A; = A\;/hy and uq(20),u1(21) represents the value of function u; at
20,21, Ro = (h1)™! fzzol (21 — 2)G1dz.
2.4. If z; = Hy € Sy, v; = 1, then similarly in advance we obtain

—an(un(HN) — ®1) — An(un(HN) —un(zj-1)) = Rn, (14)

where Axy = Ay /hn and un(z;j—1) represent the value of function un at z;_1,
Ry = (hy)™! ffﬁ’ (z — zj—1)Gndz.

1
We see that the difference equations (11-14) are exact approximations for
solving steady-state 1-D boundary - value problem (3),(5 - 7) depending only

of z, (Lk(Uk) = Oalz = ly =00, C = 0)

3. ONE-DIMENSIONAL EXACT DIFFERENCE SCHEME

Suppose that Ly (ug) = 0,ur = ug(2), Fr = Fr(2), Ai;Po; ®1 are constants
and the grid points are zy = Hy,k = 0,N. If v; = wu;(z;) is the value of
function u; at the grid point z;,j = 0, IV, then,evaluating the integral R; in
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the right side of (11-14), one obtains exact 1-D steady-state difference scheme
(l/() =V = ].)

Aj1(vjpr —vj) — Aj(vj —vj—1) = R, j=0,N, (15)

where Ag = ag > O,AN+1 =ay > 0,v_1 = Py, UN4+1 = @1,Aj = /\j/hj >
0,5 = 1,N. Therefore, the difference scheme (15) is monotone and has an
unique solution [4]. We can to consider in addition the new grid points or in-
terpolating points for approximationof functions uy in layers Dy.In the case of
uniform grid we use the difference equations (12) .The finite-difference scheme
(15) can be solving by factorisation method for tri-diagonal matrix (Thomas
algorithm [3]).

4. SOLUTION OF ONE-DIMENSIONAL PROBLEM

We can solve the difference scheme (15) also in a more simplest form. For this
purpose from the first equation (15) we conclude that A;(vy —vp) — o (v1 —
@) = of (ag) ™' Ro, where o)~ = (ap)~" 4+ A]! is the inverse value of the
interaction coefficient of the two layers in directe direction. Further more, from
the second equations (15) follows As(vy — v1) — A1 (v1 — vo) = Ry. Therefore
Ay(vg —v1) — of (v — ®9) = af R, where R = Ry /o] + Ry/ap. Hence

Aerl (Um+1 - Um) - Cl;(’l)m - (I>U) = a;R$7 (16)
where

(ah) ™ =(ah )"+ A = () H AT -+ AL
RY =R /o, + Ry i/, = Rofag + Ri/ai + -+ Ru /o,
m=1,N — 1.

From the last equation (15) and from (16) for m = N — 1 follows ay_,(®1 —
UN_1) — a}fl(vN,l — ) = R]j\il and

- +
ay_1®1 +ay_ o — Ry_,
)

UN—-1 = (17)

= T
Qn_1+ay_y

where R]j\[,_1 = Rﬁ_la}_1+a§_1(aN)’1RN. Similarly can be obtained vy =
(an®; +ak® — RE)/(an +ak), where R = Ry +af R . For Dirichlet
boundary condition ( vg = 0 or v; = 0 ) we can take ag = 00 or any = 00
(’UO = (I)O or vy = (I)l).

We can also consider the opposite direction. Then similary (16) follows

aE_n((ﬁl - Uan) - Aan(Uan - Uanfl) = R&_na]:f_na (18)
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where (aE—n)il = (aN)il + (AN)71 e (AN7n+1)71)
R]:ffn = RN—n/alinn + RN—TH-l/a]:ffnJrl +o+ RN/O(N
From the first equation (15) and from (18) by n = N — 1 follows
Oéii_((l)o — ’1}1) — Ay (Ul — ’U()) = Oéii_(a())_lRO and

o — a; &1 +af & — R (19)
o) +af ’

where R = Ry a; + af (ap)~'Ro. The value of vy can be obtained in the
form vy = (ag ®1 + ap®o — RY)/(ag + ag), where RY = Ry + Ry ag . (From
the expression (16),(18) by m =k — 1 and n = N — k follows a; (®o — vg) +
A (v —vg—1) = aZ‘RZ‘_l and

~® +t®, — RE
Vi = ak L +7ak 3 k s (20)
Qy, +ak

where R = Ryap +of R |, k=1,N -1

We can consider in addition for example the grid point z; with steps hj', h;
between the nearests grid points z; + hli Then we have also the terms in the
corresponding summ

()" = (o)™ + A ey A BTN A

() = (an) P+ AR+ RN R IN -+ AL

Rf =Ro/ag+ Ri/af + -+ Ri/af + -+ R /o,

R]; = RN/CKN-I-----l-Ri/CKi_ +---+Rk/a;,

where A, /\i+ are the corresponding parameters of layers.

5. DISCRETE APPROXIMATION OF FIRST AND SECOND
ORDER

If Ly (ur) # 0 and the functions A, Fy,, ®o, ®; are depends of others variable,
then the difference scheme (15) is not exact ( this is the case of 2-D or 3-D
problems with I, # oo,l, # oo ) . In this cases is the accuracy of order
O(hy + hy + hz) or O(h3 + h2 4+ h%),where hy, hy, h. are the steps of uniform
grid in the corresponding directions. We consider different approximations
for right side function R; in equations (11-14).

5.1. To approximate R; of (11) on the nonuniform we consider the following
Taylor series expansions of function Gy, :

Gr(2) = Gr(z)) + (2 — 2))G(2;) + Oz — 25)%, 2 € (2j-1, %))

Gr1(2) = Grrr(z)) + (2 = 2))Glyq (25) + O(2 — 25)%, 2 € (25, 2j+1)

where G}, = 0G,/0z,z; = Hy,.

Then Rj = 5(Gry1(2)hjr1+Gr(2)) )+ ¢ (Glopr (2)) R34, =Gl (2)h3) +O(R?),
where h = maw(hj, hj_H),O < z; < Hpy. Since G;C+1 = (Gk—i-l (Zj-i-l) -
Grt1(25))/hjrr + O(hjsa),
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G, = (Gr(zj) — Gr(zj—1))/h; + O(h;) the expression can to obtain in the
form

Ry = “EL (G (5541)+ 2611 (20)) + 2 (Gl 1) +2G(2)+ O(49). (21)

With h; = hjy1 in the case of uniform grid the expression for R; can be
rewritten in the form

Ry = (G)jhs + 5[G13HE + O3, (22

where ((G)); = (Gr+1(2z5) + Gi(25))/2 is the averaged value of G
[G']; = Gly1(25) — Gl.(25)) is the jump of G’ at the point z;.
In this case (z; = Hy) :

(@) = ~[(F))h; + O((N)Oux/9x) [0z + O((A)Du/0y) [0y 9q
— ((d))Buy. /9t — ((a))Our [0z — ((b))Dur /Dy — ((¢))u]

where . .
(F); = (h))™" [ (2 = zj—) Fydz + (hja) ™" [ (2541 — 2) Fjadz.

1
The expressions (21,22) approximates R; to the second order in h;.
5.2. From (13) evaluating Rog we se , using a Taylor series expansion, that
G1(2) = G1(20) + (2 — 20)G} (20) + O(2 — 20)?, 2 € (20, 21)-
So R() = 05(G1(Zg)h1 + (Gll (Zo)h%/G + O(h?) or

Ry = %(Gl(zl) + 2G1(2’0)) + O(h?) (24)

The expressions (24) approximate Ry to the second order in h;.
5.3. Similarly from (14), evaluating Ry we can show that
Ry = 0.5(GN(HN)hN - (G'N(HN)h%V/G + O(h?\;), or

hn

RN:?

(GN(2zj—1) + 2GN(HN)) + O(hY). (25)

The second order of accuracy in x,y directions can be obtain by the cen-
tral difference approximation for derivatives in the expressions (21 - 25). If
ay, # 0,b;, # 0 then the monotonous difference schemes can be consider [4].

6. SOME EXAMPLES

In the following examples we discuss the applications the finite- difference
scheme (15).
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6.1. We assume that the boundary-value problem of mathematical physics
(3) - (7) for the two-layered system (N = 2) is steady-state (¢, = 0) with the
boundary conditions at the side x = xl,y = £l,:

a’U,k/aCIZ = a’U,k/ay = 0. Let H() = O,Hl = E,HQ = 1,1/0 = 1,1/1 = 0,

ap = ag = 1,F} = — L, F, = 0,8 = ® = 0. Then from (15) follows
the system of two equations
/\16’1(1;1 — ’Uo) — QgUg = R[), —>\2(1 — 6)711)1 — Aleil(’l)l — ’Uo) = Rl,

where Ry = ¢! [[(1 —z/€e)dz = ¢! [ z/edz = 0.5.

We obtain the exact values of solution at the 3 grid points zg = 0,21 = €,25 =
1 in the form

vo = ((1 —e)A1 +0.5eX2)/p, wv1 =0.5(e — 1)(ape + 2A\1)/p,v2 =0,

where p = apA (1 — €) + A2 (A + ape).

6.2 We consider the 2-dimensional steady -state process with conditions

Ou /0% |pet1,= 0, up = ug(y,2),bp, = cx = 0,F, = Fi(y,2), A\ = const
and of uniform grid in the y direction with points y; = —l, + ithy,i =
0,2Ny(hyN, = l,). Since the functions A, Fj, ®o, 1 are continously differ-
entiable in the z,y,t directions the continuity condition (5) can to derivate
with respect to z,y,t one or more time.Then from (15), (23-25) follows the
finite-difference scheme

V0>\1h;2(vi71 — ’Ui70) — aohfl(vi70 - (‘1)0)1) + 1/0()\1/2
+h10&0/6)(52(1)0)i = (F(;()l 1= 1,2Ny — 1;

szi,j+Ayvi,j = _(F;)ia J :17N_]-7i: 172Ny_1a
C“Nhj_l((q)l)i —viN) —ANAY (ViN — viN-1)
+V1(>\N/2+hN051/6)5§(UN)i = (F;{,)z, 1= 1,2Ny—1,
where

vij = uj(Yi;2), (P)i = P ly=yi, 03 (P)i = (P)i+1 — 2(p)i + (P)i-1)/h, p =
Fy3vj; ®o; @1, (Fy)i = vo(aohidy(®o)i/6 — (F1)i/2 — hi(F})i/6),

(F)i = vi(anhndy(®1)i/6 — (Fn)i/2 + hy(Fy)i/6),

(F7)i = ((F})ihj + (Fja)ihje1)/(2h;),

Azvig = ()7 Njwa [y (Vi — vig) = A/ hy (i — vij1)),

Aywij = (Nl + Njpahjen)/(2h5)05 ()i,

hj :O.S(hj+hj+1), F;:(?Fj/az|2:zj .
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