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ABSTRACT

This paper deals with a root condition for polynomial of the second order. We prove the
root criterion for such polynomial with complex coefficients. The criterion coincides with
well-known Hurwitz criterion in the case of real coefficients. We apply this root criterion
for several three-layer finite-difference schemes for Kuramoto-Tsuzuki equation. We
investigate polynomials for symmetrical and DuFort-Frankel finite-difference schemes and
polynomial for an odd-even scheme. We establish spectral (conditional or unconditional)
stability for these schemes.

A stability concept for discrete problems is of the most importance in the
numerical analysis. Since the stability and consistency imply convergence.
The von Neumann stability definition is used for problems with constant co-
efficients. It requires that all eigenvalues of the characteristic equation (or the
amplification matrix) be in the closed unit disc and the ones on the unit circle
be simple [13]. For finite-difference schemes we can get necessary stability con-
ditions from a spectral (von Neumann) stability analysis [1]. In particular,
von Neumann’s condition is necessary for stability in Ls. Often these nec-
essary conditions are sufficient conditions for linear finite-difference schemes
too. The definition of spectral stability appears when we investigate stability
of numerical integration methods (Runge-Kutta, multistep methods) for ordi-
nary differential equations [1; 5; 6; 7; 16] and partial differential equations [1;
15]. Thus, we built characteristic equations for various discrete problems and
investigate all roots of this equation (polynomial).
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1. ROOT CONDITION

Consider a complex polynomial
f(2) = Pu(2) = am2™ + am 12™ '+ + a1z +ag (1.1)
with coefficients a; € C where C is a set of complex numbers. If a,, # 0 then

such polynomial has m roots ¢; € C,i =1,...,m exactly.
Now we formulate the root condition [1; 16] for polynomial (1.1) (see Fig. 1).
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Figure 1. Root condition. Figure 2. Criterion for lin- Figure 3. Hurwitz’s crite-
ear polynomial(b # 0). rion.

DEFINITION 1.1. Polynomial P, satisfies the root condition if all roots of this
polynomial are in the closed unit disc of complex plane and those roots of
magnitude 1 are simple.

Usually we use two-level or three-level finite-difference schemes for non-
stationary partial differential equations [1; 15; 16] . In this case we get linear
polynomial P;(z) = bz+c or the second order polynomial P»(z) = az?+bz+c.
There are no problems with the linear equation because it has only one root
q (if b # 0). We must check the magnitude of this root. If it is less or equal
than 1 then polynomial satisfies the root condition. Thus, in this case we have
equality

A={(e,b) € C, gl <1} = {le| < |b], b # 0} (1.2)

and an obvious criterion for the linear polynomial. Therefore, to check the
root condition for this polynomial, we simply check whether both coefficients
b and ¢ belong to the root condition set A (see Fig. 2 with axes |c| and |b| in
the general case and axes ¢ and b in the real polynomial case). If b = 0 and
¢ # 0 then there are no roots. If b = 0 and ¢ = 0 then all ¢ € C are roots of
linear equation, i.e. linear polynomial does not satisfy the root condition.

In general case we have no such a simple criterion for polynomial (1.1). Let
us denote by p (p < n) the number of zeros of the polynomial f(z) which are
in the unit circle |z| = 1. One of the ways to determine p is to map the interior
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|z| < 1 of the unit circle into the left half of the complex plane Re z < 0. Then
the number of zeros may be found by using Hurwitz’s criterion [4; 8; 14] for

a new polynomial F(z) = 2™ + A;2""! + ...+ A, in this domain.

THEOREM 1.2. [Hurwitz’s criterion] If all the determinants

A1 A3 A5 e A2k,1
1 A2 A4 R AQk_Q
0 Al A3 R Agk_3
0 1 AQ R Agk_4
0 0 0 e Ag

fork=2,...,n with A; =0 for j > n are positive, then the polynomial F(2)
has zeros only with negative real parts.

A different way to determine p is to use theorems for unit circle, such as
Schur-Cohn criterion. Consider the polynomial (1.1).

THEOREM 1.3. [Schur-Cohn criterion] If for polynomial f(z) all the determi-
nants

ag 0 0 ... 0 Qn  Op—1 --- OGp_kt1
a ag 0 ... 0 0 Qn cer Qp_k42
| k-1 Af—2 Af—3 . ap 0 0 . (7%

Ay =| _ ~ ~
(479 0 0 . 0 ao a1 . Ar—1
Ap—1 ap 0 ... 0 0 Qg L. Qp—2
Gn—k+1 Opn—k+2 Qp_k43 ... Gp O 0 ... Qo

are different from zero, then f(z) has no zeros on the circle |z| = 1 and it

has p zeros inside this circle, p being the numbers of variations of sign in the
sequence 1, A1, ..., A,.

This criterion is due to Schur [17; 18] in the case A > 0 for all £ and

essentially to Cohn [3] in the general case.
Let us associate with f(z) the polynomial

() = 7 FAf) = a0 4w b an = a0 [[ (2 - )
j=1

whose zeros z; = 1/z are, relative to circle |z| = 1, the inverses of the zeros

z of f(2).
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Now we shall follow Morris Marden’s ” Geometry of Polynomials” [11]. For
f(z) and f*(z) we construct the sequence of polynomials f;(z) = >, _3 aij)zk,
where fo(z) = f(2) and

Thus,
oV =afa)) —al @l
The constant term a[()j ) in each polynomial f;(z) is a real number which we
denote by J; :
djp1 = la§ P = o ;P = o™, j=0,1,2,...,n—1.
As to the zeros of these polynomials, Cohn [3] has proved lemma which we
present in the compact form due to Marden [10]:

LEMMA 1.4. If f; has p; zeros interior to the unit circle C : |z| = 1 and if
6j+1 75 0, then fj+1 has

piv1 = (1/2)(n—j = ((n = j) = 2p;)signd;1)
zeros interior to C. Furthermore, fj11 has the same zeros on C as f;.
Marden [10; 11] has proved the following theorem:

THEOREM 1.5. For a given polynomial f(z) = ao + a1z + --- + a,2", let
the sequence fj11(z) be constructed. Then, if for some k < n,P, # 0 in
P, = 610y...0, kK =1,2,...,n, but fry1(2z) = 0, then f has n — k zeros
on or symmetric in the circle C : |z| = 1 at the zeros of fr(z). If p of the
Pj,j =1,2,...,k, are negative, then f has p additional zeros inside C and
q = k — p additional zeros outside C.

Returning back to the polynomials f(z) which do not have any zeros on the
circle |z| = 1, let us consider the case that, §1ds - - - 03 # 0 for some k < n, but
k+1 k k
Spir = alf ™ =12 = 1o 2 = 0.

In such a case the number p of zeros of f(z) in the unit circle C : |z| < 1 may
be found either by a limiting process or by modification of the sequence.
The limiting process may be chosen as one operating upon the circle C or

upon the coefficients of fi(z). That is, since fi(z) has no zeros on the circle
C, we may consider in place of f(z) the polynomial

Fi(2) = fi(rz)
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which, for » = 1 £ ¢ and ¢ is sufficiently small positive number, has as many
zeros in the circle |z| < 1 as fi(2) does.
A more direct procedure to cover the case of a vanishing 41 is to modify
the sequence. The modification applies even when f;,(z) has zeros for |z| = 1.
Observing that the first and the last coefficients in

fiz) = a a4 g a®) ek

are of the same magnitude, we find to be useful the following two theorems
due to Cohn [3].

THEOREM 1.6. If the coefficients of the polynomial g(z) = bo+by1z+- - -+byp 2™
satisfy the relations:

b, = ubo, b1 =ubi,... . by—gi1 = ubg_1, by # ub,
where ¢ < m/2 and |u| = 1, then g(z) has |z| < 1 as many zeros as the
polynomial

G1(2) = BoG(2) = BiuiqG*(2) = > B3,
7j=0
m+q . _
where G(z) = (27 + 2b/|b))g(z) = >_ Bjz?, b = (bpm—q — uby)/bm, and
j=0
185 < B3|
THEOREM 1.7. If g(2) = bg + b1z + -+ - + by, 2™ is a self-inversive polynomial,
i.e. if
bm :Uj)o, bm_1 :Uj)l,...,b() :’Uj)m, |U,| = 1,

then g has as many zeros on the disk |z| < 1 as the polynomial

[u

01(2) = g = 3 (m = oy’

j=0
has. That is, g and ¢' have the same number of zeros for |z| > 1.
2. HURWITZ’S CRITERION
We consider only the polynomials of the second order
az’> +bz+c=0, a,b,ce C, a #0. (2.1)

The case a = 0 deals with linear polynomial. If a # 0 then we put equation
(2.1) into the form with coefficient @ =1, b = b/a, é = ¢/a.
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If all the coefficients of the polynomial (2.1) are real numbers (a = 1, b € R,
¢ € R) then the well-known Hurwitz’s criterion holds: all (two) roots of real
polynomial of the second order are in the unit disk if it’s coefficients satisfy
the two inequalities

| <1, [b|<c+1. (2.2)

In this case the analysis of the spectral stability is not complicated because we
need to verify two simple inequalities. The set of the points (¢, b) satisfying
Hurwitz’s criterion make a triangle (see Fig. 3 and Fig. 4a). We notice that
the double root is on the unit circle, when ¢ = 1 and D = b> — 4¢ = 0,
i.e. |b] = 2. Then the root condition for real polynomial of the second order
becomes

A={lc|<1, b <c+1; b <2if c=1}. (2.3)

The inequalities (2.2) and (2.3) for coefficients of the polynomial are simple
enough and we can verify easily them for specific finite-difference schemes
even if coefficients b,¢c € R depending on different parameters of schemes
(h,T,0,etc.). In this paper we formulate conditions witch generalize Hurwitz’s
criterion (root condition) for the polynomial (2.1) with complex coefficients.

T, lal=1, lg,|=L T,
/‘ lq,|=1 lq,l=1 '\
4,=q, a=¢ 1
’/ﬁ 1~ 4, |\
Ty .2 Ty
4
la,l<1, laj<t, |/
~J lq,1<1 lq,l<1 /
7| ML) =i
[T;,T5]: q=-i,-ci.
T, T, i
R B=0i, beR

Figure 4. Roots in the case B=band B=1bi, be R, c€ R.

3. THE ROOT CONDITION FOR COMPLEX POLYNOMIAL OF
THE SECOND ORDER

Let the roots of the second order polynomial (2.1) be ¢; and ¢». We denote
the set of coefficients of this polynomial C = {(a,b, c) e C? a# 0} and
separate some subsets of this set in the following way:

40 = {(a,b,0) €C, |q|<1, g <1},
Al = {(aabac) € 67 |(I1| < 17 |l]2| = 1}7

A = {(a,b,0)€C, |q|l=lnl=1, ¢ #¢}
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The root condition holds if the coefficients of the polynomial belong to one
of these sets. Then a set A = Ag U A; U Ay is the root condition set. The
analysis of these sets using theorems for zeros in the unit circle from the
section 1(theorems 1.5, 1.6,1.7 and see [11]) implies:

Ay = {|c|2 +]ab — be| < |a|2},
Ay {|c|2 + |ab — be| = |al?, |c| < |a|},
Ay {le| = la|, @b = be, |b| < 2|a|}.

This result we formulate as the following theorem.
THEOREM 3.1. [The root condition] The roots of the second order polynomial
are in the closed unit disc of complex plane and those roots of magnitude 1

are simple if
A= {|c|2 + |ab — be| < |al?, |b] < 2lal}. (3.1)

COROLLARY 3.2. If a = 1 then the root condition reduces to
A={leP +b—bc| <1, [b] <2} (3.2)

Remark 3.3. Ifa=1,b=b € R, c= ¢ € R then equality (3.2) corresponds
to root condition (2.3) in Hurwitz’s criterion.

Proof. From (3.2) we get |¢| < 1.If ¢ =1 then |b] < 2. If —1 < ¢ < 1 then
b(1—c)=]b—bc|=|b—bc| <1—c®=(1+¢)(l—c),
and we get the similar condition to that in Hurwitz’s criterion: [b] < 1+4¢. O

In applied problems’ it is convenient to separate conditions |¢| = |a, |¢| < |a]
and to use the root conditions in the form A = (Ao U A1) U A, :

A={lc| < lal, |e]* +|ab—be| < |al*} U{|c| = |a|, ab=be, |b| < 2|al}. (3.3)
Remark 3.4. If we are interested in problem where double root may appear
on the unit circle then in the expressions (3.1), (3.3) strict inequality |b| < 2|a|
must be changed to the inequality |b| < 2|a|, because the double root (g1 = q2)

lies on the circle in the case coefficients belong to thee set
Ay ={lc| =1, ab=be, b =2[al}. (3.4)

The root criterion for circle |z| = R # 1 becomes

A ={|c|* + R|R*ab — bc| < R*|a|?, |b| < 2R|a|} (3.5)
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Figure 5. Functions b = ®5(c), 0 < 8 < 3.
or in the case a =1
A={|c]” + RIR*» — bc| < R*, |b| <2R}. (3.6)

Now we consider equation (2.1) when a = 1 in the form
w? + Bw+C =0 (3.7)

with B = bePl, C = cefl) 8,7 € [0,27), b,c € R. Such form of the complex
number Z = ze¥!, z € R, ¢ € [0, 7) with negative z is equivalent to standard
exponential form of complex number Z = |Z |e(“’+”)i. Thus, every complex
number Z = |Z|e¥}, € [0,27) we may write in such form.

If we put w = ze27! then equation (3.7) becomes

22+ belP2Miz 4o =0 (3.8)
which satisfies the root condition together with polynomial (3.7), because
|z| = |w|. Thus, we may consider only the case v = 0 not loosing generality.

If 3= %,v=0,ie B=bi, then the root condition is

A= {le| < 1,|pi+bic| <1—|c|*} U{le| =1,bi = —bic, |b] < 2}
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Figure 6. Criterion for C = ¢ and B = befi with b,c € R, 0 < 8 < .
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Figure 7. Criterion for R # 1.

or

A={le|<1p|<1-c}U{c=1b=0}U{c=—1,]b < 2}. (3.9)

Thus, in this case the points (¢, b) make a triangle (see Fig. 4b).

More complicated case we have for 3 € (0,5) U (§,7), v = 0. There the
condition B = BC' is equivalent to be’! = cbe™"1 i.e. b =0 for |¢| = 1. For
lc| < 1 we get |b] - |e%t — e B < 1—|¢|? or

1 _ 2
b < ®5(c) = 'c'

1+ P = 2ccos(28) (3.10)

Functions ®z(c) for various 8 are sophisticated (see Fig. 5). Thus, the points
(¢,b) determine different domains for 4 =0, =5 and0<3< 5,5 <8 <7
(see Fig. 6).

To draw the root criterion for R # 1 in the plane (¢, b) we must stretch the

domain of root condition R times along b-axis and R? times along c-axis (see
Fig. 7).
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4. THE ROOT CONDITION AND THREE-LAYER
FINITE-DIFFERENCE SCHEMES FOR
KURAMOTO-TSUZUKI EQUATIONS

We investigate spectral stability for the tree-layer finite-difference schemes for
Kuramoto-Tsuzuki equation [9; 12; 19]

Ou 0%u

5 = o k=a+0i#£0, a,0 € R. (4.1)

a) Symmetrical finite-difference scheme [15]:

. y il — 2Yi + Yio
= kA(0 + (1 —20)y + o), Ay; = 22 hya i (4.2)

y—y
2T

By spectral method for this scheme we get the polynomial
P(q) = (1 + 21)k0) g + 27Ak(1 — 20)q + (27 Ako — 1)
with A = 7% sin®(p/2). First of all we build expressions

la]> = |¢|> = 87ARe(ko), (4.3)
ab—bc = 47A(Rek — 2Re (ko) — 7A|&|*Imo i). (4.4)

If Re (ko) = 0 then |a| = |¢| and the root condition (3.3) implies the necessary
condition of the stability ab — bc = 0. Equality (4.4) shows that Rex = 0 and
Im o = 0 in this case. Thus, spectrally stable is the difference scheme for only
Schrédinger equation and only in the case of real o. Condition [b] < 2|a| is

equivalent to
[27A8(1 — 20)| < 24/1 + (27A\B0)?

which we put to the form

S 1 1 1
o> == =555
4 4 \27232

Hence, for o > i the symmetrical finite-difference scheme is unconditionally
stable. If o < i then we have conditional stability with the condition

T L1 (4.5)
h? " 4|8l V1 —4do

Remark 4.1. It is possible to establish non-strict inequality for the first type
problem.
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If Re (ko) > 0 then |¢| < |a| and necessary condition of the stability becomes
Rek — TA|k|*Im o i — 2Re (ko)| < 2Re (ko).

For all real numbers z, y, a (a > 0) the inequality |z —yi—a| < a is equivalent
to y2 < 2za — z2. Thus, we have condition

7 X\2|k[*(Im 0)? < 4Re (ko) - Rek — (Re k)?. (4.6)

Finite-difference scheme (4.2) isn’t stable when Rex < 0. If Rex = 8 =0
then from (4.6) we get the condition Imo = 0 which isn’t compatible with
condition Re (ko) = Re(Boi) > 0. If Rex > 0 then we get the following
necessary condition of stability 4Re (ko) > Rek > 0. In this case, if

7 _ \/4Re (ko) — (Rek)?
h? — 4|k|?|Im o| ’

(4.7)

then we have conditional stability which passes to the unconditional stability
in the case Imo = 0.
b) DuFort-Frankel finite-difference scheme for Kuramoto-Tsuzuki equation
(4.1) is
A~ o~ 2 ~ _ 2 + ~
g-y T iy

o % = KkAy. (4.8)

For this scheme we get the second order polynomial
P(q) = (1 +yk)q* — 267ymq + (vk — 1),

with v = i—g, 1n = cos . Then we build expressions

lal* = |e]> = 4yRex,
ab—bc = 4ynRek.
In the case of Schrodinger equation, Rek = a = 0 and the condition of

stability becomes
12ynB] <21 +~3 |

or n2y%3% < 1 + 32~2. Tt holds for all v and a.
If Rex > 0 then the condition of stability becomes |4ynRek| < 4yRek
which is true always.

COROLLARY 4.2. DuFort-Frankel finite-difference scheme is unconditionally
stable when Rek > 0.
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¢) Odd-even finite-difference scheme. Ciegis and Stikoniené had investi-
gated spectral stability of the odd-even finite-difference scheme [2] for k = a
(parabolic equation), k£ = i (Schrédinger equation). In the general Kuramoto-
Tsuzuki case for such odd-even scheme we have the polynomial

P(q) = (1+ k7)q* — (2= °V*n*) g + (1 — &),

with v = ‘;L—Z, In| < 1. We apply the proposed method for second order poly-
nomial:

lal®> — |e)? 4vRek, (4.9)
ab—bc = —4yRek +20*Rek|k|> +4y’n°Rex Imk i.  (4.10)

For this polynomial the equality |a| = || holds only for Schrédinger equation
when Re s = 0. Then from equation (4.10) we get ab = bc and thee condition
of spectral stability becomes

2+ 8% 0 < 2¢/1+ %2
witch is equivalent to 41> + 32v%n* < 4 because 3% > 0. Finally, we have

n? < 21 —n2/B. (4.11)

In the general case  may be equal to 1. Thus, the odd-even scheme is
unstable. Sometimes [2] it is possible to distinguish the cases when n <
m(h) < 1 and the conditional stability occurs if

47 < 2v1 —m?2

ﬁzv m?

If Rex > 0 then |¢| < |a| and we have the second case of root condition
(3.3). Since

@b — be| = 29Re ky/ 2 — PIPIRP)? + 472 (T w7,

the root condition |ab — be| < |a|*> — |c|? is equivalent to the inequality

29Re k\/4 — 4722 |6|2 + vt k[t + 49204 (Im k)2 < 49yRek
or
Prlalt < 401 — )|l + 4o (Re ).

We notice that 4(1—n?)|k|* > 0, therefore the necessary condition of stability
becomes

(4.12)

COROLLARY 4.3. Odd-even finite-difference scheme is conditionally stable when
Rex > 0.
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