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ABSTRACT

This paper deals with a root condition for polynomial of the second order� We prove the
root criterion for such polynomial with complex coecients� The criterion coincides with
well�known Hurwitz criterion in the case of real coecients� We apply this root criterion
for several three�layer �nite�di�erence schemes for Kuramoto�Tsuzuki equation� We
investigate polynomials for symmetrical and DuFort�Frankel �nite�di�erence schemes and
polynomial for an odd�even scheme� We establish spectral 	conditional or unconditional

stability for these schemes�

A stability concept for discrete problems is of the most importance in the
numerical analysis� Since the stability and consistency imply convergence�
The von Neumann stability de
nition is used for problems with constant co�
e�cients� It requires that all eigenvalues of the characteristic equation �or the
ampli
cation matrix be in the closed unit disc and the ones on the unit circle
be simple ����� For 
nite�di�erence schemes we can get necessary stability con�
ditions from a spectral �von Neumann stability analysis ���� In particular�
von Neumann�s condition is necessary for stability in L�� Often these nec�
essary conditions are su�cient conditions for linear 
nite�di�erence schemes
too� The de
nition of spectral stability appears when we investigate stability
of numerical integration methods �Runge�Kutta� multistep methods for ordi�
nary di�erential equations ��� �� �� �� ��� and partial di�erential equations ���
���� Thus� we built characteristic equations for various discrete problems and
investigate all roots of this equation �polynomial�
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�� ROOT CONDITION

Consider a complex polynomial

f�z � Pm�z � amz
m � am��z

m�� � � � �� a�z � a� ����

with coe�cients ai � C where C is a set of complex numbers� If am �� � then
such polynomial has m roots qi � C� i � �� � � � �m exactly�
Now we formulate the root condition ��� ��� for polynomial ���� �see Fig� ��

λ

λ

Figure �� Root condition�

∈∈

Figure �� Criterion for lin�
ear polynomial	b �� �
�

Figure �� Hurwitz�s crite�
rion�

Definition ���� Polynomial Pm satis
es the root condition if all roots of this
polynomial are in the closed unit disc of complex plane and those roots of
magnitude � are simple�

Usually we use two�level or three�level 
nite�di�erence schemes for non�
stationary partial di�erential equations ��� ��� ��� � In this case we get linear
polynomial P��z � bz�c or the second order polynomial P��z � az��bz�c�
There are no problems with the linear equation because it has only one root
q �if b �� �� We must check the magnitude of this root� If it is less or equal
than � then polynomial satis
es the root condition� Thus� in this case we have
equality

A � ��c� b � C�� jqj � �
�
�
�jcj � jbj� b �� �

�
����

and an obvious criterion for the linear polynomial� Therefore� to check the
root condition for this polynomial� we simply check whether both coe�cients
b and c belong to the root condition set A �see Fig� � with axes jcj and jbj in
the general case and axes c and b in the real polynomial case� If b � � and
c �� � then there are no roots� If b � � and c � � then all q � C are roots of
linear equation� i�e� linear polynomial does not satisfy the root condition�
In general case we have no such a simple criterion for polynomial ����� Let

us denote by p �p � n the number of zeros of the polynomial f�z which are
in the unit circle jzj � �� One of the ways to determine p is to map the interior
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jzj � � of the unit circle into the left half of the complex plane Re z � �� Then
the number of zeros may be found by using Hurwitz�s criterion ��� �� ��� for
a new polynomial F �z � zn �A�z

n�� � � � ��An in this domain�

Theorem ���� �Hurwitz�s criterion� If all the determinants

A� A� A� � � � A�k��

� A� A� � � � A�k��

� A� A� � � � A�k��

� � A� � � � A�k��

� � � � � � � � � � � � � � �
� � � � � � Ak

for k � �� � � � � n with Aj � � for j � n are positive� then the polynomial F �z
has zeros only with negative real parts�

A di�erent way to determine p is to use theorems for unit circle� such as
Schur�Cohn criterion� Consider the polynomial �����

Theorem ���� �Schur�Cohn criterion� If for polynomial f�z all the determi�
nants

�k �

a� � � � � � � an an�� � � � an�k��
a� a� � � � � � � an � � � an�k��
� � � � � � � � � � � � � � � � � � � � � � � � � � �
ak�� ak�� ak�� � � � a� � � � � � an
�an � � � � � � �a� �a� � � � �ak��
�an�� �an � � � � � � �a� � � � �ak��
� � � � � � � � � � � � � � � � � � � � � � � � � � �
�an�k�� �an�k�� �an�k�� � � � �an � � � � � �a�

are di�erent from zero� then f�z has no zeros on the circle jzj � � and it
has p zeros inside this circle� p being the numbers of variations of sign in the
sequence ����� � � � ��n�

This criterion is due to Schur ���� ��� in the case �k � � for all k and
essentially to Cohn ��� in the general case�
Let us associate with f�z the polynomial

f��z � zn �f���z � �a�z
n � �a�z

n�� � � � �� �an � �a�

nY
j��

�z � z�j 

whose zeros z�k � ���zk are� relative to circle jzj � �� the inverses of the zeros
zk of f�z�
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Now we shall follow Morris Marden�s �Geometry of Polynomials� ����� For

f�z and f��z we construct the sequence of polynomials fj�z �
Pn�j

k�� a
�j	
k zk�

where f��z � f�z and

fj���z � �a
�j	
� fj�z� a

�j	
n�jf

�

j �z� j � �� �� � � � � n� ��

Thus�

a
�j��	
k � �a

�j	
� a

�j	
k � a

�j	
n�j�a

�j	
n�j�k�

The constant term a
�j	
� in each polynomial fj�z is a real number which we

denote by �j �

�j�� � ja�j	� j� � ja�j	n�j j� � a
�j��	
� � j � �� �� �� � � � � n� ��

As to the zeros of these polynomials� Cohn ��� has proved lemma which we
present in the compact form due to Marden �����

Lemma ���� If fj has pj zeros interior to the unit circle C � jzj � � and if
�j�� �� �� then fj�� has

pj�� � ����
�
n� j � ��n� j� �pj

�
sign �j��

�

zeros interior to C� Furthermore� fj�� has the same zeros on C as fj �

Marden ���� ��� has proved the following theorem�

Theorem ���� For a given polynomial f�z � a� � a�z � � � � � anz
n� let

the sequence fj���z be constructed� Then� if for some k � n� Pk �� � in
Pk � ���� � � � �k� k � �� �� � � � � n� but fk���z � �� then f has n � k zeros
on or symmetric in the circle C � jzj � � at the zeros of fk�z� If p of the
Pj � j � �� �� � � � � k� are negative� then f has p additional zeros inside C and
q � k � p additional zeros outside C�

Returning back to the polynomials f�z which do not have any zeros on the
circle jzj � �� let us consider the case that� ���� � � � �k �� � for some k � n� but

�k�� � a
�k��	
� � ja�k	� j� � ja�k	n�kj� � ��

In such a case the number p of zeros of f�z in the unit circle C � jzj � � may
be found either by a limiting process or by modi
cation of the sequence�
The limiting process may be chosen as one operating upon the circle C or

upon the coe�cients of fk�z� That is� since fk�z has no zeros on the circle
C� we may consider in place of fk�z the polynomial

Fk�z � fk�rz
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which� for r � �� � and � is su�ciently small positive number� has as many
zeros in the circle jzj � � as fk�z does�
A more direct procedure to cover the case of a vanishing �k�� is to modify

the sequence� The modi
cation applies even when fk�z has zeros for jzj � ��
Observing that the 
rst and the last coe�cients in

fk�z � a
�k	
� � a

�k	
� z � � � �� a

�k	
n�kz

n�k

are of the same magnitude� we 
nd to be useful the following two theorems
due to Cohn ����

Theorem ���� If the coe�cients of the polynomial g�z � b��b�z�� � ��bmzm
satisfy the relations�

bm � u�b�� bm�� � u�b�� � � � � bm�q�� � u�bq��� bm�q �� u�bq

where q � m�� and juj � �� then g�z has jzj � � as many zeros as the
polynomial

G��z � �B�G�z�Bm�qG
��z �

mX
j��

B
��	
j zj �

where G�z � �zq � �b�jbjg�z �
m�qP
j��

Bjz
j � b � �bm�q � u�bq�bm� and

jB��	
� j � jB��	

m j�

Theorem ���� If g�z � b�� b�z� � � �� bmz
m is a self�inversive polynomial�

i�e� if

bm � u�b�� bm�� � u�b�� � � � � b� � u�bm� juj � ��

then g has as many zeros on the disk jzj � � as the polynomial

g��z � �g��z�� �

m��X
j��

�m� j�bm�jz
j

has� That is� g and g� have the same number of zeros for jzj � ��

�� HURWITZ�S CRITERION

We consider only the polynomials of the second order

az� � bz � c � �� a� b� c � C� a �� �� ����

The case a � � deals with linear polynomial� If a �� � then we put equation
���� into the form with coe�cient �a � �� �b � b�a� �c � c�a�
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If all the coe�cients of the polynomial ���� are real numbers �a � �� b � R�
c � R then the well�known Hurwitz�s criterion holds� all �two roots of real
polynomial of the second order are in the unit disk if it�s coe�cients satisfy
the two inequalities

jcj � �� jbj � c� �� ����

In this case the analysis of the spectral stability is not complicated because we
need to verify two simple inequalities� The set of the points �c� b satisfying
Hurwitz�s criterion make a triangle �see Fig� � and Fig� �a� We notice that
the double root is on the unit circle� when c � � and D � b� � �c � ��
i�e� jbj � �� Then the root condition for real polynomial of the second order
becomes

A � �jcj � �� jbj � c� �� jbj � � if c � �
�
� ����

The inequalities ���� and ���� for coe�cients of the polynomial are simple
enough and we can verify easily them for speci
c 
nite�di�erence schemes
even if coe�cients b� c � R depending on di�erent parameters of schemes
�h� �� �� etc�� In this paper we formulate conditions witch generalize Hurwitz�s
criterion �root condition for the polynomial ���� with complex coe�cients�

B � b � R B � bi� b � R
Figure �� Roots in the case B � b and B � bi� b � R� c � R�

�� THE ROOT CONDITION FOR COMPLEX POLYNOMIAL OF

THE SECOND ORDER

Let the roots of the second order polynomial ���� be q� and q�� We denote

the set of coe�cients of this polynomial eC �
�
�a� b� c � C�� a �� �

�
and

separate some subsets of this set in the following way�

A� �
�
�a� b� c � eC� jq�j � �� jq�j � �

�
�

A� �
�
�a� b� c � eC� jq�j � �� jq�j � �

�
�

A� �
�
�a� b� c � eC� jq�j � jq�j � �� q� �� q�

�
�
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The root condition holds if the coe�cients of the polynomial belong to one
of these sets� Then a set A � A� � A� � A� is the root condition set� The
analysis of these sets using theorems for zeros in the unit circle from the
section ��theorems ���� ������� and see ���� implies�

A� �
�jcj� � j�ab� �bcj � jaj���

A� �
�jcj� � j�ab� �bcj � jaj�� jcj � jaj��

A� �
�jcj � jaj� �ab � �bc� jbj � �jaj��

This result we formulate as the following theorem�

Theorem ���� �The root condition� The roots of the second order polynomial
are in the closed unit disc of complex plane and those roots of magnitude �
are simple if

A �
�jcj� � j�ab� �bcj � jaj�� jbj � �jaj�� ����

Corollary ���� If a � � then the root condition reduces to

A �
�jcj� � jb� �bcj � �� jbj � �

�
� ����

Remark 	�	� If a � �� b � �b � R� c � �c � R then equality 
	��� corresponds
to root condition 
��	� in Hurwitz�s criterion�

Proof� From ���� we get jcj � �� If c � � then jbj � �� If �� � c � � then

jbj��� c � jb� bcj � jb� �bcj � �� c� � �� � c��� c�

and we get the similar condition to that in Hurwitz�s criterion� jbj � �� c� �

In applied problems� it is convenient to separate conditions jcj � jaj� jcj � jaj
and to use the root conditions in the form A � �A� � A� � A� �

A �
�jcj � jaj� jcj�� j�ab��bcj � jaj����jcj � jaj� �ab � �bc� jbj � �jaj�� ����

Remark 	�� If we are interested in problem where double root may appear
on the unit circle then in the expressions 
	���� 
	�	� strict inequality jbj � �jaj
must be changed to the inequality jbj � �jaj� because the double root 
q� � q��
lies on the circle in the case coe�cients belong to thee set

A�� �
�jcj � �� �ab � �bc� jbj � �jaj�� ����

The root criterion for circle jzj � R �� � becomes

A �
�jcj� �RjR��ab� �bcj � R�jaj�� jbj � �Rjaj� ����
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Figure �� Functions b � ��	c
� � � � � �
�
�

or in the case a � �

A �
�jcj� �RjR�b� �bcj � R�� jbj � �R

�
� ����

Now we consider equation ���� when a � � in the form

w� �Bw � C � � ����

with B � be�i� C � ce�i� 	� 
 � ��� ��� b� c � R� Such form of the complex
number Z � ze�i� z � R� � � ��� � with negative z is equivalent to standard
exponential form of complex number Z � jZje����	i� Thus� every complex
number Z � jZje�i� � � ��� �� we may write in such form�

If we put w � ze
�

�
�i then equation ���� becomes

z� � be���
�

�
�	iz � c � � ����

which satis
es the root condition together with polynomial ����� because
jzj � jwj� Thus� we may consider only the case 
 � � not loosing generality�
If 	 � �

� � 
 � �� i�e� B�bi� then the root condition is

A �
�jcj � �� jbi� bicj � �� jcj�� � �jcj � �� bi � �bic� jbj � �

�



��� A��Stikonas

	 � � � � 	 � �
� �

�
� � 	 � � 	 � �

�

Figure �� Criterion for C � c and B � be�i with b� c � R� � � � � ��

	 � � R � � R � �

Figure �� Criterion for R �� ��

or

A �
�jcj � �� jbj � �� c

� � �c � �� b � �
� � �c � ��� jbj � �

�
� ����

Thus� in this case the points �c� b make a triangle �see Fig� �b�
More complicated case we have for 	 � ��� ��  � ��� � �� 
 � �� There the

condition B � BC is equivalent to be�i � cbe��i� i�e� b � � for jcj � �� For
jcj � � we get jbj � je�i � e��ij � �� jcj� or

jbj � ���c �
�� jcj�p

� � jcj� � �c cos��	
� �����

Functions ���c for various 	 are sophisticated �see Fig� �� Thus� the points
�c� b determine di�erent domains for 	 � �� 	 � �

� and � � 	 � �
� �

�
� � 	 � �

�see Fig� ��
To draw the root criterion for R �� � in the plane �c� b we must stretch the

domain of root condition R times along b�axis and R� times along c�axis �see
Fig� ��
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�� THE ROOT CONDITION AND THREE�LAYER

FINITE�DIFFERENCE SCHEMES FOR

KURAMOTO�TSUZUKI EQUATIONS

We investigate spectral stability for the tree�layer 
nite�di�erence schemes for
Kuramoto�Tsuzuki equation ��� ��� ���

u

t
� �

�u

x�
� � � �� 	i �� �� �� 	 � R� ����

a Symmetrical �nite�di�erence scheme �����

 y � �y

��
� �!�� y � ��� ��y � ��y� !yi �

yi�� � �yi � yi��
h�

� ����

By spectral method for this scheme we get the polynomial

P �q � �� � �����q� � ������� ��q � ������ � �

with � � �
h�

sin������ First of all we build expressions

jaj� � jcj� � ���Re ���� ����

�ab� �bc � ����Re �� �Re ��� � ��j�j�Im� i� ����

If Re ��� � � then jaj � jcj and the root condition ���� implies the necessary
condition of the stability �ab� �bc � �� Equality ���� shows that Re� � � and
Im� � � in this case� Thus� spectrally stable is the di�erence scheme for only
Schr"odinger equation and only in the case of real �� Condition jbj � �jaj is
equivalent to

j���	��� ��j � �
p
� � ����	��

which we put to the form

� �
�

�
� �

�

�

����	�
�

Hence� for � � �
� the symmetrical 
nite�di�erence scheme is unconditionally

stable� If � � �
� then we have conditional stability with the condition

�

h�
�

�

�j	j
�p

�� ��
� ����

Remark ��� It is possible to establish non�strict inequality for the �rst type
problem�
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If Re ��� � � then jcj � jaj and necessary condition of the stability becomes

jRe�� ��j�j�Im� i� �Re ���j � �Re ����

For all real numbers x� y� a �a � � the inequality jx�yi�aj � a is equivalent
to y� � �xa� x�� Thus� we have condition

����j�j��Im �� � �Re ��� �Re�� �Re ��� ����

Finite�di�erence scheme ���� isn�t stable when Re� � �� If Re� � 	 � �
then from ���� we get the condition Im� � � which isn�t compatible with
condition Re ��� � Re �	�i � �� If Re� � � then we get the following
necessary condition of stability �Re ��� � Re� � �� In this case� if

�

h�
�
p
�Re ���� �Re��

�j�j�jIm�j � ����

then we have conditional stability which passes to the unconditional stability
in the case Im� � ��
b DuFort�Frankel 
nite�di�erence scheme for Kuramoto�Tsuzuki equation

���� is

 y � �y

��
� �

��

h�
 y � �y � �y

��
� �!y� ����

For this scheme we get the second order polynomial

P �q � �� � 
�q� � ��
�q � �
�� ��

with 
 � ��
h�
� � � cos�� Then we build expressions

jaj� � jcj� � �
Re��

�ab� �bc � �
�Re��

In the case of Schr"odinger equation� Re� � � � � and the condition of
stability becomes

j�
�	j � �j� � 
	 ij
or ��
�	� � � � 	�
�� It holds for all 
 and a�
If Re� � � then the condition of stability becomes j�
�Re�j � �
Re�

which is true always�

Corollary ���� DuFort�Frankel �nite�di�erence scheme is unconditionally
stable when Re� � ��
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c Odd�even �nite�di�erence scheme� �Ciegis and �Stikonien#e had investi�
gated spectral stability of the odd�even 
nite�di�erence scheme ��� for � � �
�parabolic equation� � � i �Schr"odinger equation� In the general Kuramoto�
Tsuzuki case for such odd�even scheme we have the polynomial

P �q � �� � �
q� � ��� ��
���q � ��� �
�

with 
 � ��
h�
� j�j � �� We apply the proposed method for second order poly�

nomial�

jaj� � jcj� � �
Re�� ����

�ab� �bc � ��
Re�� ���Re�j�j� � �
���Re� Im� i� �����

For this polynomial the equality jaj � jcj holds only for Schr"odinger equation
when Re� � �� Then from equation ����� we get �ab � �bc and thee condition
of spectral stability becomes

� � 	�
��� � �
p
� � 	�
�

witch is equivalent to ��� � 	�
��� � � because 	� � �� Finally� we have


�� � �
p
�� ���	� �����

In the general case � may be equal to �� Thus� the odd�even scheme is
unstable� Sometimes ��� it is possible to distinguish the cases when � �
m�h � � and the conditional stability occurs if

��

h�
� 
 �

�
p
��m�

m�
�

If Re� � � then jcj � jaj and we have the second case of root condition
����� Since

j�ab� �bcj � �
Re�
p
��� 
���j�j�� � �
����Im���

the root condition j�ab� �bcj � jaj� � jcj� is equivalent to the inequality
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or


���j�j� � ���� ��j�j� � ����Re���

We notice that ������j�j� � �� therefore the necessary condition of stability
becomes
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Corollary ���� Odd�even �nite�di�erence scheme is conditionally stable when
Re� � ��
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