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ABSTRACT

We discuss an age-structured autosomal polylocal multiallelic diploid population
dynamics deterministic model taking into account random mating of sexes, females’
pregnancy and its dispersal in whole space. Dispersal mechanism is described by the
diffusion one with constant dispersal moduli while the birth moduli depend on the spatial
density of the total population with a time delay. It is assumed that the population
consists of male, single (nonfertilized) female, and fertilized female subclasses. Using the
method of the fundamental solution for the uniformly parabolic second-order differential
operator with bounded Hélder continuous coefficients we prove the existence and
uniqueness theorem for the classic solution of the Cauchy problem for this model. We
analyze population’s growth and decay, too. Mutation is not considered in this paper.

1. INTRODUCTION

In a recent paper [4] we have proposed a general deterministic model for an
age-structured autosomal polylocal multiallelic diploid population dynamics
taking into account random mating of sexes without formation of the perma-
nent male-female pair, females’ pregnancy, possible destruction of the fetus
(abortion), and female sterility periods after abortion and delivery. The class
of the population of the given genotype is divided into five components: one
male and four female, the latter four being the single (nonfertilized) female,
fertilized female, female from the sterility period after abortion, and female
from the sterility one following delivery. Each sex has three age-grades: pre-
reproductive, reproductive, and post-reproductive. It is assumed that for each
sex the commencement of each grade as well as the duration of the gestation
and females’ sterility periods are independent of individuals or time. Ob-
serve that this model neglects mutation of genes. In the case of the simplified
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model where abortion and sterility period after delivery are neglected the
unique global classic solvability of that model for an unlimited population has
been proved.

In the paper [6] we considered the same simplified model as in [4] letting, in
addition, the population to disperse in whole space with the dispersal mech-
anism described by the general linear elliptic differential operator of second
order. In that model we did not let birth moduli to depend on either the
density of the total population or, more generally, on the population itself.

In the present paper we are interested in the model in [6] with simplified
both the dispersal mechanism and mating law, and generalized birth moduli.
The simplification consists in replacing the dispersal mechanism of the model
in [6] by the diffusion one with constant dispersal moduli, and not letting the
fertilization rate to depend on the characteristic of the mated male. Genera-
lizing the model in [6] we let birth moduli to depend on the spatial density of
the total population with a time delay. The aim of this article is to prove the
existence and uniqueness of a classic solution of the Cauchy problem for this
model.

The plan for this paper is as follows. In Sect.3 we formulate the problem.
Sect.4 represents hypotheses and results. In Sect.5 we recall some results
concerning the solvability and uniquenees of the Cauchy problem for the linear
differential parabolic operator of second order with a parameter. Sect.6 is
devoted to proving the solvability theorem.

2. NOTATION

We examine the population whose autosomal character is controlled by [ loci
of a pair of homologous chromosomes and a gene of the jth locus can be in
any of m; alleles. Let us recall notations in [4]:

s = (21 2;) and k = (:i :Z) , where s;;, kij = 1,m;,
j=1,1,i=1,2: the genotypes (the homologous pairs of chromosomes, where
S11 -+ 811, k11 - - - k1y are paternal and saq - - - S9;, k21 - - - ko maternal chromo-
somes) for a male and a female, respectively;

T1,T2,T3: the ages of male, female, and embryo, respectively;

t: time;

E™: Euclidean space (habitat of population) of dimension m;

x = (x1,%2,...,%Tn): the spatial position in E™;

uis(x,t,71) : the age-space density of males of the s genotype at age 7,
location = and time ¢;

u2k(z,t,72) : the age-space density of single (nonfertilized) females of the k
genotype at age 7, location z and time ¢;

ussk (x,t, 71,72, T3): the age-space density of fertilized females of the k geno-
type at age 72, position x and time ¢ whose embryo is at age 73 and that were
fertilized by males at age 71 and of the s genotype;

psk(z,t,71,72): the density of probability to become fertilized for a female
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from the pair formed of male of the s genotype at age 7 and female of the k
genotype at age 7, location z and time ¢;

vis(x,t, 1), vor(x,t,72) and vse(z,t, 71,72, 73): the death rates of males,
single and fertilized females of characteristics (s,71), (k, ) and (s, 71; k, 72),
respectively, at position x and time #;

Xy (z,t,72): the gain density of single females of characteristic (k,72) by
the females which have had a delivery at position = and time ¢;

Yi(x,t,72): the loss rate of single females of characteristic (k,72) due to
conception at location z and time t;

wiy (z,t,71,72) : the probability a zygote to be of genotype i provided that
the pair of parents had characteristic (s, 71; k, 72);

o1 = (m11,712], 0 < 111 < 712 < oo: the female sexual activity interval,
o1 = [m1, T12);

o3 = (0,T],0 < T < oo: the female gestation interval, 73 = [0, T7;

0'2(7'3) = (7'21 + 73, T22 +T3], 0< T <T < 00, EQ(TE}) = [7'21 + 73, T22 +7'3];

02(0),02(T): the female fertilization and reproduction (delivery) intervals,
respectively;

n(x,t): the spatial density of the total population at location z and time ¢;

ny(z,t): the spatial density of males with ages from o; at location z and
time ¢;

bisk(z,t, 71,72, n(x,t—T)) and bog (z,t, 71, 72, n(x,t—T)): the average num-
bers of male and female offspring, respectively, produced at position z and
time t by a fertilized female of characteristics (s, 71;k,72), 73 = T}

uly(z,711), udp (@, 72), udy,(z, 71,72, 73): the initial distributions;

no(xz,t): the initial spatial density of the total population at location x and
time ¢t € [-T,0];

oc=o01 X09(T), T =01 x02(T), do = drdrs;

Tg = 0, 7'21 = 721, 7'22 = min (7'21 + T, 7'22),7'23 = max (7'21 + T, 7'22),

T4 =T + T, 75 = 00; o

I=(0,00), T=[0,00), I = (14,00), I; = (], 7", =0,3;

I* = (0,t*], T = [0,t], t* < o0;

Q' = {(z,t,1) € E™ x I x I}, Q' =E"xTxT;

4

@ ={ntm) € " xIx (1\ U AL Q' =Q' = B" x T« T
j=1

Q3 = {(z,t,71,m2,73) € E™ x I X 01 X 02(73) X 03},

@ZEmXTX51XE2(T3)XE3; )

[U2k|T2:Tg-] : the jump of the function usy at the plane 7 = 73;

Dy =0/0t+08/dry, Dy = 8/t + 3/dr2, D3 = Dy + 873,

D, = V2D1, Dy = /2D», D3 = V/3Ds;

D;, i =1,2,3: the directional derivative in the positive direction of charac-
teristics of the operator D;;

ais, Gok, G3sk - the spatial dispersal moduli of males, single females, and
fertilized females, respectively;

A : the Laplace operator;
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Lls(x,t,ﬁ) = alsA — Vls(l',t,Tl);

L2k(1’, t, Tg) = a/2kA — U2k (1‘, t, 7'2);

LBSk (1‘, t: T1,7T2, 7_3) - a?)skA — V3sk (1’, t) T1,T2, 7—3);

L'(n; Q) : the Banach space of functions f(7,-) integrable on ;

CO(Em X Jp X ... X Jr), Jj = (le, Jjg), le < JjQ < 00,) = W: the
Banach space of uniformly bounded continuous in E™ X J; X ...x J,. functions
f(maé-l)EZ: N )Er);

C*0--0(Emx Jyx...xJ,): the Banach space of functions f(z, &, &, ...,&)
belonging to C°(E™ x J; x . ..xJ,), which are Holder continuous in (E™ x .J; x
...XJ.) with exponent a € (0, 1) in & uniformly with respect to ({1, &, ...,&),
i.e. having the finite Holder seminorm with respect to x (see [2]);

The letters s and k& will be used in this paper only for the notation of
genotypes of male and female, respectively.

3. STATEMENT OF THE PROBLEM

In this paper we discuss a model consisting of the following nonlinear system
of integrodifferential equations, for wis, usk, Ussk,

(Dl - {113)“13 =0in Q}a (1)
(D3 — Log)usk = Xg, Lok = Lop — Yy, in Q2, (2)
07 T2 g 02(0)7
Y = nTIZ/pskmsdn, n = Z/UlsdTla 7 € 03(0), ®)
5 o 5 o
0> T2 ¢ UQ(T)a
Xk - Z/u3sk|7'3=T dTl; T2 € UZ(T)a (4)
s o1
(D3 — Lask)ugsi = 0 in Q3 (5)
supplemented with the conditions
U15|t:0 = u(l)s’ u2k|t=0 = ng in BE™ x I, (6)
u35k|t=0 = ugsk in E™ x o1 X 02(7'3) X 03, (7)
uls|7'1=0 = Z/ blik(xata -,n(:r,t - T))u3ik|7’3=T wf]g do in E™ X I7 (8)
ik

a

Uk |r=0 = Z/ basi(z, t,,n(x,t — T))ussi|rs=T wfi doin E™ x I, (9)
st

g

(
Z/UlsdT1+Z/U2de2+
5T k7
n(x’t) - Z/dTg; / dTQ/U3Sde1 in E™ x I, (10)
sk g3 0’2(T3) o1

( no(x,t) in E™ x [-T,0],
U3sk|rs=0 = PskUrsUar/n1 in E™ x I X 01 X 02(0), (11)
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[U2k|7_2:7_é'] =0,5= m in E™ x I, (12)
and governs evolution of the population with dispersal in whole space. In
addition, we assume that initial distributions u,, u3,, ud,, no satisfy the
following compatibility conditions

Wylri=0 = Y [ brikli=ouliy|ry=rwji|i=0 do in E™,

ik o
Wlra=0 =Y / basilt=0US il ra—Twiilt—0 do, [udy],,_ 5] =0,
st p
[ =T din E™,
U3 gl re=0 = sk t=oulsudy,/ [ uly dri in E™ x 01 x 02(0). (13)

o1
nolt=o0 = Z/U?sdﬁ + Z/ngdT2+
s T ko7
Z/d73 / de/ugskdn in E™.

sk o3 o1

o2(73)

As it follows from the foregoing given functions vis, var, Vssk, Psk, O1sk,
bask, Udgy Sy, Udgks Moy Wiy, wh, and the unknown ones w1y, Uz, uzsi must be
positive-valued, otherwise they have no biological significance. Our purpose
is to find wys, uag, ussy verifying (1)-(13).

Observe that, for one-locus Mendel’s population, w?, = (g1t 4§41

)0+
522211)7 where 0 designates the Kronecker symbol (see [7]).

4. HYPOTHESES AND RESULTS

Unless otherwise stated, assumptions listed in this section hold throughout
the paper:

(Hy) psi = pr(z,t,m5) € C*OO(E™ x I x 55(0)) does not depend on the
characteristic of the mated male and has the compact support in x
( supp pr(:,t, 7)) for any set (t,72);

(Hy) wiy, € CO(E™xIxa1x02(T)), bisk, bask € CO(E™xIx71 x02(T)x1)
are nonnegative functions;

(H3) 115 € C’D"O’O(@l), Vo, € C’a’o’o(@z), V3sk € C’D"O’O’O’O(@B) are nonneg-
ative functions;

(Hy) ais, ask, assk are positive constants;

(Hs) u3,(z,72) € C°(E™ x I) is nonnegative integrable w.r.t. m € I,
ud o (@, 71,72, 73) € CO(E™ %G1 XT2(13) XT3) and ng(z,t) € CO(E™ x[-T,0])
are nonnegative, u?,(z, ) € C°(E™ x I) is strictly positive integrable w.r.t.
71 € I, and all the densities ul,, u3,, ul,,, no(z,0) verify (13).

Now we list theorems for solvability of model (1)-(13), population growth
and its decay. The first of them will be proved in Sect. 6 while proof of the
other two theorems is the same as that in [6].

THEOREM 1. Under the hypotheses (Hy) — (Hs) problem (1)-(12) has for any
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I* an unique nonnegative classic (see [2,3]) solution such that uys € C°(E™ x
T x )N\ L'z, 1), ug € CO(E™ x T" x T) (L (1), user, € CO(E™ X
T* X o1 X 52(7'3) X 53).

Let us introduce the following notions
b= H;%X{Z / sup (blijwisj) dTQ,
J

i, Em xIx51 X1

a2(T)
k ~_
> / sup  (baijwiy) dra}, p= sup Dk
j (1) i, EmxIxoyxI k, Em™ xIxo2(0)
o2
Uy = inf Vok, ﬂ:max( sup u),, sup ugk),
s,k

k, Em xTx(T2UT3) EmxT EmxT

~ 0
i3 = max ( E sup / US| =TS, dT1,
s,k (T)

i E™mxoo
o1

0 k
E sup / U ;| ra=TWS; dTl),
i Em XEQ(T)
o1

Q3 ={(z,t,71,72,73) : T € E™, 0<t <73, T €01, T2 €02(73), T3 €03},
Q¥ ={(x,t, 71,72, 13) : T € E™, t > T3, 71 €01, T2 € 02(T3), T3 € 03}

THEOREM 2. Assume (H;) — (Hs) hold, and let 5 > 0. Then
) Z/ Uaak 71 < P osup usg(y,t— 73,7 —73) in Q% fort—r3 €T,
S o1 yEE’"
(i3) urs, usg < 6Y U for t € (GT,(j + )T]N[0,t*],x € E™, 71, o € I,
where j =0,1,..., v =max(bp, 1, p/P») and 6 = max@ﬂg/ﬂ, l,ﬂg/ﬂﬂg),
(or more roughly uy,, sy < 5u~HT).

Define

q = bis/d, 7 = min(inf vy, inf voy),
s,k O 0.
1 2

wo = {(,t,€) 1 x € E™, 0 <t <€ €T}, B

THEOREM 3. Assume the hypotheses (H1) — (Hs) hold and let
bp < ¢ < min(1,7b), 7 > 0. Then max{ sup w5, sup wuz} <

s,k (z,t,71)Ew; (z,t,72) Ew;

ug’.

COROLLARY 4. Let assumptions of Th.3 hold. If q < 1, then the population
vanishes as t increases.
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5. SOME PROPERTIES OF THE PARABOLIC OPERATOR OF
SECOND ORDER

In this section we collect some results concerning the solvability and unique-
ness of the Cauchy problem for the linear differential parabolic operator of
second order (see [2,3,5]) with a parameter.

LEMMA 5. (see [5]). Let
A(x,t,8) = 0/0t = b;;0°/0x;0x; — Y bid/0x; + bo
=1

i,j=1

be a uniformly parabolic operator depending on a parameter 5 € J = [, (=],
B1 < B2 < oo with coefficients verifying the following conditions

bij(x,t, ) € CH/20(E™ x T x J), i,j =1,m,

bi(z,t,8) € COO(EM™ xT x.J),i=0,m
and assume that

0 <u(z,B) € CO(E™ x J),

0< flz,t,8) € COE™ x T  x J), |f(z,t,8) — fly,t,8)| < kit~ |z — y|*
with K a constant and v € (0,1). Then the problem

Au=fin E™ xT xJ, u(z,0,8) =u’ in E™ x J (14)
has a unique stictly positive in E™ x T° x J classic (see [2]) solution

u(a,t, ) = / D(a, 1, 0; By, ) dy

Em

t
+/d7' / U(z,t;y,7;8)f(y, 7, B)dy, w € CO(E™ xT x 1),  (15)
0 E™

where U(x,t;y,7;3) is the fundamental solution of the operator A(x,t, ).

Lemma, 5 generalizes the classic result with v = 0 to the case with v € (0, 1).
It shows also the continuity of v in E™ X T" x I. Observe that
| f {F(l‘, t; Y, T; 6) _F(xla t; Y, T; ﬁ)}f(ya 6) 6) dy| S K1 |1‘—1‘I|(t—7')_1/2(16)
Em

for f € CO(E™ x T" x J), where £, is a constant.

6. PROOF OF THEOREM 1.

Now we are in position to prove Th.1. We limit ourselves to the case of
multiple deliveries, i.e. T < Toa — Ta1, 79 = To1 + T, 72 = T2a. The opposite
case can be considered in the similar way.

Set
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4 N
Q' = QuUQ™, BMxIxI= U Q}, QF = E"xIxI; = QLUQT, j =04,

Q3 = Q3 U Q?, where
QL ={(z,t,m): v € E™,0<t<m,n €I},

Ql*:{(mtﬁ)::UEEm,t>T1,7'1€I};
2 ={(z,t,m) 2 €E™ 0<t<m -1, ™€},
Qz*:{(xtﬁ):xEEm,t>T2_T§>T2€Ij}:

Q3 ={(z,t, 71,72, 73): t € E™, 0< t <73, T €01, T2 € 02(T3), T3 € 03},

Q% = {(1‘ t,71,72,73) : T € E™, t > 713, 71 € 01, T2 € 02(73), T3 € 03}

Let 4 =t+ n and 75 =t 4 72 be characteristics of the operators D1 and
Dg, respectively, and assume that 7 = t+mns, 73 = t +n4 mean characteristics
of D3 Here 11, 12, 13, n4 denote parameters of characteristics. Letting

Lls(m t,t+m) = Lige(z,t,m), urs(z,t,t +01) = urx(z, t,m1) in Q1,

S(marl - 771a7'1) = LIS(ZE,Tl, _771)’
uls(x;’rl - nl;Tl) = UIS(I',Tl, _771) in Ql*a
L2k(l’,t,t + 772) = L2k*(l°,t;772)a u2k(x)t7t + 772) - ’u‘2k*(x t 772)

Yi(@,t,t +1m2) = Yeu(z,t,m2), Xp(2,8,t +1m2) = Xpu(,¢,72) in U Q3.

LQk(xaTQ - 772,7'2) = L;k(xa7—27_7]2)7 U2k($,7'2 - 772,7'2) = uék(w,m,—nz),
Yi(z, 72 —n2, ) =Y (2,72, —12),

Xi(2, 72 =1y 72) = Xi(a, 7, —m) in 0, @3,
Lasp(z, t, 71, t+m3,t+m1) = Lasgs (2,8, 71,03, 04), ussk (T, 8, 71, t+1m3, t4+n4) =
Usgskx (T, T, 71, m3,m4) in QF,
Lasp(w, 73 — 4, 71,73 + 13 — N4, T3) = L§sk(l‘,T3;T1, —N4,M3 = N4)5
yssk(%ﬁ - 04,T1,T§+n3 — N4, T3) = Usep (2,73, 71, —N4,M3 — Na) in Q*,
Lopsx = Logse — Yiu, L3, = L3, — Y}

and taking (1)-(12) on the respectlve characteristics we obtain:

(0/0t — Liss)uise =0 in QL, uisu(z,0,m1) = u? (z,m),
(8/87-1 LIs)U’ 1s — 0 m Ql* U’ls(x 0 771) - U’ls( 771:0)7
4
(0/0t = Lok )uzks = Xp in U Q3 U2k (7,0,m2) = ufy (z,m2), (17)
(0/012 — Qk)ugk = Xgin Qj ) U’Qk(w’TQv_nQ) = U2k($a7'2 - n2,T§),j =
0,4

)

(a/at - L3sk*)u35k* =0in Qz) U3 sk* (1‘, 07 T1,M3, 774) = ugsk (Z’, T1,73, 774)7

(0/073 — L3 )usg, = 0 in Q%% uiy(z,0,71, —n4,n3 — na) =

u3sk (T, =14, T, M3 — 14, 0).

By virtue of (H3) — (Hs) the operators Lis«, Log«, Lasg«, LTy, Ly, Li,
and initial distributions wis.(2,0,71), ok (x,0,m2), ugsrx(x,0,71,13,74) sa-
tisfy all the conditions of Lemma 5. If Yi., Y}, uis(z, —m1,0), uor(z, 5 —
772,T2j), Ussk (T, =04, 71,3 — N4, 0) and Xy, X} are known and satisfy all the
conditions of Lemma 5, then system (17) degenerates into separate problems
for wiex, Uly, Uake, Wby, Usskx, WSy, Tespectively, of type (14). Then denoting
by

F15)'* (.’IJ, t7 Y, 67 771)7 Ffs(ma T15Y, 57 _771)’ Fij*(xv t7 Y, 67 772)7 F;k] (.’IJ, ™Y,
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E; _772)) F?)sk* (Z’, t; Y, 5; 71,13, 774)7 ngk (1‘, 73,9, E) T1, —N4,M3 — 774)
the fundamental solutions of operators

d/0t — Lygw, 8/0m — L}, 8]0t — Logs, 8)019 — Ly, 8/0t — Lagks, 0/073 —
Lgsk
in Q1, Q", Q3,, Q3*, @2, Q*, respectively, and, applying general formula
(15) tO Uisw, Ukx, Ugsks, T, Usy, US., from (17) we obtain the system

U1 s (Z’, t) 771) = f Fls* (Z’, t; Y, 0; nl)u(l)s(ya nl)dy in Q}a

E’rrL

U’Is(xﬂ T1, _771) = f FTS(:’U? T15Y, 07 —771) U’ls(y7 —m, O)dy in Ql*a
Em
U2k*(l‘,t;772) = f Fij*(x)t;y)O;Th) ng(y,n2)dy+
Em

t
[ dé | Topjula, t;y,&m2) Xpw (y, & m2)dy in Q3
0 Em™

usp(x, 72, —m2) = [ T5(x, 7239, 735 —m2)uak (y, 735 — 12,73 )dy+
Em

T2

Jd¢ [ szj(m:ﬁw;f; —n2) X} (y, &, —n2)dy in ?*,

i Em

T2

U3sk*(l’,t,7'1,’l’]3,’l’]4) = f F3Sk* (33,75521,0;Tl;773:774)Ugsk(y:ﬁ;773;774)dy
Em

in Q3,

w3 (T, T3, L, =4, M3 — M4) =

[ D@, 735,05 70, =04y 03 — na)ussr (y, =14, T1,m3 — M4, 0)dy in Q3*,

Em
which by (4) and (6-9) can be written as follows:

uis(x, t,m1) = fm Tise(m,t;9,0;11 — )ud, (y, 71 — t) dy in QL, (18)
uwis(z,t, 1) = Ef io(w, 139,05t — 1) uis(y,t — 71,0) dy in Q*, (19)
usk(z,t,72) :E'"

I Torju(z,t59,0; 72 — t)udy (y, 72 — t) dy in Q3, for j =0,1,4, (20)
ﬁ%(m,t,Tg) = E[ﬂ Dogjs(z, 859,05 72 — )uly (v, 72 — t) dy

¢
+Z/df/ dyLakje (@, 8,872 — 1) (21)
0 Em

f u3sk(y’€77-17§ + T — taT) dTl in Q?* for .] = 2737

o1

ugk (2,8, 7) = [ T8 (2, 759, 7351 —T2) ua(y, 73 +t—72,73) dy in Q3* (22)
Em

for j =0,1,4, . . .

Usg(@,t,72) = [ F;kj(waTQ;yaTg;t_7-2)11'2143(:[/77-5 +t—12,73)dy

B
T2
+Z/df/ dyLs;(z, 725y, §5t — 72)
s Em
2

Jussr(y, €+t —1,7,6,T)dry in Q5 for j = 2,3, (23)

g1
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U3Sk(m7t>7-177_2>7-3) =

f Dasps(z, 839,057, 70 —t,73 — t)ugsk(y,Tl,T2 —t,3—t)dyin Q3, (24)
Em

U3Sk(m7t>7-177_2>7-3) =

J U5 (@, 7359,0; 71,6 — 73,75 — T3)

Em

USSk(y)t —T3,T1,T2 — 7_3>0) dy in Q3*7 (25)
u3sk(m7t)7-177_2)0) :psk(x)t:Tl;TZ)uls(x)t:Tl)u2k(m7t>7-2)/nl(mat)) (26)

ny = Z/uli(mat)Tl)dTla

K3 o1

u5(x,t,0) = Z / biig(x,t, 71, 72, n(z, t=T)) usir(x,t, 71, 72, T)w;, do, (27)
ik

o

s (2,1,0) = Z/bzsi(a:,t,Tl,T2,n(a:,t—T))u3si(a:,t,n,72,T)w§i do. (28)

Z/u1sd7'1 +Z/u2kd7'2+
57 ko

n(z,t) = Z/d’r3 / de/UBskdn in E™ x I, (29)
sk 3 (r3) o1

L no(z,t) in E™ x [-T,0],

We must add to (22) and (23) the continuity condition [uay|
1,4.

Now we will prove that (18)-(29) represent the solution of (1)-(13). Consider
system (18)-(29) moving along the axis ¢ by the step of size T'. Since Ly sx, Lok«
in Q2, U Q3,, and L3, satisfy the conditions of Lemma 5, formulas (18),
(20) for j = 0, and (24) express strictly positive functions uis, usr and ussg
in QL, Q. U Qj, and Q32, respectively. Hence ni|supp po(-t,r1,ms) > i1, and
by virtue of (H;) we observe that

psk(l',t,7'1,TQ)Uls(l',t,Tl)/nl(l',t) S CO(Em X [0,7'11] X 01 X 52(0)),
where 71 is a positive constant, while from (24) by (16) it follows that

lussk (2, t, 71, 7o, T3) — ussk (y, t, 71, 72, 3)| < K1|o — y|t~1/? in Q3 (30)
with k; a constant.

Let t € [0,7] and assume w; = E™ x [0,T] x I. By means of (27), (28),
(29), (Hz), (Hs) and due to the continuity of ussr (see Lemma 5) we obtain
continuous u14(z,t,0) and uzg(z,t,0) Y(z,t) € E™ x [0,T]. Now from (19)
and (22) for j = 0 we get continuous u1s and uz in Q'* Nw; and Q2* Nwy,
respectively. Then by (Hy),

0, 72 € 02(0
Yk(mataTQ):{ ’ 2( )
Pr, T2 € 02(0),

and (Hy) shows that Lo and E;k satisfy all the conditions of Lemma 5 in
(Q3,UQ3,) Nwr and (QF UQ3*) Nwy, respectively. Then (20) and (22) for
j = 1yield usk in (Q3,UQ?*) Nwy, while from (21) and (23) by (24) and (30)

=0,5=

—ri]
T2=T5
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we get up in (Q3, UQ3,) Nwy and (Q3* UQ3*) Nwi, respectively. Eq. (22)
for j = 4 gives uz; in Q3* Nw;. Recalling the maximum principle and using
(Hs) and (29) we prove the continuity of n(z, ).

Let t € (T,27T] and assume wy = E™ x [T, 2T x I. Knowing u s and usy, for
t € [0,T], by (26), (H;) and because of 11 | supp py(-,t,7) = 71 We get continuous
ussk(z,t,71,72,0) for t € (3,T], then by (25) we obtain ussy(x,t, 71,72, 73)
for t € (13,73 + T']. From (27) and (28), by using (H>) and known continuous
n(x,t), ussk|rs=7, We get continuous uis|r,=p and usg|r,=0, too. Then by
virtue of (19) with known u14|-,—o and by (22) with known usg|,,—o We obtain
u1s and uazy in Q* Nwy and Q2* N ws, respectively. Now by (22) for j = 1,
(23) for j = 2, (21) for j = 2, (23) for j = 3, (22) for j = 4, and (20) for j = 4

4

we construct ugy, in (| Q?* UQ3,) Nws.
j=1
Proceeding our reasoning we obtain wuys, uzr and uggsy for ¢t € [2T,t*]. Re-
strictions (13) ensure the continuity of wis, uak, ussk across the lines ¢t =
T, t = T», t = 73, respectively. So Th.1 is proved. O
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