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ABSTRACT

A problem of a partial linearization and partial decoupling of non—invertable impulsive
extensions is considered. The sufficient conditions for the dynamical equivalence are given.

1. INTRODUCTION

The theory of differential equations with impulse effect has been developing
rapidly in the recent years. These equations are convenient mathematical
models for description of evolutionary processes which suddenly change their
state at certain moments. The general theory of impulsive systems is described
in the following monographs written by D. D. Bainov and S. I. Kostadinov
[1], A. M. Samoilenko and N. A. Perestjuk [4]. The classification problems of
impulse systems have been considered by A. Reinfelds [2], [3]. This article is
worked out on the basis of the previous publications [5], [6].

2. PROBLEM STATEMENT

Let X and Y be Banach spaces. Consider the following system of differential
equations with impulse effect at fixed moments:

do/dt = ( (t,,u))w + fz,y,0(t, 1)),
Az|t=r, = (p,) (i =0) + Li(z(r; — 0),y(m: — 0), ),
Ay|t=7'i = ( )y(TZ ) + Kz(m Ti — 0)7y(Tl - 0)7:”))

where:
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(i) f:R x M — M is a dynamical system and M is a topological space;

(ii) the maps A: M — £(X), B:M — L(Y) are locally integrable in Bochner’s
sense, where £(X) and £(Y) are Banach spaces of linear bounded maps;

(iii) the maps f: X XY xM — X, ¢: X xY x M — Y are locally integrable
in Bochner’s sense with respect to u for fixed x and y and they satisfy the
Lipschitz conditions with small ¢ uniformly with respect to u:

|f(x)y7,u) - f(x,>y’>/~/’)| < 6(|1’ - 1”| + |y - y’|)7

l9(x,y, 1) — g(z", ', )| < (e — 2"+ |y — o',

and, in addition,
sup |f(z,y, p)| < +00;
RN
(w)yi € N, C; € L(X), D; € L(Y), the maps [;; X x Y xM — X and
K;: X xY x M — Y satisfy the Lipschitz conditions

|Il(x7y7u) - Ii(mlayl7u)| S E(|'Clj - wl| + |y - yl|)7

|Kl(x7y7u) - Ki(mlayl7u)| S E(|'Clj - wl| + |y - yl|)7

and, in addition,

sup |Li(z,y, p)| < +o0;
L,T,Y, 1

(v) the map z — = + C;(p)z is homeomorphism;

(vi) the moments 7; of impulse effect form a strictly increasing sequence and

lim 7, = 4o00.
n—oo

Let ®(-,to, zo, Yo, 1): [to, +00) — X x Y be the solution of the system
(2.1), which satisfies the initial condition ®(to + 0, to, Zo, Yo, ) = (Z0,yo) and
(P(t> tO; o, Yo, ,LL) = (1’(t, tO; o, Yo, /J‘)a y(t) tO; To, Yo, /J’)) At the break points Ti
the values of all solutions are taken at 7; — 0, if it is not specified otherwise.

Let U(t,7,u) and V (¢, 7, ) be the Cauchy evolutionary maps of the corre-
sponding linear impulsive systems:

{ dU/dt = A0(t, u))U,
AUli=r, = Ci(w)U(ri —0),

{ dv/dt =B
AV|t:n = DZ(IU)V(’I} - 0)
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In addition we assume that they satisfy the following equalities:

—+o0
Lzsup(/ U (b0, 7, )I[V (7, o, )] dir
to,p to
+ S [Ulto, 7o IV (7 — 0,0, )] | < o0, (2.2)
to<T;
—+o0
M=sw | [ Wt mpldr + 3 Wil | <o (23)
to. to to<t;

Let us consider (2.1) and the system:

de/dt = A0t p))w,

dy/dt = ( (t, 1)y + g(z +v(t,2,y,00, 1), y, 0t 1)),
Am|t='rl = (Tz 0)7 (24)
AyYli=r, = y(1i = 0) + Ky(z(m; — 0)

+ U(Tz - 0,.’15(7'1 - 0),?](7’; 0) (Ti,,u)),y(Ti - 0)7:“’)

DEFINITION 2.1. Two systems of impulsive differential equations (2.1) and
(2.4) are dynamically equivalent if there exists the map H:Rx X xY x M —
X x Y with the following properties:

(i) Hit,,, 1) Rx X xY x M = X xY is homeomorphism;

(”) H(taq)(tat07x07y07p’)76(t - th:U’)) = ‘I](tvt07H(thanyOa/j’)7u)a th Z
to, where ¥:[ty, +00) > X x Y,

‘I’(t;toaﬂfo;yoaﬂ) = (l'o(t,tg,:L’g,yo,lu),yo(t,to,l’g,yo,u)) is the solution Of
the system (2.4);

(#3) if the system (2.1) is autonomous and without impulses, then H does
not depend on t.

3. THE MAIN THEOREM

THEOREM 3.1. Let the hypotheses (1)—(vi) be fulfilled, and suppose the inequal-
ities 4Le < 1 and 2Me < 1 + /1 —4Le be satisfied, where the constants L
and M are specified by formulas (2.2) and ((2.3). Then (2.1) and (2.4) are
dynamically equivalent.

Proof. Step 1. Let us consider the Banach space By of the bounded maps
that are continuous for (t,z,y, 1) € (7, Tit1] X X X Y x M and have first kind
breaks for t = 7;:

B, = {v‘v:RxXxYxM—)Xand sup |v(t,z,y,pm)| <oo}

t,z,y,p
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with the norm ||v|| = sup, , , ., [v(t,z,y, |-
Let us introduce the set:

Gi(p) = {veBi| o,z 0 —v(ta, 2 | <plz =21} (3D
G1(p) is a closed subset of the Banach space B;. In G (p) we consider the
functional equation:

+0o0

vl(t07x07Z70(tU>u)) = - : U(tU)T) /J,)f(l‘o(T)

+v1 (T; Zo (T); Z(T)v 0(T> N)); Z(T)) 9(T7 ,u)) dr

- Z U(tovTi)/J‘)Ii(xO(Ti - 0)

to<Ti
+v1 (Ti - 0,370(7'1' - 0)7 Z(Ti - 0)70(7—1'7/1'))’ Z(Ti - 0),/},) (32)

and

Z@ZVwme+/V@ﬂMMm@

to

+v1 (T7 Zo (7-)7 Z(T)v 0(7-7 u))v Z(T)a 6(7—’ :u’)) dr

+ Z V(t,Ti;M)Ki(mO(Ti_O)
to<ti<t

+v1(7-i - O,Hfo(Ti - 0)72(7—1' - 0)70(7-1"//'))72(7—1' - 0),/},),

where xo(7) = U(7, to, 1t)X0-
To solve the functional equation (3.2) we introduce the operator E from
G1(p) to By by the formula:

+oo
Emmﬂmawmwnz—/’ Uto, 7. 1) f(zo(7)

+v1 (T; Zo (T); Z(T)v 0(T> N)); Z(T)) 9(T7 ,u)) dr

- Z Ulto, s, ) Ii(wo (T — 0)

to<t;
+v1(Ti - vaU(Ti - 0)7Z(Ti - 0))9(Tiyu))7z(7-i - 0)7.”)

and
t

z(t) = V(t,to, )z + ) V(t, 7, 1)g(zo(T)
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+u1 (Tv Lo (T)) Z(T)v 0(T> N)); Z(T)) 9(7_7 ,u)) dr

+ ) Vit wKi(wo(ri - 0)

to<ti<t
+v1(Ti - Ova(Ti - 0)>Z(Ti - 0):9(%';#)),2(71' - 0)7.”)

Let us estimate the difference ||Ev; (o, o, 2z, u) — Ev](to, x0,2’, p)||, taking
into consideration the properties of f, g, I;, K;, v;. After mathematical
transformations we obtain

v (to, %0, 2, 1) — Ewi (fo, o, 2", )| < plz = 2| +eM(p + 1)||vr — vi]].

If 226M < 1+ /1 —4eL, then eM(p + 1) < 1. We conclude that E is a
contraction. It involves there is only one solution in Gi(p), satisfying the
functional equation (3.2).

Next, we construct the map:

Hl(tO,:I;O,Z’u) = (hl(t03x0727u)7z) = (370 +U1(t0,$0,2’,6(t0,/},)),2)-

It can be easily checked that:

Hl(t) \I,(t)t[);xO;yO;,u))a(t - tO;,u)) = (I>(t7tO;Hl(tU;xO;yoau)yu)'
Step 2. In the same space G (p) we define the map by the following formula:

+0o0
U2 (tov o, Yo, 0(t07 ,u)) = U(t[): T, M)f(@(T, to, To, Yo, N); 0(7-) N)) dr

to
+ Z U(t077-l7:u’)ll(q)(7—l - 07t07m07y07u)7:u’)'
to<;

Next, we compute that

'UQ(tv q)(tathwmyOap’):a(t:u))

400

= U(t;T;M)f(‘I’(Tat0,$0;y0,ﬂ):9(T,N))dT
t

+ Z U(taTlap’)Iz(@(Tl - O,tg,l’[),y[),/.lz),,u)- (33)

t<t;

We construct the map:

Hz(to,l“o,yoaﬂ) = (h2(t07m07y0;p’)7y0) = (1‘0 +UQ(tU)xO;yoae(tU;p’)):yU)'
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Applying the (3.3), we conclude that

h2(t7 (I)(tat075605y07u)50(t - tO:u)) = U(tathu)hQ(tva07y07ﬂ)'

Step 3. Let us prove that Hs(to, Hi(to, %o, Yo, 1), ) = (To,y0)- It is suffi-
ciently to check up that

hQ(t07H1(t07x07y07u)7:u’)

= hl(thﬂfo,yo,M) + v2(t07Hl(tovmﬂayﬂyu)ae(toau))

= x0 + vi(to, To, Yo, O(to, 1)) + va(to, Hi(to, To,yo, 1), 8(to, 1))

+o0
=To — U(tO)T) N)f(‘}(ﬂ tO;Hl (t07m07y0)/~1‘)7,u))9(7_7 ,LL)) dr

to
—Z (to, 7i, 1) 1;(®(7i — 0, to, Hi(to, To, Yo, ), 11), 1)
to<T;

+o0

+ U(tO)T) N)f(‘}(ﬂ tO; Hl(t07m07y0)/~j‘)7,u))9(7_7 ,LL)) dr

to

+ Z t077-la l (Ti_07t07Hl(tOVCEO:yO:u)nu’)au) = To-
to<Ti

Step 4. Now let us prove Hi(to, Ha(to, o, yo, 1), 1) = (z0,¥0). Let us con-
sider the Banach space Bs of the bounded maps that are continuous for
(t,z,y,2,p) € (15, Tir1] X X X Y x Z x M and have first kind breaks for
t =T

B, = {v‘v:]RxXxYxZ—)Xand sup |v(t,z,y,z,u)| <oo}

t,z,y,z

with the norm ||v|| = sup, , ,, . . [v(t, 7, y,2, 1)
Let us introduce the set:

Ga(p) = {v € Ba |lo(t, 2,9,2,0) — v(t,w,9,2 ) < plz =21} (3.4)

In the space G2 (p) we consider the functional equation:

+o0
vs(tos 70, Yo, 2 O(tes 1) = / Uto, 1) (F(2(7),8(r, 1)

to

—f(:L’(T) + U3 (T) Q(T)) Z(T)v 0(T> N)); Z(T)) 9(7_7 ,u))) dr
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+ Z Ulto, i, 1) (L;(®(7; — 0), ) — L;(x(m5 — 0)

to<t;

+v3(1; — 0,®(7; — 0),2(1; — 0),0(73, 1)), 2(15 — 0),u)) (3.5)
and

2(t) =V (¢, to, )z —l—/ V(t, 7, w)g(r,z(T)

to

+us(7, ®(7), 2(7),0(7, 1)), 2(7), (7, 1)) dr

+ Y V(to, 7, ) Ki(w(r; —0)

to<ti<t
+v3(1; — 0, ®(1; — 0), 2(1; — 0),0(735, 1)), 2(75 — 0), ).

We introduce the operator E:

+0o0
Euvs(to, 0,0, 2,0(to, 1t)) :/ Ulto, 7, 1) (f(®(7),0(T, 1))

—f(:L’(T) + U3 (T) Q(T)) Z(T)v 0(T> N)); Z(T)) 9(7_7 ,u))) dr

+ > Ulto, i, 1) (1(@(7; = 0), ) — Li(w(7; — 0)

to<t;

+U3(Ti - 07 q)(Ti - 0)7 Z(Ti - 0)70(7—1'7/1'))’ Z(Ti - 0),/},)) (36)

In the same manner as we produced in the first step we determine the differ-
ence ||Evs — Evj||. We take the same decisions and finally obtain, that E is a
contraction in Gy(p). There is only one solution for the functional equation
(3.5). Next, we construct the map:

H3(t07m07y0727:u’) = (h3(t07x07y0727p’)72) = (wO +’U3(t03x07y07270(t07u))ﬂz)‘

We notice that the map
Oé(to’ Zo, Y0, %, 6(t07 ,U/))

= ’UQ(th:LD:yan(tOnu’)) + v (th hQ(t07m07y07:u’)727a(tOHU’))

also satisfies the functional equation (3.5) and a € Ga(p), therefore
U3 (t07 To,Yo0, %, 9(t07 ,LL))

= U2(t0,1’0,y0,9(t0,,u)) + 1 (t07 h2(t0,1’0,yo,,u),z,a(to,,u))-
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Now we make equal the third and the fourth argument of v3 and put them
into the expression.

We obtain that vs(to, zo, Yo, Yo, 8 (to, 1)) = 0.

Therefore Hi(to, Ha(to, %o, Yo, 11), 1) = (0, Yo)-

hl(t07H2(t07man0nu’)7/"’) = h2(t07m05y07u) + Ul(toaH2(t0,5507y0,ﬂ)a9(t0711))

= x0 + v2(to, %o, Yo, 0(to, 1)) + vi(to, Ha(to, To, Yo, 1), 0(to, 1)) = o.

We get that Hy(t,-,-, ) is a homeomorphism establishing dynamical equiv-
alence of systems (2.1) and (2.4). O
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