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ABSTRACT

We consider various finite difference schemes for the first and the second initial-boundary
value problems for linear Kuramoto—Tsuzuki, heat and Schrédinger equations in
d-dimensional case. Using spectral methods, we find the conditions of stability on initial
data in the Ls norm.

1. INTRODUCTION

There are many studies on the finite difference schemes for initial-boundary
linear and nonlinear evolutionary problems. There are two—layered schemes
with weights [4], [6]-[8], various three-layered schemes with and without
weights [1]-[3], [7]-[9], also various splitting schemes [4], [7], [10], which al-
low to solve multidimensional problems using local one-dimensional schemes.
The purpose of the present paper is linear stability analysis of Kuramoto—
Tsuzuki, heat and Schréodinger equations. It is an important feature in the
theory of nonlinear equations. It is difficult to expect a stability of the scheme
for nonlinear equation, if the scheme for a linearized equation is unstable. An
object of investigation is finite difference schemes approximating an equation
ou & %

Here we have three cases of equations:
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1. If a > 0 and b = 0 we have a heat equation;

2. If a > 0 and b # 0 we have the Kuramoto—Tsuzuki equation;

3. If a =0 and b # 0 we have the Schrédinger equation.

In the present paper we are investigating how the condition of stability
of difference schemes (Courant condition) depends on the coefficients a and
b and other parameters of finite difference schemes. As a rule there are no
connection between heat and Schrédinger equations in numerical analysis. In
the present paper an attempt was made to unite these equations into one
class continuously varying the coefficients a and b. The unification is made
considering finite difference schemes for these equations.

In §4-86 we have investigated and found the stability conditions in the
norm of space Ly for two—layered weighted finite difference schemes and two
types of weighted splitting schemes. In §7-89 we have found the conditions
on parameters, when necessary von Neumann’s stability condition holds for
a hopscotch difference scheme, DuFort—Frankel type and other three-layered
weighted schemes. We have used spectral methods [5], [7] in stability analysis.
Note that the stability conditions are the same for both first and the second
boundary value problems.

All the results of analysis are presented in a table at the end of the paper.

2. FORMULATION OF THE PROBLEM. MAIN NOTATIONS

We consider some finite difference schemes for the linear Schrodinger, Kura-
moto—Tsuzuki or a heat equation:

0 _
6—;‘ = (a+ib)Au,  (x,t)€Q. (2.1)
Here x = z1,...,24; u(x,t) is a complex-valued function; i = /—1; A is d-

dimensional Laplacian; a > 0, a?+b? # 0; Q = [0, 1]¢ is d-dimensional domain
with a boundary I' = 99; Q = Q x [0,T] is (d + 1)-dimensional domain with
a boundary S =T x [0,T]. Let us consider an initial condition

u(x,0) = up(x), x €N (2.2)
and boundary conditions of the first or second type

u(x,t) =0, or Z_Z(X’t) =0, (x,t) € S. (2.3)

Here n is normal vector to the boundary S of the domain Q.

Let us denote the uniform grid with the steps 7 and h; in the domain @
and the following notations in this grid:

r = T/M, h;=1/N; j=1,...,d, h=min{h,..., ha},
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h = max{hl,...,hd}; Qr=0p X0y, Qp=0p Xwr, Qp=wp X ws;
t; = jr, or={t;;5=0,..., M}, w,={t; =75;7=0,...,M -1},
or wr=A{t;;5=1,...,M —1} for three — layered schemes;
Tl = rihy, wp = Wi h X oo X Wa hy, Wh=WihX...XW4h,
Wih = {Clﬁl,m, 7 :0,...,Nl}, Wi,k :{.7;[7”, r=1,...,N; —1}.

For the second boundary value problem we introduce also the fictitious grid
poInts (T1,pyy---sTt,—1,---,Tdry) A (T1,py,- -, TLNH1, - - -5 Td,rg), Where
rp=0,...,N, x,-1 = —h, v+ =1+ hy.

Let function f = f(z;) be some grid function on a grid @y . Let

Sif =05 (f0)+ F(1) + D fla)h.

TIEWL R

Let us define an inner product and the norm of grid functions u and v in a
space Loy, the grid analogue of the space Lo, as

(u,v) = Sy (52(- . Sd(u(x)v*(x)) )), [|lul| = v/ (u, u).

We use the following notations for the grid functions:

p = p{-:p(ml,m:---:md,rdat]’): ﬁ:p{-—i_l: ﬁ:pz'_la pt:(ﬁ_p)/T;
ﬂ_p - p(xl,m;' e Tl —1ye - '>xd,7“datj); I‘l+p - p(xl,m;' e Tlr41y - '7md,rd>tj)7
(T'p=p)/hi, par=w@—T, )/, ps =T 0T p)/2M,

d
pilzl = Ah,lp - (pzl _pfl)/hh Ahp - lel pflml'

]
&
|

Investigating properties of finite difference schemes, in all cases we consider
initial conditions

p(x,0) = uo(x), X € wp, (2.4)

and zero boundary conditions for the first boundary value problem
p(x,t) =0, (x,t) € SNQp, (2.5)
or grid analogue of the Neumann condition for the second boundary problem
pa,(x,t) =0, (x,t) € (; =0Uz; = 1) N Q. (2.6)

In the case of the first boundary value problem we shall define

d
Vg = Hvkl, Vg, = \/isin(nkl:rl), here k,=1,...,N;, — 1. (2.7)
=1
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For the second boundary value problem we shall use similar notations

cos(mhyzy) =1, if ky =0;
’Uk:HUkl, Vg, = ﬂcos(wklxl), if k?l :].,...,Nl —].; (28)
cos(mkx;), if i =

These systems are complete orthonormal systems of grid functions in the
space Lop, with zero values or zero derivative values on the boundary. For the
simplicity, for some fixed vector k we shall often denote the functions from
these systems as v = vk and w = vN_k-

We shall note also that for the both boundary value problems a set of
functions vy is a complete system of orthogonal eigenfunctions of the problem

ARX(x)+AX(x) =0, x€wy (or x €m, in the second case)

with the first (2.5) or the second (2.6) boundary conditions on the grid.
All eigenvalues of the first and the second boundary problem are in the
corresponding interval:

4y PEL d
/\6[2_12 Zh2 T]’ or [O,Z

=1

] (2.9)

S;,| e~

Investigating splitting schemes we shall also use the notation A(!) for the eigen-
values of the locally one dimensional problem

Ap X (z) + A(Z)X(a:l) =0, 2 €wp; (or m € @py in the second case)

with corresponding boundary conditions. The values of ) can be described
in the same way as in (2.9) taking d = 1.

Let us also introduce some notations, which we shall use extensively inves-
tigating difference schemes below in this paper:

. 2T , A
v =a-+ib, Vl:h_[?’ V:;m, 60 = 5 € [0;1], 6:—V€[0;1].

3. GENERAL STABILITY REQUIREMENTS

In the next sections we shall investigate two or three-layered finite difference
schemes. These schemes we can write as the following equations:

Aip=Aop+Asp = p=A"Asp+ AT Agp = Aop + Asp.
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Ay, Ay, Az are linear operators in the space B, A; is non-degenerate operator.

Taking into account boundary conditions (2.5) or (2.6), we consider B =
Lsy, for two—layered schemes, B = Ly, X Loy for three-layered schemes. Let
A: B — B be a linear amplification operator:

p=Ap or (ﬁ) :A(g). (3.1)

In all our finite difference schemes this operator does not depend on time.
Thus, for all j =0,..., M we can write

Ny or p(tje1) | _ 45 p(t1)
Plts) = 4'plto) ( (1) ) = <p(to>>'

We shall use the following definitions of the stability of the difference schemes:

DEFINITION 3.1. The difference scheme (3.1) is stable on initial data, if there
are positive constants 1o and hyo such that for all 0 < 7 < 19 and 0 < hy < hyg
the inequalities

147 < C = llp;)ll < Clip(to)ll (or llp(ti40)ll < C(llp(to)ll + llp(t0)I))
hold. Here j =0,...,M and the constant C is independent from T, hi,t;.

DEFINITION 3.2. (von Neumann’s necessary stability condition) [6]. Let A4 be
a set of all eigenvalues of the not time-dependent operator A. Let A = |\1| =
max{|A4|}. Then the necessary stability condition of the difference scheme
(3.1) reads as A < 1+ C1, where 7 — 0 and C =InC/T.

In the case of two—layered weighted schemes, splitting schemes and hopscotch
type schemes we have A3 = 0 and A = A,. We shall find for these schemes
that either grid functions vy are the eigenfunctions of A, or functions vy and
UN—k compose a proper subspace of this operator. Thus, using the functions
vk as a basis of a space B and numbering functions vy and vn_k as a neigh-
bouring vectors, we can write the operator A as a diagonal matrix or a matrix,
decomposed into diagonal 2 x 2 blocks, which we denote as Ay.

If A is a diagonal matrix and A(k,k) = A\¢ are diagonal elements, the
stability condition ||A7|| < C is equivalent to the requirement |A(k, k)| <
1+ C'1 for all possible k. Thus, in this case both definitions are equivalent.

If A is a blocked diagonal matrix then the condition ||47|| < C is equivalent
to ||Af || < C with the same constant C' for all possible k.

In the case of three—layered schemes we have

()
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where [ is identity operator and 0 is zero operator. In all difference schemes
we investigate, the functions vy are the eigenfunctions of the operators As
and Az. A set of functions (vk,0)” and (0,vx)T is a complete orthonormal
system of a space B = Loj x Loy. Here (u,v) is a row vector and (u,v)” is a
column vector. Enumerating the basis of the space B in a such way that the
functions (vi,0)? and (0,vk)? be a neighbouring functions, we can write the
matrix of the operator A as blocked diagonal matrix with 2 x 2 blocks on a
diagonal which we denote as Ayx. Here

ay= (AR Al

Analogously as for the blocked diagonal matrices A for two-layered schemes,

a stability condition [|A7]| < C'is equivalent to the condition [|A}|| < C' with
the same constant C' for all possible k.

4. TWO-LAYERED WEIGHTED DIFFERENCE SCHEME
We consider a two—layered finite difference scheme with a weight o € [0, 00):

p—p
T

= (a+ib)Ap(op+ (1 —0)p), (x,t) € Qpn(or Qp).  (4.1)

Here and for all other difference schemes below we suppose, that the solu-
tion u(x,t) is smooth enough, o is not dependent on the grid steps and the
conditions (2.4) and (2.5) (or (2.6)) are fulfilled.

We can write the difference scheme (4.1) as

. -1
p= (I - 'YTU'Ah) (I +y7(1 — U)Ah)p = Ap.

Since a > 0, an operator (I —y7oAy) is non-degenerate, and all the functions

v = vk from (2.7) or (2.8) are eigenfunctions of the operator A. We can write

the following equalities for the eigenvalues of the scheme:

_ 1-2v6y(1—o0)
14 2ubyo

v28%|y2(1 — 20) — avd
(1+ 2avdo)? + (2bvéo)?”

g —1=4

Note that |¢g| <1+ Cr = |g> — 1 < C7 when 7 — 0. Thus, we require
20|y *(1 — 20) — avé < C7((1 + 2avéo)® + (2bvéo)?).

If o € [0.5,00), this inequality is satisfied unconditionally for both boundary
value problems.

Let o € [0,0.5), then v26%|y|*(1 — 20) > 0. Let us consider the value of
lg|* — 1 as a function dependent on vd. Note that v € [0;v]. When vé
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increases from 0 till some value vd, |g|? — 1 decreases from 0 till some negative
value. When (vd) — oo, |q|? — 1 increases till (1 — 20)/0? > Ct > 0. Thus,
the value of ¥ must be bounded. Now the stability requirement is equivalent
to

V|v?(1-20)—av < C((142av0)*+(2bvo)?) = v|y[*(1-20)—2a < C1/v.

From here we directly obtain the stability requirements for the difference
scheme and complete the proof of the following theorem:

THEOREM 4.1. Suppose that the solution of the differential problem is smooth
enough. Then if o € [0.5,00), the difference scheme (4.1),(2.4),(2.5) (or
(2.6)) is unconditionally stable for the evolutionary equation of any type.

If 0 €10,0.5) then this scheme is stable when the following conditions hold
for the Kuramoto—Tsuzuki, heat and Schridinger equations respectively:

d d
27 a 2 27 1 2 T
< L — <C.
E:h%—0ﬁ+mX1—mﬂ+Ch’Z;h%—a@—mﬂ+Ch’E:h4—c

5. SPLITTING SCHEME I

Let d > 2. We consider the following splitting finite difference scheme with
weights o7 € [0,00), [ =1,2,...,d:
p(l) — p(lil)

T

) (X)t) € Qh (OI' Qh))
(5.1)

m+wx%¢”+a—mmW®%
d)

1Ty

™ B

I = 1,...,d, p(o):p, p(
We can write the equations of a scheme (5.1) as
PO = (I —yrorng) (I +77(1 = o) Ap)pt Y = Apt-),
Similarly as in §4 we note that the functions vy from (2.7) or (2.8) are eigen-

functions of the operators A;, [ =1,...,d and of operator A = AgAq_1 - - Ay,
where p = Ap. Note, that v, v(¥), ¥ satisfy boundary conditions. We have

1-XOry(1 -0 1—20,6W~(1 = o
Vv = qu, ¢ = 7( D _ ! VZ( 1)
1+ A 71y0 1+ 21,600,

>
I
—E

~

1

THEOREM 5.1. Suppose that the solution of the differential problem is smooth
enough. Then if for any l = 1,...,d the weight oy € [0.5,00), the difference
scheme (5.1),(2.4),(2.5) (or (2.6)) is unconditionally stable for the evolution-
ary equation of any type.
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If there are such indezes | that o; € [0,0.5) then this scheme is stable when
for all these indexes the following conditions hold for the Kuramoto—Tsuzuki,
heat and Schrédinger equations respectively:

2T 1 T
5 <———"—+Ch}, 4 <C.
h,?—a(1—20,)+ T

2T

a 2
— <
hi = (a® 4+ b*)(1 — 20y) +Chi,

Proof. The first part of this theorem follows from the estimates |¢V| < 1 if
only oy € [0.5, 00).

We see, that the requirements at the second part of the theorem are suffi-
cient to achieve the estimate |g| < 1+ C7. These requirements are necessary
also. On contrary, assume that there is [ such that o; € [0,0.5) and the restric-
tion on 7 and Ay is not satisfied. For the simplicity, [ = 1. Then for the first
or the second boundary problem we respectively consider the eigenfunctions

v = (\/§)d sin(m(Ny — 1)z1) x sin(m@z) X - - - x sin(7zy) and v = cos(TNix1).

Using the results of §4 we can easily show that for all 7 small enough we have
|Hld:2 l¢P]? — 1| < Cr and |g* > (1 — C7)|¢™|?. Since we suppose that
difference scheme is stable, we have |¢|> < 1+ C'r and from here it follows
the estimate |¢("|> < 14 C"7. Due to the Theorem 1, this contradict to
the supposition that there is no restrictions on 7 and h;. This completes the
proof of this theorem. O

6. SPLITTING SCHEME II

Let d > 2. We consider the following splitting finite difference scheme with
weights o7 € [0,00), [ =1,2,...,d:

p —p . o .
- = (a+ib)(op" + (1 - Ul)p)fm, (x,t) € Qn, (or Qp),
d d
I = 1...,d, >0, Y ay=1, Y ap =p. (6.1)
=1 =1

In addition to (2.10) for alll = 1,...,d we denote

(87} T/\(l) 2Vl6(l)
m=— Y= =

o1 m YL

d
=Pyl +2a+1, e=) -2
=1

Note that for both boundary value problems we can consider y; € [0; 2v;/n/]-
We can write the equations of a scheme (6.1) as

p(l) = (alI - ’)/TO'lAh’l)il (CllI + ’)/7'(]. - Ul)Ah,l)p = Ap.
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The functions v from (2.7) or (2.8) are eigenfunctions of the operators Ay,
I =1,...,d and the operator A = E;i:l oAy, where p = Ap. Note, that v,
v, ¢ satisfy the boundary conditions. We find

— D _
o0 — 40 _ 1= (1 — o) /ey :((1_l+ayz+1)_ibyz )v.
1+ 2D 7'701/041 [} g1¥1 a1

The eigenvalue ¢ of the operator A is

d d ay; + 1 d by
1 . i
0=Y o = (“1-et 3w =)~ i3 on

=1 =1 =1

Using the expression of € we can find the value of |g|> — 1

d
ay; +1 by 2
T R Y RN

=1

d

_ Z |’7|2yl — 2ay;) melvl i —y1)°

PrPl

=1 k<l

THEOREM 6.1. Suppose that the solutwn of the differential problem is smooth
enough. Then the inequality € = Zl 14 —2<0 for the weights of the differ-
ence scheme (6.1),(2.4),(2.5) (or (2.6)) is necessary and sufficient estimate
for the unconditional stability of the scheme for the evolutionary equation of
any type.

Ife > 0, then the following restrictions on the time and spatial grid steps are
sufficient stability conditions of the difference scheme for Kuramoto—Tsuzuki,
heat and Schridinger equations respectively:

2T aq 2T

T MM L op? Ch, — <C forall I=1,....d.
h?_s(a2+b2)al+ P hz_ + LopEstodora T

hi

Proof. Note that a > 0, for all 7, h;, A(!) the values y; > 0 and ¢; > 1. From
the estimate € < 0 the non-positiveness of the right-hand side of the last
equality follows. Thus, for all k the eigenvalue g satisfies the estimate |qi|> <
1. Since operator A can be written as diagonal matrix, this estimate indicates
stability of the scheme. Thus, ¢ < 0 is sufficient estimate for unconditional
stability of the scheme.

Now suppose, that our scheme is unconditionally stable. Since there are no
restrictions on the grid steps h; and 7, taking different values of these grid
steps and different values of A\(!) we can vary y; in the interval (0,00). It is
also possible to select such A(¥) and h; that y; = y for all [ = 1,...,d, and
y — oo when 7,h — 0. In this case we have the following:

lg)> —1 e(2+¢e)>Cr, when y =y — 0.

d 2.2
-2
-y mEh*y” ~ 2ay) |
'
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It is obvious, that if € > 0, the condition |q|?> < 1+ Ct could not be satisfied
in this case. Thus, the estimate ¢ < 0 is also necessary for unconditional
stability of the scheme. Therefore, the first part of this theorem is proved.

In the case when £ > 0 some restrictions on time and space grid steps 7
and h; appear. Considering different sets of parameters o; and o; we have
different cases of these restrictions. In any case a sufficient condition of the
stability of difference schemes for all evolutionary equations is

ePyi —2ay <Cr 1=1,...,d,

since this condition leads to the estimate |g|> < 1+ C'7. From here the proof
of the second part of the theorem follows. O

7. HOPSCOTCH TYPE SCHEME

We consider an explicit finite difference scheme on the grid Q or Qp:

2pe — De _ (a + ib)Ahpe (a)’ 2po — Po

= (a+ib)Anpo (D),

A~ T ~ ~ T ~
Po—Po — (avit)Anp, (), 2P
T T

2

= (a+ib)Appe  (d)(7.1)

Here p. = p(xe), |€| = e1 + €2 + - + e4 is even number, p, = p(Xo), |0] is
odd number. In addition to (2.10) for the fixed k we define

d d
c= ZV[ COS(ﬂ'k‘lhl) = — Z 1% COS(?T(Nl — k‘l)hl) € [—V; V].
=1 =1

Here k; =1,...,N;—1(0,...,N;) for the first (second) boundary problem.

We shall investigate how operator A, Av = 0, described in the equations
(7.1), transforms function v = vy from (2.7) or (2.8). Note that the coefficients
r; and r;-, j =1,...,4, introduced below do not depend on the grid point x
but depend just on the vector number k of the function v = vx. Deriving
the expressions from the (7.1 b-d) we use the fact, that the neighbours of
each ’odd’ (’even’) point are ’even’ (’odd’) points, and the function in these
neighbouring points satisfies the formulae derived just before.

(7.1a) = D¢ = Ve + 0.57(C — v)ve = 110,

(7.1d) = (14 0.59v)0, = v, + 0.5r1v¢v, = Tp = T2y,
(7.1¢) = Vo = T2, + 0.57(r1 € — rav)v, = r30,,

(7.1d) = (14 0.59v)0, = r1ve + 0.5737y¢ve = Ve = T4Ve.

Analogously we can find transformations of function w = vNn_k and define
coefficients ri, 7}, r4, . Thus, we have

rn= 1-05yv—-2a), ri=1-05v(v+¢),
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ro = (14 0.5r9¢)/(1+ 0.59v), rh = (1 —0.5r1ye) /(1 + 0.59v),
rg = 19— 0.5y(rov — r10), ry = rh — 0.5v(rhv —rie),
ry = (r +0.5r37¢) /(1 + 0.57v), ry = (r] —0.5r57¢) /(1 + 0.5yv).

Note that for the first boundary value problem v, = (—1)%w,, v, = —(—1)%w,
and for the second boundary value problem v, = w,, v, = —w,. Thus, for
the first (k = 1) and the second (kx = 2) boundary problems we have

! ! ! !
Ty —7T ro +T
w, Aw = (—].)dN 4 3’[) 3 4

r3+r4v
2 2

2

ry — T3

Av = 5

+ (_1)dn

If we introduce a linear operator A, p = Ap, we can write analogous equalities
for Av and Aw, where ri, 7|, s, 7 are instead of T4,TY,T3, 5 respectively.
Operators A and A transform any linear combination of the functions v and
w into a linear combination of these same functions. Thus, v, w, 9, W, ¥, W
satisfy the boundary conditions.

As we have noticed in §3 using the functions vy as a basis of a space B and
numbering functions vk and vn_k as a neighbouring vectors, we can write
the operator A as a blocked diagonal matrix which has 2 x 2 blocks Ay on
a diagonal. Taking vx = v and vn_x = w, using the expressions of r;, r;-
and considering £k = 1 or k = 2 for the first or second boundary problems
respectively, we have the following matrix Ay:

1 (2+72) (4++2 (2% —v?) +277) —(—l)d“ yie(et+v)?
Ay = = (2+7v)? (2+7v)?
2 (—1)d rPe(e—v)? (1—72) (44722 —v?)—272)
(2+yv)? (2+yv)?

It can also happen, that v = w (when k = 0.5N) and instead of the pair
of functions we have only one function. In this case ¢ = 0 and operator A
changes v in the odd and even grid points equivalently and the eigenvalue
g=rs=rs=02-w)/(2+w), g <1

Note, that in the cases of the second boundary problem and of the first
boundary problem in even-dimensional space (d is even) function v has zero
values in all odd grid points. In the case of the first boundary problem in
odd-dimensional space (d is odd) v has zero values in all even grid points.
Thus, one of the equalities ¥, = rov, =12 -0 =171 -0 = rv, Or Ve = 1V, =
r1 -0 = ro - 0 = rau, is satisfied in any case and function v (if it exists) is
also the eigenfunction of the operator A. Therefore, v, o and ¢ satisfy the
boundary conditions.

We shall check that for any other k # 0.5N the eigenvalues of the operator
Ay also satisfy the condition |¢| < 1 and, following definitions of §3, we shall
conclude that the scheme is stable by means of von Neumann.

Let us write the characteristic equation for operator Ay:

24+ )°¢ —229°8 =¥ V* + 4)g+ (2 —w)* = 0.
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Denoting

c=c¢lv, s2=1-¢" 4-s71*=D;+iDy, D;=4—(a*>—0b*)s/?,

Dy = —2abs*v?, D =/D? + D2 = \/(4 + |7|?s2v2)? — 16425212

we can write the following expression of ¢:

(2726 — 2% +4) £ 298\ /72 — 22 +4 (cw/ + /4 - 3272y2)2

(2 +v)? 2+ v

q:

Now the stability condition |¢| < 1 is equivalent to the inequality

|cw/ +4- 52721/2|2 <24y

Using the formula of square root for complex number Dy 4 ¢D-

VD1 +1iDy = i(\/(D + D1)/2 + i sign(D2)+/ (D — D1)/2>, (7.2)
where sign(D») = £1 if Dy > 0 or Dy < 0 respectively, we can write

|071/ﬂ:\/4—52721/2|2 :czy2|7|2+Dﬂ:cux/§(a\/D+D1+b sign(D2)\/D—D1).

Now the stability condition |¢| < 1 reads as follows:

(D —4—|v]*s*v*) + l/(\/ 202‘a\/D + Dy + b sign(D2)\/D — Dl‘ - 4a) <0.

Both terms at the left-hand side of this stability condition are not positive.
Proving this statement we can write the equivalent inequalities for the first
and the second terms at the left-hand side of the stability condition. Since

D—4—|y?s?*) <0 = —16a*s*v* <0;

v202‘a\/D+D1+b sign(DQ)\/D—Dl‘ <da = |ey]*(D—4—|sv7|?) < 8a®s?,

the stability condition |g| < 1 for eigenvalues of the operator Ay as well as of
the operator A is satisfied.

THEOREM 7.1. Suppose that the solution of the differential problem is smooth
enough. Then the difference scheme (7.1),(2.4),(2.5) unconditionally satisfies
von Neumann’s necessary stability condition for all evolutionary equations.
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8. DUFORT-FRANKEL TYPE DIFFERENCE SCHEME

We investigate an explicit three-layered finite difference scheme with weight
o €10, 00):

~ o d

Pl = (a+ib) (Ahp+ak§ %_hig_ﬁ), (x,1) € Qn, (or Qn). (8.1)

We can write a scheme (8.1) as follows:

2v(tAy + ovI 1—~ov _
/( Jpy L209V
14+ ~ov 1+ ~yov

p=

The functions vy from (2.7) or (2.8) are the eigenfunctions of the problem.
Thus, p, p, p satisfy the boundary conditions. Using the notations (2.10) we
can write an operator A as a blocked diagonal matrix with the blocks Ay on

a diagonal:
_ 2yv(20—0) 1l—rov
Ay = lJi'ym/ 1+60'1/ .

The characteristic equation for operator Ay reads

(1+yov)g* + 2yv(26 — 0)g — (1 — ¥*0*v*) = 0.
For the simplicity of formulas, let us denote

(1 —4(a® — )20 — 5)) +z’(—8aby26(a - 5)) = Dy +iDs,
D =/DZ+DZ = /(I + 47v%3(0 — 8))? — 16a%023(c — 9).

Using (7.2) we can write the roots of the characteristic equation as follows:

(au(a—26) ++(D+ D1)/2) +i(bl/(a—26) + sign(D2)/(D — D1)/2)
(1+ aov) + ibov ’

q:

The stability condition |¢| < 1+ C7 is equivalent to the inequality

1/(\/5‘(0 —29) (a\/D + Dy + b sign(D2)y/D — Dl) ‘ - 2aa)
+ (D —1—4|y**(0 - 6)) < C|1 + yov|*.
Suppose that o — & > 0. This condition can be achieved for all possible § if

only o € [1;00). Analogously as in §7 both terms in the left-hand side of the
last inequality are non-positive and, therefore, the estimate |g| < 1 is valid.
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Suppose now that o € [0,1). For 7, h; small enough we can always find
A from (2.9) such that 0 < § = A7/(2v) < 1. Particularly this estimate
holds when we take § = 1 for the second boundary problem and 1 > § — 1
when 7, h — 0 for the first boundary problem. Using standard investigation
of the left-hand side of the stability inequality it is possible to find that it’s
biggest value is achieved when 1 = § € (o; 1]. Now we can rewrite the stability
condition as follows:

(D = D1) +20(2 - o) (VITE(D = D)2 + 4?1 P2 (1 — o) + a2 - a))
+ (8a2l/2(1 —0) + dav(l — O')) < C(1+ |y)?0?v? + 2a0v)T.

Note, that both terms at the left-hand side of this inequality are nonnegative.
Let us consider a > 0. If we suppose that the scheme is stable, the estimate

8a’v?(1—0)+dav(1—0o) < C(1+|y|*0*v? +2a0v)r = v+v? < C(1+0%V%)r

when 7,h — 0 must be valid.

If 0 < v — 0 it is equivalent to v < C1 and 1 < Ch2.

If0<C; <v<(Cy<oo,itis equivalent to 1 < Cr.

If v = oo, it is equivalent to > < Ctv? = 1< Cr, or, if 0 = 0, to
2 < Cr.

It is clear that while 7,h — 0 in all these cases the stability conditions can
not be satisfied and the scheme (8.1) is unstable when ¢ > 0 and o € [0, 1).

Suppose that a = 0. In this case Dy = 0 and the stability condition reads
as

(D — D) +V2b|v(2 — 0)\/D — D; <C(1+b*0?v?)r.

If we have D; = D > 0, or > < 1/(4(1 — 0)b?), the left-hand side of this
inequality is zero and the condition of stability is satisfied.

If Dy = —-D < 0, or v*> > 1/(4(1 — 0)b?), then (D — D;) = 2D; and now
the stability condition is

2D + 2|b|v(2 — 0)VD < C(1 + b2 v?)r.

If 2 — o0, then inserting the value of D into the formula we obtain equivalent
condition of stability v? < C7v? and 1 < Cr. If 0 = 0, then we have v? < Cr.
This inequality is not valid, when 7 — 0.

If 1/(4b%(1 — 0)) < v?> < C; < o0, then the stability condition is equivalent
to D++D < Cr.

If D > C5 > 0, the last estimate leads to 1 < C'r, that is not valid.

If0<D—=0,wehave D+ VD < Cr = D<Cr? = 40*(1 —o)v? <
1+ Cr2.

Since v2 < (1, the stability criterion can be written as

d
(1 -0 <1+ C’(Z

=1

1\—2 1
—) <1+0Ch%, <—F + Chh
h?) = RV g



The stability conditions of difference schemes 191

THEOREM 8.1. Suppose that the solution of the differential problem is smooth
enough. Then if o € [1,00), the difference scheme (8.1),(2.4),(2.5) (or (2.6))
is unconditionally stable for the evolutionary equation of any type by means
of necessary von Neumann’s stability condition.

In the case when o € [0,1), this scheme is unconditionally unstable for
the Kuramoto-Tsuzuki equations and is conditionally stable by means of von
Neumann for Schridinger equation if only the following condition is valid:

d

2T 1
[
—hi = 2/’ (1—0)

+ Ch*.

9. THREE-LAYERED WEIGHTED DIFFERENCE SCHEME
We consider a three-layered difference scheme with weight o € [0, 00):

pP—p
2T

= (a +ib)Ap(op+ (1 = 20)p+0p), (x,t) € Qn, (or Qr). (9.1)
Analogously as in §8 we write a scheme (9.1) as
p=2rvy(1-20)(I — 2T’)/0’Ah)_1Ahp + (I - 27")/0’Ah)_1 (I +27ry0AR)p.
The functions vk from (2.7) or (2.8) are the eigenfunctions of the problem and
the boundary conditions are satisfied for p, p and p. An operator A can be
written as a blocked diagonal matrix with blocks Ay on a diagonal and the
characteristic equation for Ay is
(1 + 4v0vo)q* + 4vév(1 — 20)q — (1 — 16+%6%%0?) = 0.
Once again we introduce the notations
(1 +4(a® — )82 (1 — 40)) + i(8ab62u2(1 - 40)) = Dy +iDs,

D =1/D? + D2 = /(1 — 4720212 (1 — 40))? + 16a2621%(1 — 40).

Using these notations and (7.2), analogously as in §8 we can write the the
stability inequality equivalent to the estimate |¢| < 14 CT:

261/(\/5‘(1 —20) (am +b sign(Dg)M) ‘ - 4ao)

+ (D — 1+ 4]y20%2 (1 - 40—)) < C|1 + 4ydvol*r.

When o € [0.25,00), we have 1 — 40 < 0 and analogously as earlier we can
obtain non-positiveness of the left-hand side of the stability inequality.
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If o € [0,0.25), then, noting that the left-hand side of the stability inequality
is biggest when 1 =4 € [0;1], we rewrite the stability condition as

((D —Dy) + 4v(1 - 20) (\/|7|2(D " DN)/2 + 42 P2 (1 — do) + a® — a))

+ (8a2y2(1 —40) + 4av(l — 40)) < C|1 + dyov|*r.
If a > 0, analogously as in §8 we show that the estimate
8a’1*(1 — 40) + 4av(l — 40) < C|L + 4yov)*’r = v+ 12 <C(1+o*V)T

can not be satisfied when 7,2 — 0 and the scheme is not stable.
If a = 0, the stability condition reads as

(D — Dy) + 4[blv(1 — 20)\/(D — D1)/2 < C(1 + 16b*0*v*) 1
and this condition is satisfied if v < 1/(2|b|v/1 — 40) + Ch*.

THEOREM 9.1. Suppose that the solution of the differential problem is smooth
enough. Then if o € [0.25,00), the difference scheme (9.1),(2.4),(2.5) (or
(2.6)) is unconditionally stable for the evolutionary equation of any type by
means of necessary von Neumann’s stability condition.

In the case when o € [0,0.25), this scheme is unconditionally unstable for
the Kuramoto-Tsuzuki equations and is conditionally stable by means of von
Neumann for Schrédinger equation if only the following condition is valid:

d
2T 1
) N o1 X
; h? = 2./62(1 — do)
10. CONCLUSIONS

We use the following difference schemes to approximate the problem (2.1-2.3):

1. Two-layered weighted difference schemes (4.1);

Weighted splitting scheme I (5.1);

Weighted splitting scheme IT (6.1);
Hopscotch scheme (7.1);

DuFort-Frankel type weighted schemes (8.1);

6. Three-layered weighted schemes (9.1).

The necessary von Neumann’s conditions of the stability on initial data for
these schemes depend on the real constants a and b of the equation (2.1) and
on parameters of the difference schemes. All these conditions are presented
in the table.

Looking at this table one can notice that in the case of 1, 2, and 3 scheme,
the necessary von Neumann’s conditions are also sufficient. In these cases the

Ol LN
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Method Truncation Stability conditions
error a>0,b=0o0ra>0,b#0 | a=0,b#0
. 72 27 a 2 T
1 | o €[0;0.5) R2 4+ 7 > 2 < i +Ch > i <cC
oc=0.5 2+ 12 Stable Stable
o € (0.5;00) %+ 7 Stable Stable
[ . 52 27 a 2 T
2 | ko €[0;0.5) B2+ s < e Ok hi <cC
Vkor =0.5 R% + 72 Stable Stable
Vk oy € (0.5;00) | B2 47 Stable Stable
3 (;—: € (0;2] %+ 7 Stable Stable
had . 52 27 g’} 2 T .
Yo Sk e(200) | R4 v " < orrie oM vk = <c
4 | | B2+ 72 | Stable* | Stable*
5 | 0c=0 h% 4+ 12 Unstable i—% < o + Ch**
o e (051 h? + 724 (Z) | Unstable 2r <L 4 Cptt
0 1) ) (%) hZ = 20p|/1—0
o €[1;00) R®+ 72+ (%) | Stable* Stable *
. 72 2 27 I S 4 %
6 | o €[0;0.25) iL + 7 Unstable ) < V= + Ch
o €[0.25; 00) h? 4 12 Stable * Stable *

. . . - ag
* It is sufficient condition. ¢ = —2 + E e

Stability by mens of von Neumann’s necessary condition

stability conditions continuously depend on the real constants a and b. For
the 3-rd scheme this condition depends on too much parameters, thus we have
written only a sufficient stability condition.

Note also, that 4, 5 and 6 difference schemes were investigated only by
means of necessary von Neumann’s stability criterion. It is also interesting to
note that 5 and 6 finite difference schemes with corresponding parameters o
are unconditionally unstable if a > 0, but they can be stable if a = 0.

REFERENCES

[1] Ciegis R., Stikoniene O.: Ezplicit schemes for nonlinear Schrédinger type equations,
Report of Lithuanian Inst. of Math. and Informatics, 97-13, 1997.

[2] Dai W.: Absolute stable explicit and semi—explicit schemes for Schrédinger equations,
Math. Numer. Sinica, 11, 128-131, 1989.

(3] Fei Z., Perez-Garcia V., Vazquez L.: Numerical Simulation of Nonlinear Schrédinger
Systems: A New Conservative Scheme, Appl. Math. Comput., 71, 165-177, 1995.

[4] Ivanauskas F.: Convergence and Stability of Difference Schemes for Nonlinear
Schréodinger Equations, the Kuramoto-Tsuzuki Equation and Systems of Reaction-
Diffusion Type, Russian Acad. Sci. Dokl. Math., 50, 122-126, 1995.

(5] Morton K.W.: Stability of finite difference approzimations to a diffusion-convection
equation, Intern. J. Numer. Methods Engrg., 15, 677-683, 1980.




194 M. RadzZiunas, F. Ivanauskas

[6] Richtmyer R.D., Morton K.W.: Difference Methods for Initial Value Problems, Inter-
science, New York, 1967.

[7] Samarskii A.A.: Theory of Difference Schemes [in Russian], Nauka, Moscow, 1989.

(8] Taha T.R., Ablowitz M.J.: Analytical and Numerical Aspects of Certain Nonlinear Evo-
lution FEquations. II. Numerical, Nonlinear Schrodinger Equation, J. Comput. Phys.,
55, 203-230, 1984.

[9] ten Thije Boonkkamp J.H.M., Verwer J.G.: On the odd—even hopscotch scheme for the
numerical integration of time-dependent partial differential equations, Appl. Numer.
Math., 3, 183-193, 1987.

[10] Zaitseva S.B., Zlotnik A.A.: Optimal error estimates of one local one-dimensional

method for multidimensional heat equation [in Russian], Mat. Zametki, 60, No.2, 185
197, 1996.



