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ABSTRACT

The article is devoted to results relating to the theory of rational approximation of an
analytic function. Let f be an analytic function on the disk {z : |z| < p}, p > 1. The rate
of decrease of the best approximations p, of a function f by the rational functions of
order at most n in the uniform metric on the unit disk E with the center z =0 is
investigated. The theorem connecting the rate of decrease of p, with the order o > 0 of f
in the disk {z : |z| < p} is proved. The proof of this results is based on an analysis of
behavior of the singular numbers of the Hankel operator constructed from the function f.

1. INTRODUCTION

Let E = {2z : |2| < 1}, and f is an analytic function on the disk {z : |z| <
p}, p > 1. For any nonnegative integer n denote by R, a class of rational
functions with complex coefficients of order at most n. For each n = 0,1,2,...
we define the number p,, by the next formula:

pn = pa(f;B) = inf max|f() - r(2)].

r€ER, z€EE
It is well known that (see [1], [2])
. 1/n?
limsup (p1p2...pn) " < 1/p. (1)
n—o0
This inequality yields
lim inf p/" < 1/p7, (2)
n—o0

which confirms Gonchar’s conjecture.
DEFINITION 1. We define an order o of the function f in the disk {z : |z] <
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p},p > 1, by the formula:

o =o0(f) =limsupln® In" max |f )]/ In(1/(1 = r/p)), (3)

r—p |2|

where In" 2 = max(0,1nz) for > 0.

An investigation of behavior of singular numbers of Hankel operator con-
structed from function to be approximated allows to specify mentioned esti-
mates (1) and (2) for holomorphic functions having the finite order in the disk

{2:]2] < p}.

THEOREM 1. Let f be holomorphic on the open disk {z : |z| < p},p > 1, and
let o > 0 be an order of the function f in {z:|z| < p}. Then

IntInt ey - p(0 D)
lim sup BT (Poprpu - p ) <1+ 7. (4)
n—o00 Inn oc+1

We give some corollaries. By using the inequalities pp, < pp,_1 < --- < pp , we
get the following upper estimate for limsup In™* In* (p,p")/Inn.

n—oo
COROLLARY 2.
In* In" (ppp") o
li . 5
17rln_>sol<1>p Inn ~—o+1 5)

Theorem 1 also gives us an upper estimate of lim inf In™ In™ (p,,p*)/Inn.
n—oo

COROLLARY 3.
+ 1.1 2n
lim inf " In " (pnp™") c .
n— o0 Inn ~“o+1

2. INVESTIGATION OF THE HANKEL OPERATOR

In this section we present results needed below from the theory of the Hankel
operator.

Let G be the disk of radius 7,0 < r < p, with center z =0, and I' is a
boundary of G. Denote by H>(G) the Hardy class of analytic functions in
the disk G. Each function in the class H>(G) has limit values alone paths
nontangential to ' at almost all points & € T. The function determined on
T by this limit values belongs to the space Ly (I"). The functions in the class
H>(G) are uniquely determined by their limit values and in this sense we
will write that Hy(G) C Lo(T"). We represent the space Lo(T") as a direct
sum Ly(T) = H2(G) ® Ha(G)1 of subspaces, where Hy(G)1 is a orthogonal
complement of Hy(G) in Ly(T).
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The Hankel operator Ay : Hy(G) — H3-(G) is defined as follows. For any
function g € Ho(G) let Arg =P_(gf), where P_ is an orthogonal projection
of Ly(T) onto H2(G)*. It is not hard to see that A is a compact operator.

Denote by {si}, £k =0,1,2,..., the sequence of singular numbers (counting
multiplicity) of the operator Ay (s is an eigenvalue of the operator (A% Af)'/2,
where A} : H>(G)t — H»(G) is the adjoint operator of Ay. Assume that
S0 > 81 > s2 > ... (for more details about singular numbers see [4]).

There exist orthonormal systems of eigenfunctions of the operator (43 Ay)
corresponding to the sequence of singular numbers {s,},n > 0, {¢,}, {an},
such that the following formula for the product of singular numbers is valid:

1/2

k
, k>0, (6)
i,j=0

S081 - Sk = ‘/F(qiajf)(é“)df

where the right-hand side is a determinant of order k + 1.

For any nonnegative integer n let M, (G) be the class of functions repre-
sentable in the form h = p/q, where p € E(G) and ¢ is a polynomial of
degree at most n, ¢ Z 0.

Let A, = A, (f, @) be the best approximation of f in the space Lo () in
the class M,,(G):

Ap, = An(fEG) = he./g(lf(G) ||f - h“oo

By the Adamyan-Arov-Krein theorem for all integers n > 0 the following
equalities are valid (see [6] and [3])

A, = s,. (7)

3. THE PROOF OF THEOREM 1

Before proving Theorem 1 we remark that we can rewrite the formula (3) for
the order of the function f in the disk {z : |2| < p} in another form.

Let F = {z : |z| > p}. Denote by w;i(z) = In|z|/Inp the solution of the
Dirichlet problem in the domain C\ (EUF) = {z: 1 < |z| < p} with respect
to boundary data equal to 1 on JF and to 0 on OE. For 0 < € < 1 we
designate v1(¢) = {z : w1(2) = ¢}.

It is not hard to see that the following formula for the order of the function
f in the domain C\ F = {z : |z| < p} is valid:

Int Int
o = limsup 0 In" | f]]5, )

LS (1 e)) (®)

where || f[|,, () = max.c, ) [f(2)]-
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Let By = {£:1¢| > 1} and F} = {€: |£| < 1/p} be the preimages of E and

F under the mapping z = 1/£. Let f1(§) = f(1/¢).
We mention that the equality

pn(f; E) = pn(f1; E1) (9)
holds for all nonnegative integer n, where
pulfisBr) = it [Ifu = rlls,.
Namely, for this situation we prove that

1 + 1 (% k.. % n(ntl)
lim sup ™ (PoPi - prp ) <147 (10)
n—o0 Inn o+1

where p% = p,n(f1; E1). Hence, by (9), we get (4).

We introduce the necessary notation. Let w(z) be the solution of the Dirich-
let problem constructed the domains making up the domain C\(E; U Fy) =
{z : 1/p < |€] < 1} with respect to boundary data equal to 1 on 0F; and
to 0 on OF;. It will be assumed that w(z) is extended by continuity to C :
w(z) = 1for z € Fy, and w(z) = 0 for z € E;. For an arbitrary number &
with 0 <e <1llet y(e) = {z: w(z) = e} and G(e) = {z : w(z) > €}.

Before continuing with the proof of the theorem we note that the capacity
C(E1, Fy) of the condenser (Ey, Fy) satisfies the following relations:

Ei,F)=— 11
C(Ey, Fy) ™ (11)
and
C(E,, F;
0(7(51),7(52)):% for 0<ey<ep <1, (12)
1 —c2

Fix an arbitrary number ¢/ > ¢ and 0 < o < 1/2. Let €3, = €2,,/2 =
af2n,n = 1,2,..., €30 = €20/2 = a. Here it is assumed that y(es,) is
positively oriented with respect to G(e3,,).

In this subsection we prove the inequality

AoAq - App™ ) < (4 1)1ein" exp(en! o /(@41 (13)
where ¢p and ¢; are positive constants and

An = An(flyG(Sii,n)) = I%f”fl - h”oo: .] = 07 17' -1,
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is the best approximation of f; in L. (0G(e3,n)) in the class M, (G(e3,5)).
For this it suffices to show (see the equalities (7)) that

5051 - - - Snpn(n+1) <(n+ 1)!an5n exp(clnH-a’/(a’—i-l))’ (14)

where {sy}, sx = si(f1;G(esn)), k =0,1,2,..., is the sequence of singular
numbers of the Hankel operator Ay, : Ho(G(e3,)) — H3(G(es,)), con-
structed from the function f;.

It is not difficult to pass from the estimate (13) to (10), therefore we now
restrict ourselves to proving the inequality (14).

We choose and fix a positive integer n such that the contour vy(e1,,),

e1n =1—(C(Ey, Fy)o' [n)Y/ 7+, (15)

belongs to the domain G(e2 ). It will be assumed that y(e1,,) is positively
oriented with respect to G(ey p).

Let us use the formula (6) with k& = n. Since the functions ¢;, o, i,j =
0,1,2,..., belong to H2(G(e3,,)) and f; is holomorphic on C\F}, the relation

n

5081 " 8n =

/ (qicj f1)(&)dE
Y(e1,n)

i,j=0

can be written for the product of singular numbers. From the last relation

+ 1! i = n
e+ ] /«m) /ﬂgm)fl(ao) £1(6n)

xB1(&o, - -+ &n)Ba(&os - - -5 &n)déo -+ dEy,  (16)

where
B1(£0)£1>"')£n) = |al(£,])|?,]=0 (17)
and

B(&0,&1,.--,6n) = |Qi(€j)|zn,j:0' (18)

We estimate determinants By and Bs.
By the Cauchy formula,

1 a5 (t) .
a3 (€) —/ tf_ dt, & € y(eam), 7=0,1,2,....
Y(esn) T8

= 2w

Since the norm «;j,j = 0,1,2,..., in the space La(y(e3,,)) is 1, it follows from
the last formula that

5631(3}( ) |Cl§ (£)| < C/ diSt(7(53,n);7(62,n))> ] = 07 ]-; 27 T (19)
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(here and in what follows C,Cq,Cs,... will denote positive quantities not
depending on n). Similarly, since the norm ¢;,j = 0,1,2,..., in the space
Lo(y(e3,n)) is 1, it follows that

(nax )IQ?(E)I < Cfdist(v(esn),v(E2n)),  5=0,1,2,.... (20)

Using the inequalities (19), (20) and dist(y(e3,n),v(€2,n)) > C1/n, we can
write

L [Bi(E, o 6) Ba(6or o) < (4 DYPHOETL 1)

Denote by g(z,¢) the Green’s function of the domain G(es ) with singu-
larity at the point & € G(e2,). We estimate the product ByB> in the case
when the variables &, i = 0,...,n, belong to vy(e1,,). We use (17) and (18),
obtaining

D(fo,---,fn) = BI(EO;---;gn)B2(£0;---;£n)

= ] &-¢) ¥, (22)
0<i<j<n
where ¥(&,...,&,) is a holomorphic function of n + 1 complex variables in

the domain G(ez,n) X -+ - X G(e2,n) (n + 1 factors in the Cartesian product).
Let us consider the function

In|D (&, &1, &)l +2 0 > (&, &)

0<i<j<n

We underscore that the given function is subharmonic in the domain G(e2,,,)
with respect to the variable &;, ¢ = 0,...,n, when the remaining variables
& € Glean), j#1, 7€{0,1,...,n}, are fixed.

We use the maximum principle for subharmonic functions successively with
respect to each variable, together with (21) and (22), obtaining

In[D(&, &, &) +2 D 9(&,&) <n(((n+1))*n O3, (23)

0<i<j<n
where & € y(e1,n), 1 =0,1,...,n.

By the formula for a product of singular numbers (see (16)), this gives us
the inequality

i 1 _
[Is: < o+ D10 (1filly )™ e (24)
=0
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where

w, = min )(2 Z g(gtaé.]))

i €
&i€v(e1,n 0<i<i<n

Let us estimate the right-hand side of the inequality (24). We note first that
since w(§) = wi(1/¢) then, by (8),

o — i 0T Ll
T —e)

and, by (15), f; admits the upper estimate
1 filly(er,ny < exp((n/C(Ex, Fi)a')7 /(7 F1), (25)
We next use the following relation (see [5])

n(n+1)
C(v(e1,n),v(e2,0))

< - +k(n+1)+ (n+1)In(n + 1),

where k > 0 is a positive constant. This, by (12), implies

—w, < —n(n + 1)(51@ - Ez’n)

< CE ) +k(n+1)+ (n+1)In(n +1). (26)

From this, since
E1n=1- (C(Ey, Fy)o' /n)'/o' 1, com=a/n, n=12,...,

and, by (11), we get

n

(L™ < (m+DICE" exp((n + 1)(n/C(Ey, Fy)o')” /(7 +)
i=0
+ n(n+1)((C(E1, F)o' [n)/“+D) +a/n)/C(E, Fy)
+ k(n+1)+ (n+1)In(n+1))
and

([ s0p™ " < (n+1)1CEn"" exp((n + 1)(n/C (B, Fy)o')” /(" +)

+

n(n+ 1)(C(Ey, Fy)o' /n)Y 7 |C(Ey, FY))
(n + 1)ICEn " exp(C7n1+"’/("I“)).
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As mentioned above, the relation (13) is thereby obtained.

We now show how to use the estimate (13) to get the inequality (10).

Fix positive integer n. For an arbitrary function h representable in the form
h =p/q, where p € Eo(G(e3,,)), ¢ is a polynomial of degree at most n, with
zeros outside v(e3,,), ¢ Z 0, we have by the Cauchy formula

" = 1)) + (o) = 5 [ Gh=WOE - g, @)
7(53.n)

T omi £E—z ’

where 7' is the sum of the principal parts of h corresponding to poles of h
laying in G(e3p).
We estimate the integral in (27), getting

1f1 = f1(00) = 'l < Collfr = hlloo/ dist(Er, (es,n)), (28)

where the positive quantity Cs is independent of h, n , and j, and || - || is
the norm in the space Lo (v(€3,n))-

Using now the definition of the quantity p, and the fact that the rational
function ' + f;(00) belongs to the class R,,, we have from (28) the estimate

P < Cs||f1 = hl|oo/ dist(E1, v(e3,n)),

Next, since h is an arbitrary function in M, (G(es,,)) and dist (Ey,
V(esn)) > Cfn,

f <O inf — hllse = CrnlAn(f1;G(e3m)).
pnsOm _ inf lf=hll A (f15G(E3,0))

We now use the relation (13) to get

n(n+1) !

1+1 ok kL ok
Jim sup 212 (PP - PR)P

n—00 In n

It remains to let ¢’ tend to o, and get the required relation (10).

4. THE PROOF OF COROLLARY 3.

The proof of Corollary 3 is given by contradiction. Let

+ 1,1+ 2n
lim inf I ln” (Pnp™) > A ,
n—00 Inn oc+1
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where A > 1. Then by the relation

n o/(o+1)
lim Lizok = ! ,
n—00 n1+0'/(0'+1) 1+O‘/(U+1)
we get
1 +1 + P n(n+1)
Jimn jnf 2 (PLP2 - pup b o1+ 2 )s14 -2,
n—00 Inn o+1 o+1

which contradicts the inequality (4).
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