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Water pumped by the pumps runs from Reservoir 1 
to Reservoir 2 and vice versa. Such model may be applied 
in water pools, chemical processes.

There are also control buttons (level control enabled, 
temperature control enabled), heating indicator in control ap-
plication. Level set point may be set via double-clicking on 
the reservoir. Temperature set point is set in Simulink schema.

Measured and control variables are sent and received 
via Matlab/Simulink programs, which are connected to 
Arduino OPC Server.

Hydraulics and electronic control of pump

There are used mini brushless direct current pumps in our 
assembly. Hydraulics characteristics are presented in the 
following plot (Fig. 2).
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Introduction

Cascade control systems are often used and perform better 
than a traditional single-loop conroller. The simplest case 
consists of the two control loops (inner loop and outer). 
Inner control loop in our case controls flow through the 
pumps. Outer control loop controls level in the reservoir.

Our system presented in Fig. 1 is designed to control 
defined level and temperature in the certain reservoir 
(Reservoir 2). A heating element is located in the first 
reservoir (Reservoir 1), while temperature and level are 
regulated ONLY in the second reservoir.

Fig. 1. Scheme of the cascade level-temperature control 
system. Controlled and measured variables: h1, h2 – levels 

in the Reservoir 1 and 2, cm; t1, t2 – temperature in the 
Reservoirs 1 and 2 respectively, °C; SP t – set point of 

temperature in Reservoir 2, °C; f1, f2 – flows from Reservoir 1 
to Reservoir 2 and vice versa respectively, ml/s; Δf (delta f) – 
difference flow between input and output flow of the second 

reservoir, which is equal to f1 – f2, ml/s; SP f – constant 
flow, provided between reservoirs, so that difference flow Δf 

between reservoirs is maintained to be 0, ml/s
Fig. 2. System curve of the process and 

pump curves DC30A-xxxx (pointed out by arrows)
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There are series of pumps ranging by maximum flow 
(l/min) and maximum head (m). Pumps used in our as-
sembly are of type DC30A-1230. That means supplied 
voltage 12V and maximum head is 3 m. Pumps are control-
led by changing of direct voltage from 5–6 V to 12 V. 
Pump curve shifts closer to (0,0) point whenever supplied 
voltage decreases.

Pump curve DC30A-1230 is represented in the poly-
nomial view:

 
2

0 1 2pH H C Q C Q= − − , (1)

here: Hp – total dynamic head, m; H0 – shutoff head (head 
at Q = 0), m; C1 and C2 are constants evaluated for pump 
curve; Q – flow, ml/s.

Pump head is written as follows:

 2
fH CQ z= + ∆ , (2)

where (Tullis 1989)

 
2 2 ,

2 2
lKfLC

gdA gA
 

= +  ∑ ∑  (3)

here: Δz – static lift, m; C – minor losses; L – length of 
pipe, m; d – diameter r, m; A – sectional area of the pipe, 
m2; f – friction factor; g – gravitational acceleration, m/s2, 
Kl – loss coefficient.

Making equal pump head (Hf) to total dynamic head 
(Hp) (Hp = Hf) we may obtain current operation point (Q0, H0).

Pumps are controlled, as noted above, by direct volta-
ge from 5–6 to 12 V. As shown in the Fig. 3, PWM signal 
0–5 V comes to input of an optocoupler. The optocoupler 
translates PWM signal from 0–5 V to 0–(12+Ube) V, then 
voltage is followed by the operational amplifier. Next, by 
using RC-circuit, voltage is converted to direct. RC-circuit 
is matched to fit with PWM-frequency. Voltage signal is 
the second time followed by the operational amplifier and 
fed into the base of an emitter follower.

Voltage must be converted to direct, because a 
brushless motor of the pump requires only direct rectified 
voltage.

However we have collected not linear flow-PWM 
code characteristic (Fig. 4).

Fig. 4. Flow-PWM code characteristic: flowrate – flow 
through the pump, ml/s, 16...50; PWM code – code applied to 

the input of an optocoupler for control

Control scheme of pump regulation has the following 
view (Fig. 5):

Fig. 5. Control scheme of pump regulation: PV(f) – flow 
process variable, ml/s; SP(f) – set point flow, ml/s; MV (PWM 

code) – manipulated variable, 0…1023; CV(flow) – flow 
control variable, ml/s; e – loop error signal, ml/s; C(s) – 

controller; P(s) – plant (pump)

Transfer function of the pump:

 
1( ) .

0.1 1
P s

s
=

+
 (4)

Rearranging (4) into differential equation gives:

 
20.1 ( )dF k pwm b pwm c F

dt
= ⋅ + ⋅ + − , (5)

here: pwm is PWM DAC code; F – flow, ml/s;

Fig. 3. Electronic scheme of pump control
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where nonlinear element is represented in the polynomial 
view. Applying Taylor series (Seborg et al. 2011):

 
, ,( , ) ( , ) | ( ) |y u y u

f ff y u f y u y y
y u

∂ ∂
≅ + − +

∂ ∂
, (6)

where y = F, u = pwm.
Then after substituting:

 
'0.1 (2 ) ' 'dF k pwm b pwm Fè

dt
= ⋅ + − , (7)

 

' (2 ) .
' 0.1 1

F k pwm b
pwm p

⋅ +
=

+
 (8)

The deviation variables F’ and pwm  are:

 

' ,
' ,

F F F
pwm pwm pwm

= −
= −

 (9)

where: ,F pwm  – steady-state values of variables.

Discrete PI-controller and Anti-windup 
techniques

Discrete PI-controller of pump has the following view:

 ( ) ( ) ( ) ( 1)su k Pe k I T e k u k= + ⋅ ⋅ + − , (10)

here: P – proportional term; I – integral term; Ts – sampling 
period; e(k) – loop error signal; u(k) – control variable.

As long as we use PI controller, we approach with 
an integrator windup. It is applied anti-windup techniques 
such as back-calculation or clamping to avoid anti-windup.

Back-calculation anti-windup signal, whose route is 
shown in the Fig. 6, may be written:

 2 2 3 2 b s[ ] [ 1] ( [ 1] [ 1])u i u i u i u i K T= − + − − − ⋅ ⋅  (11)

here: u3 – control signal after saturation, u2 – control signal 
behind saturation, Kb – back-calculation coefficient, Ts – 
sampling period.

Level regulation

There are different types of controller performance 
depending on tuning criteria. Two of them are known as 

averaging and tight level control described in (King 2011). 
The general demand in applying of cascade control is that 
the secondary loop should be able to detect and resolve 
any disturbance before the primary. Tight level control is 
required in situations where holding the level close to its SP 
has greater importance than maintaining a steady manipu-
lated flow. Averaging level control is required in situations 
where keeping the manipulated flow as steady as possible 
is more important than keeping the level at its SP.

Controller tuning for tight-level control is derived by 
first assuming that we apply a proportional-only controller:

 1( ),c n nM K E E −∆ = −  (12)

here: En – is an error signal.
Let us assume, that before flow disturbance, the level 

is at steady-state and SP, i. e. En–1 = 0. Since the flow im-
balance (f) will have existed for one controller scan interval 
(ts), the current error (in dimensionless form) is given by:

 
, ,s

n
f T fE M
V F
⋅

= ∆ =  (13)

here: V – working volume, ml; F –flow range, ml/s.
In order to bring the level back to steady state we 

need to restore the flow balance and so the controller must 
change the manipulated flow by the flow disturbance (f). 
From the two previous equations we can derive the largest 
possible controller gain.

 
max

s

VK
F T

=
⋅

 (14)

The disadvantage of P-controller is an offset. That 
means that SP will never be reached and overcontrol may 
present, hence integral action may be added.

We first determine a reservoir time constant (T) – me-
asured with no controls in place. This is defined as the time 
taken for the level to change by the permitted deviation (d) 
following the flow disturbance (f). It is given by:

 100
VdT

f
= . (15)

Fig. 6. Control scheme of pump: u3 – control signal after saturation,  
u2 – control signal behind saturation, Kb – back-calculation coefficient, Ts – sampling period
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Since we require tight level control, we would select 
a very small value for d, for example 1 %. Empirically, 
setting Ti to 8T will give good control performance.

Compensation for the addition of integral action 
should be made by reducing proportional action. Again 
empirically, applying a factor of 0.8 to Kmax works well

 
max

0.8 ,
12.5i

V VdK T
F Ts f

= =
⋅

. (16)

Height (cm), difference between flows or delta-flow 
(ml/s) and error (cm) plots for tight level control are shown 
in a Fig. 7.

The average control method used to tune the controller 
is very similar to tight level control. We start as before with 
a proportional-only controller.

 

( ) ( )
( ) ( )

1 1 2

1 0 0

[ ...

] .
c n n n n

c n

M K E E E E

E E K E E
− − −∆ = − + − +

+ − = −
 (17)

We allow for an offset d:

 
,

100n
dE =  (18)

and combining equations (13), (17), (18):

 
min

100 .fK
Fd

=  (19)

 
max

80 , .
12.5i

f VdK T
Fd f

= =  (20)

Heat exchange model

As spoken before, we have two interconnected reservoirs 
(Fig. 1). Stream circulate between them in both directions. 
Heater is located in the first (left) reservoir and temperature 
is controlled in the second (right) one.

We need to explain, how change of temperature in the 
first (left) reservoir influence onto the second (right) one. 
Let us assume that water in the second reservoir is ideally 
mixed. Then heat balance equation for the second reservoir 
will be written as follows:

 1 1 2 2[ ] ,Q c T F T F t∆ = ρ ∆ − ∆ ∆  (21)

here: F1 is incoming stream, ml/s; F2 – outgoing stream, 
ml/s; ΔT1 – temperature change in the first (left) reservoir, 
°C; ΔT2 – change of temperature in the controlled second 
(right) reservoir, °C; ΔQ – heat change in the controlled 
second (right) reservoir, J; ρ – liquid density, kg/m3; c – 
heat capacity coefficient, J/(kg∙°C); Δt – time interval, sec.

But from the equation of specific heat:

 
2

0

QT
cV
∆

∆ =
ρ

, (22)

where: V0 – working volume of the controlled second(right) 
reservoir, ml.

Let us make equal ΔQ from (21) to ΔQ from (22) and 
differentiate by time left and right sides of given equation:

 
2

0 1 1 2 2
d T

V T F T F
dt
∆

= ∆ − ∆ . (23)

Fig. 7. Experimental and simulated data of the cascade level control system: height – regulated height in the second 
reservoir, cm; deltaflow (Δf) – difference between input and output flows of the second reservoir, ml/s; height 

error – error between height set point and current flow process variable, ml/s
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Finally, applying Laplace transformation, the follo-
wing transfer function comes out:

 

2 1

1 0 2

T F
T pV F

∆
=

∆ +
. (24)

For simplicity we will assume that F = F1 = F2, ΔF = 0.

 

2

01

1

1

T
VT p
F

∆
=

∆ +
, (25)

where: constant time T = V0/F.
Temperature sensor is described as the first order sys-

tem with time constant equal to near 6 s, which is much 
less than constant time of heat-exchange system.

Optimal control of heat exchange system 
(Sivokhin, Meshcheryakov 2006)

Let us rewrite transfer function (25) into the view of diffe-

rential equation, assuming 1
PdtT
cm

∆ = :

 02
2

Vd T PdtT
dt F cm
∆

+ ∆ = , (26)

here after, we differentiate (26) by time:

 

2
02 2

2
Vd T d T P
F dt cmdt

∆ ∆
+ = , (27)

Taking from (27) T = V0 / F – constant time; U = P – 
power, control variable; k = 1/(cm); ΔT2 = x1; we have got 
a following differential equation:

 
1 1

Ux T x
k

+ =   (28)

Optimal control for the system (Fig. 8):

 

max 1

min 1 2

, 0 ;
, ;

u t t
u

u t t t
≤ ≤

= − < ≤
 (29)

Fig. 8. Optimal control: t1 is switch-over control point, s; 
t2 – time for reaching to required change of temperature in the 

second (right) reservoir xn, s; umax – heater power,  
W; umin – cooling power, W

Homogeneous linear equation matching to (28) has 
the following view:

 1 1 0x T x+ =  , (30)

and characteristic equation matching to (28):

 

2

1 2

0,

0, .

T r r
tr r
T

⋅ + =

= = −
 (31)

Common solution for differential equation:

 
1 max 1 2( ) exp tx t ku t c c

T
 = + + −  

, (32)

Constants c1 and c2 we will find from the initial con-
ditions: 1 1(0) 0, (0) 0x x= = :

 1 max 2 max,c ku T c ku T= − =  (33)

Therefore, when 0 ≤ t ≤ t1:

 

1 max max

1 max

( ) exp 1 ,

( ) exp .

tx t k u t k u T
T

tx t k u
T

  = ⋅ ⋅ + ⋅ ⋅ − −   


  = ⋅ − −   


 (34)

Similarly, we will solve differential equation for u = –
umin, when heater is turned off and water is slowly cooling 
down:

 
1 min 3 4( ) exp .tx t ku t c c

T
 = − + + −  

 (35)

Using terminal conditions 1 2 1 2( ) , ( ) 0nx t x x t= = , 
we will find constants c3 and c4:

 

3 min 2 min

2
4 min

,

exp .

nc x k u t k u T
t

c k u T
T

= + ⋅ ⋅ + ⋅ ⋅

 = − ⋅ ⋅ ⋅ −  
 (36)

 Then, when t1 ≤ t ≤ t2, the solution of differential 
equation will be:

2
1 max 2

2
1 max

( ) exp ,

( ) exp 1 .

n
t t

x t x k u t t T T
T

t t
x t k u

T

  − = + ⋅ ⋅ − + − ⋅     


 −  = ⋅ ⋅ −     


 (37)

In order to find unknown variables t1 and t2 we will 
compute equations 1 1(0) 0, (0) 0x x= = obtained both for 
0 ≤ t ≤ t1 and t1 ≤ t ≤ t2 conditions:

 

1
max 1 max

2 1
min 2 1

1
max max

2 1
min

exp 1

exp ,

exp

exp 1 .

n

t
k u t k u T

T

t t
x k u t t T T

T

t
k u k u

T

t t
k u

T

   ⋅ ⋅ + ⋅ ⋅ ⋅ − − =     
  − = + ⋅ ⋅ − + − ⋅      


  ⋅ − ⋅ ⋅ − =   

  − = ⋅ −     

 (38)
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Taking T = V0/F = 4 l / 50 ml/s = 80 s; 
k = 1 / (c∙m) = 1 / (4∙4200); Umax = 150 W; Umin = 10 
W; xn = 3,7 °C and solving by Matlab tools, we find 
t1 = 434,9 s; t2 = 655,4 s. That means when we need to put 
system 1 1( , )x x from point (0; 0) into (xn; 0), as it is plotted 
in a Fig. 9, we should provide control in described above 
way. xn is provided by stream exchanging required change 
of temperature in the second (right) reservoir.

Conclusions

Proximity of experimental values of level-flow control in 
the reservoir to simulated ones shows us that calculated 
parameters of PI-controllers, using proposed method, are 
suitable to our level-flow control process. Having solved 
equations of temperature optimal control, we may conclude 
that task of temperature control simultaneously with level 
control in the reservoir is fully solvable. But solving of the 
second-order differential and nonlinear equations, which 
has to be realized in a controller, complicates task of swi-
tch-over time finding. And for simplicity we pay no regard 
to distribution of temperature in reservoirs, considering 
reservoirs being ideally mixed.
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DviEjų tARpuSAvyjE SujuNGtų REzERvuARų 
mAtEmAtiNiS mODEliS iR vAlDymAS

S. Geraščenko

Santrauka

Straipsnyje sprendžiama kaskadinio tėkmės lygio valdymo ir tem-
peratūros reguliavimo tarp dviejų sujungtų rezervuarų problema. 
Pateikiami PI valdiklio kūrimo metodas skysčio tėkmės lygiui 
valdyti, šilumos mainų tarp dviejų rezervuarų modelis, tempera-
tūros valdymo šildytuvo veikimo laiko paieškos algoritmai. 
Pagrindinė darbo idėja – paaiškinti, kaip reguliuoti temperatūrą, 
tuo pačiu metu reguliuojant skysčio tėkmės lygį.

Reikšminiai žodžiai: kaskadinio valdymo sistema, tėkmės lygio 
ir temperatūros reguliavimas, optimalus valdymas, vamzdynai.

Fig. 9. Optimal control plots: x1(t) – function of addition of temperature in the second (right) reservoir, °C; x1’(t) – 
rate of change (derivative function) of x1(t), °C/s; U – optimal control of the heater, W; t1 – switch-over point, s
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