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Hadoop technology is becoming popular in such areas 
as cloud computing, internet data management (storage, 
load balancing), implementing MapReduce algorithms for 
providing solutions to various problems of handling large 
amount of data, in proposing new models by using HDFS 
(Sharma et al. 2014).

Big data enables organizations to gather, store, and 
manipulate vast amounts of data at the right speed and time. 
Considering big data advantages, many companies are star-
ting to leverage big data and advanced analytics to increase 
their market share. In order to maintain and improve on 
its market position, companies need to leverage advanced 
analytics to better inform its marketing, sales and operation 
functions through effective customer profiling and insights.

The experience of the authors shows, that there is a 
growing business interest on how to store data better in 
Hadoop and which data format usage provides faster access 
to data with different kind of queries, e.g. scan and aggregate 
queries. Some requirements for data and analytics platform 
cover the need to store everything, analyze anything, and 
build what users need to answer a full range of questions 
from simple ones: “what happened”, “how many”, “how 
often”, “in what place”, “where is the problem” to advanced 
ones: “what is happening now”, “what will happen if this 
trend continues”, and “what is the best option”.
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introduction

The amount of data captured by social media, the Internet 
of Things, enterprises and different types of applications is 
growing exponentially. Every day people leave an incredi-
ble amount of data behind them in the digital environment. 
It is not without a reason that data are called “the new oil” 
nowadays. If data are used skillfully, companies can incre-
ase their revenues, predict future prospects and go ahead of 
the competition. There are huge volumes of raw data every 
day. However, these data do not yield much information 
until processed. Because of processing, raw data sometimes 
end up in a database, which enables the data to become 
accessible for further processing and analysis in a number 
of different ways.

Towards distributed and real-time processing of large 
data sets – so-called Big Data – the traditional compu-
ting techniques are becoming insufficient (Chandra et al. 
2012; Grover et al. 2015; Sharma et al. 2014; Wonjin et al. 
2014). Hadoop is one of the most common open source Big 
Data frameworks in the industry today, capable to carry 
out common Big Data related tasks. There is growing bu-
siness demand for Hadoop technology usage in Big Data 
analysis like storage, biological data, road, traffic, travel 
and tourism, telecommunication, enterprise data, citizen’s 
info (Grover et al. 2015; Sharma et al. 2014). In addition, 
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There is some amount of untapped value in the Big 
Data. Data come from satellite images, eCommerce, TV, 
GPS, video sensors, social media, the Internet of Things, 
enterprises and different type of applications, from variety 
of sources. It is necessary to correlate all data, use analytics 
and predictive analytics, deep analytics, deeper insight of 
data in order to come up with answers, to improve the return 
of investment, to predict extreme weather conditions etc. 
This need is important regardless of the purpose like just 
looking at biodiversity trends or trying to understand cus-
tomers, learn their habits and predict their future behaviors.

Often raw data is stored in specific text formats, for 
instance: JSON, CSV, XML, etc. These formats allow data 
to be structured and available for humans to read and edit 
it in the most convenient manner. However, storing raw 
data in a plain text has a significant drawback – there is a 
disk space need to store such files. However, for Big Data 
cluster powered by Hadoop it is even a bigger problem 
because of the high replication factor of each data block 
within Hadoop File System – HDFS.

For instance, recommended HDFS replication fac-
tor is 3. That means each raw data block will be replica-
ted 3 times across data nodes. Thus, it is crucial to select 
appropriate data format that enables HDFS storage space 
utilization in a more efficient manner according to the task 
defined. Secondly, data storage format may influence the 
speed of data processing with Hadoop tools, like Hive. 
Several binary data storage formats exist. Some of them are 
RCFile, ORC, Avro, Parquet. These formats were designed 
for systems that use MapReduce kinds of framework. A 
structure is a systematic combination of multiple compo-
nents including data storage format, data compression, and 
optimization techniques for data reading.

There is another application area of binary data sto-
rage format utilization on direct data sources. For instance, 
service data gathering from mobile phones to get specific 
insights of people’s behavior or in order to create another 
kind of location intelligence reports. Assuming that a GPS 
data packet (timestamp, longitude, latitude) is 100 B in 
average and that smartphone generates it every 8 s, quick 
math calculations result in 0.043 MB/h, 1.03 MB/day and 
376 MB/year. In 2014, over 1.2 billion smartphones were 
sold (Gartner 2014). If 1 billion devices produce a GPS data 
packet every 8 s, it results in 1 PB/day. This means that 
we need ~1000 disk drives with size 1 TB in order to store 
these data. The volume of data is enormous. The question 
is where and how to store this data in order to provide a 
database for faster execution of data queries. This is the 
main rationale for this article.

This article is based on the previously carried out sys-
tematic literature review of the research direction in Big 
Data projects using Hadoop Technology, MapReduce kind 
of framework and compact data formats such as Avro and 
Parquet (Plase 2016). An experimental investigation was 
performed.

The rest of the paper is organized as follows: in 
section “Background” the current status of the research 
question has been analyzed and background information 
on the main research topics and terms are given. Section 
“Goals and objectives” describes the research problem, go-
als, research questions and hypotheses. Section “Research 
methodology” presents the research methodology, exper-
imental environment and how the experiments have been 
performed. Section “Results” comprises the result set and 
interpretation, followed by conclusions in the last section.

Background

The Hadoop Technology is commonly being used to manage 
Big Data projects. Hadoop is now the de facto standard for 
storing and processing big data, not only for unstructured 
data but also for some structured data (Chen et al. 2014). 
The Hadoop Distributed File System (HDFS) is designed to 
store very large data sets reliably, and to stream those data 
sets at high bandwidth to user applications (Shvachko et al. 
2010). As a result, providing SQL analysis functionality to 
the big data resided in HDFS becomes more and more im-
portant. Although there are other SQL-on-Hadoop systems 
such as HortonWorks Stinger or Cloudera Impala, Hive is a 
pioneer system that supports SQL-like analysis to the data 
in HDFS (Wonjin et al. 2014). Hive has been chosen for the 
experiments because of the same reason that is mentioned 
in Section “Research methodology” for Cloudera choice.

The data storage formats mentioned in “Introduction” 
section has some advantages and disadvantages. As shown 
in Table 1, only Avro and Parquet data format support both 
important advantages: schema evolution and compression.

Table 1. Comparison of data file formats

File format Schema 
integration

Compression 
support

Text/CSV (Shafranovich 2005) – –

JSON (Bray 2014) + –

Avro (Apache 2009a) + +

SequenceFile (Apache 2009b) – +

RCFile (He et al. 2011) – +

ORC file (Apache 2017) – +

Parquet (Apache 2013) + +
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Avro (Apache 2009a) is a row-based storage format, 
also described as a data serialization system similar to Java 
Serialization. Avro provides rich data structures, a compact, 
fast, binary data format, a container file to store persistent 
data, remote procedure call (RPC) features. There is not 
required code generation to read or write data files nor to 
use or implement RPC protocols. Alternative systems inc-
lude Java Serialization, Thrift (Apache 2009c) and Protocol 
Buffers (Google 2001) that only work with compile time 
code generation. Furthermore, Avro can provide more op-
timized runtime performance (Palmer et al. 2011).

Avro relies on schemas. A schema defines the structure 
of the data and is used in data reading and writing process. 
A data schema is defined with JSON and stored into Avro 
file during data writing process. When Avro data is read, 
the schema used when writing it is always present. This 
allows writing data with no per-value over-heads.

Avro is used to save many small files in a single Avro 
file in HDFS to reduce the namenode memory usage be-
cause of user-defined patterns and specific data encoded 
into binary sequence and stored into a large containing file 
(Zhang et al. 2014).

Parquet (Apache 2013) is a column-based storage 
format, optimized for work with multi column datasets. 
Parquet use cases typically involve working with a subset 
of those columns rather than entire records. One of the 
most-often cited advantages of columnar data organizations 
is data compression (Stonebraker et al. 2005) and reduced 
disk I/O (Abadi et al. 2009) that improves performance of 
analytical queries (Floratou et al. 2014). Data compression 
algorithms perform better on data with low information 
entropy (high data value locality). Thus, the system achie-
ves the I/O performance benefits of compression without 
increase of CPU load during the decompression (Abadi 
et al. 2009). The layout of Parquet data files is optimized 
for queries that process large volumes of data.

There is a business demand to define how to utilize 
Avro or Parquet and find the best practices. The main ques-
tion is what the differences in performance (query execution 
time) between Parquet and Avro are?

Several research papers have been published on both 
comparison of Hadoop high-level processing tools and 
languages operating with data in binary formats and their 
utilization.

Cejka et al. (2015) from Siemens AG Company co-
mpared the file size of four different formats: Java, Protocol 
Buffers, Thrift and Avro. Avro’s results showed that it is 
much slower in writing speed, however much faster in re-
ading speed than Protocol Buffers and Thrift. The file co-
mpression of Apache Avro is best. In order to evaluate the 

time of retrieval of entries, the author’s defined benchmark 
was used to retrieve data from such databases as Storacle, 
H2, MongoDB. However, Parquet format was not analyzed 
in that paper.

Luckow et al. (2015) compared different queries de-
rived from TPC-DS and TPC-HS benchmarks and executed 
on Hive/Text, Hive/ORC, Hive/Parquet, Spark/ORC, Spark/
Parquet. Hive/Parquet showed better execution time than 
Spark/Parquet. Select, aggregate and join queries were exe-
cuted on a comparable infrastructure Hive/Spark versus 
RDBMS. Generally, the RDBMS can outperform Hive and 
Spark – however, both deliver a solid performance at a 
lower cost. Avro format was not analyzed there.

Zhang Shuo et al. (2014) compared raw data storage 
formats versus Avro and proposed original solution to store, 
read and write different small files on HDFS. However, 
there is no direct comparison of different data formats and 
Parquet was not presented there. It is worth mentioning 
that authors selected Avro as a target binary data format 
and demonstrated its efficiency in both read and write 
operations.

Grover et al. (2015) focused on benchmarking mul-
tiple SQL-like big data technologies over Hadoop based 
distributed file system (HDFS) for Study Data Tabulation 
Model (SDTM) used in clinical trial databases for impro-
ving the efficiency of research in clinical trials. The ben-
chmark proposed in that paper provides an overview of the 
capabilities of SQL-on-Hadoop platforms such as Hive, 
Presto, Drill and Spark. The authors mentioned Avro and 
Parquet formats, but they did not analyze these formats 
in any kind of comparison. Only Parquet format was me-
ntioned in the future work section as a lightweight and fast 
format with columnar layout, hence they can significantly 
boost IO performance.

Floratou et al. (2014) compared three analytical job 
execution environments available in Hadoop ecosystem. 
Hive on MapReduce, Hive on Tez and Impala have been 
analyzed here by using a world-renowned benchmark like 
TPC-H. As a result, the authors confirmed that Impala had 
better performance versus Hive (both versions). Although, 
the authors mentioned Parquet and Avro, they did not ana-
lyze those formats in any kind of comparison.

Tapiador et al. (2014) compared the data set size 
for different compression and format approaches like 
CSV(Row), Plain(Row), Snappy(Row), GBIN(Row), 
Snappy(Column), GBIN (Column). Google Snappy codec 
gave a much better result as the decompression was faster 
than that of Deflate (GBIN). It took half of the time to pro-
cess the histograms (50%) and the extra size occupied on 
disk was only around 23%. This confirmed the suitability 
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of Snappy codec for data to be stored in HDFS and later on 
analyzed by Hadoop MapReduce workflows. Although this 
article gave the answer to the question about compactness, 
it did not compare Avro versus Parquet in another kind of 
comparison, for instance, SQL query execution time. The 
data storage model approaching performance comparison 
did not give a transparent view of how it was obtained.

There remains a significant gap and need for additio-
nal experiments and studies in order to answer the research 
question about the best practice for data storage in Avro or 
Parquet format.

Goals and objectives

In context of the information given in “Introduction” and 
“Background” sections of this article, it is crucial to select 
an appropriate data format that reduces HDFS storage space 
and improves the speed of data processing with Hadoop 
tools, like Hive. The objective of this work is to perform 
experiments in order to answer the research questions:

− RQ.1: What are the differences in performance 
(query execution time) between Avro and Parquet?

− RQ.2: Which data format (Avro or Parquet) is 
more compact?

In order to answer the research questions, the exper-
imental investigation has been chosen as a research method. 
The experimentation process consisted of five stages. It 
started with scoping and continued with planning, opera-
tion, analysis and interpretation, report. In order to formu-
late the scope of the experiments, independent variables 
has been defined. The data format type (Avro / Parquet) has 
been defined as an independent variable, but performance 
and compactness – as another. Therefore, the scope of the 
experiments has been formulated as follows: Analyze data 
format Avro versus Parquet for the purpose of evaluation 
with respect to performance and compactness from the 
point of view of the researcher in the context of a Big Data 
storage format.

Avro and Parquet choice for the experiments was 
based on assumption that the row-oriented data access 
supported by Avro should provide a better performance 
on scan queries, e.g. when all columns are as interest of 
the processing, but Parquet format as a counterpart should 
provide a better performance on column-oriented queries, 
e.g. when only specific set of those is selected. Thus, the 
research problem can be expressed as null hypotheses.

H0
A Data format Avro is better than Parquet in perfor-

mance on scan queries.
H0

B Data format Parquet is better than Avro in perfor-
mance on aggregation queries.

H0
C There is no difference in the compactness between 

data format Avro and Parquet.
Each hypothesis H0

X, where X refers to a certain qu-
antity (A – performance on scan queries, B – performance 
on aggregation queries, C – compactness) has been me-
asured by the corresponding random variable AX and PX – 
respectively Avro and Parquet data format. For instance, 
H0

C tests the compactness of the data format Avro AC and 
Parquet PC. Therefore, the null hypothesis H0

C is expres-
sible as:

 ( ) ( )C C C C C
0 :H A P P A> = >p p , (1)

that is, the probability p that Avro is more compact than 
Parquet equals the probability that Parquet is more compact 
than Avro. Correspondingly, the alternative hypothesis H1

C 
is that there is a difference in probability:

 ( ) ( )C C C C C
1 : .H A P P A> ≠ >p p  (2)

research methodology

A. Cluster configuration

Nowadays there exist many different big data management 
systems, like Oracle’s Big Data Appliance, IBM’s Apache 
Hadoop, Cloudera’s CDH, Hortonwork’s HDP, Microsoft’s 
Dryad, Apache Spark, etc. All these systems are mainly 
focused on big data storage and processing, however they 
may differ in approaches. For instance, MapReduce idea of 
processing differs from Spark’s DAG approach. In the cur-
rent paper, Cloudera Enterprise 5.4 distribution of Hadoop 
has been selected. The main reason for that is high populari-
ty of the platform because of its openness. Cloudera has in-
corporated more open source Hadoop ecosystem’s projects 
than any other platform. Thus, it leads to bigger popularity 
among enterprises since it does not lead to vendor lock-in.

For the experimental investigation, a 12 node cluster 
has been chosen, designed and configured for large text 
format data processing. There two nodes are name nodes 
running in a high-available manner. This is an advisab-
le number of master nodes recommended by Cloudera 
(Cloudera 2013). The remaining 10 data nodes run the wor-
ker roles for the Hadoop services. This is an empirically 
chosen number of data nodes.

Data nodes in the cluster have 4x Intel(R) Xeon(R) 
CPU E5–2680 v3 @ 2.50GHz, with 12x physical cores, 
256 GB RAM, 10 TB HDD and Ethernet card each. Each 
node runs CentOS 6.7.

For the e several additional tools have been chosen: 
Hive version 1.10 (Hive-MR) on top of Hadoop 2.6.0-
cdh5.4.8, Java version 1.6.0_31 and kite-dataset version 
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1.0.0-cdh5.4.8 to create a schema and dataset, import data 
from a text file, and view the results.

After scoping and planning, the operation stage has 
been performed. Organizing the experiments includes 
preparation, execution and data validation tasks that are 
described in the next Section.

B. Data used for experiments

Various databases and raw data examples exist. However, 
for the experiments a TPC-H (TPC 2014) database with 
a scale factor of 300 has been chosen due to its worl-
d-renowned characteristic. The scale factor of 300 means 
approximately 300 GB of data. An analysis shows that this 
is sufficient to provide insights into the advantages and 
limitations of each data format.

For data generation, a database population program 
DBGEN has been used. It is available on TPC website 
(TPC 2014) and designated for use with the TPC-H ben-
chmark. As shown in Table 2, the TPC-H database consists 
of 8 separate and individual tables described in the TPC-H 
Benchmark Standard Specification Revision 2.17.1 (TPC 
2014). All *.TBL files have been copied into HDFS as a 
plain text and converted to Avro and Parquet. For a shorter 
insight in the amount of data, the main table of TPC-H 
database (lineitem.tbl) consists of 1,799,989,091 rows and 
16 columns. It is 230 MB large in plain text format (*.tbl), 
116 MB large in Avro and 72 MB large in Parquet format.

A “put” command has been used to load data in to 
Hadoop distributed file system (HDFS). Fig. 1 shows an 
example of it for one of the tables in plain text format 
(region.tbl).

hdfs dfs –put region.tbl hdfs://tpc/data/

Fig. 1. Command line example used for data load into HDFS

After data load in to Hadoop, a kite-dataset command 
line (Apache 2015) has been used to convert data from the 
plain text format to Avro and Parquet format. The exper-
iments have been performed with the default compression 
algorithm snappy for Avro and Parquet format because 
snappy compression provides a slightly better query per-
formance than zlib and gzip (Floratou et al. 2014). Fig. 2 
shows an example of kite-dataset commands used for plain 
text data converting to Avro and Parquet for one of the 
smallest TPC-H database table (region.tbl).

By default, kite-dataset supports converting from CSV 
and JSON formats. Thus a csv-schema argument has been 
used for data schema creation and a csv-import argume-
nt has been used for data import accordingly in Avro or 
Parquet format because original data has pipe delimited 
(“|”) *.tbl format that is similar to delimiter separated va-
lues (DSV). Considering the fact that generated data files 
have lack of header, field names have been added with 
header argument in accordance with TPC-H data schema 
(TPC 2014).

Table 2. TPC-H table original size vs Avro and Parquet

TPC table name Record count *.tbl size MB *.avro size MB *.parquet size MB
customer.tbl 45,000,000 7,069.6777 3,971.8981 3,633.9168
lineitem.tbl 1,799,989,091 230,545.6467 116,639.3754 72,130.2250
nation.tbl 25 0.0021 0.0018 0.0028
orders.tbl 450,000,000 51,361.8456 24,943.3918 19,646.2062
partsupp.tbl 240,000,000 35,184.6488 14,446.4901 12,978.3418
part.tbl 60,000,000 7,040.0864 3,170.4650 1,843.1135
region.tbl 5 0.0004 0.0008 0.0014
supplier.tbl 3,000,000 410.8828 244.3105 231.1390
total – 331,612.7905 163,415.9335 110,462.9465

kite-dataset csv-schema hdfs://tpc/data/region.tbl –output hdfs://tpc/schemas/region.avsc --delimiter ‘|’ --class TPC
--header ‘regionkey|name|comment’
kite-dataset create dataset:hdfs://tpc/datasets/region_a -f avro --schema hdfs://tpc/schemas/region.avsc
kite-dataset csv-import hdfs://tpc/data/region.tbl dataset:hdfs://tpc/datasets/region_a --delimiter ‘|’
--header ‘regionkey|name|comment’
kite-dataset create dataset:hdfs://tpc/datasets/region_p -f parquet --schema hdfs://tpc/schemas/region.avsc
kite-dataset csv-import hdfs://tpc/data/region.tbl dataset:hdfs://tpc/datasets/region_p --delimiter ‘|’
--header ‘regionkey|name|comment’

Fig. 2. Example of command lines used for plain text data converting to Avro and Parquet
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{“type” : “record”,
“name” : “TPC”,
“doc” : “Schema generated by Kite”,
“fields” : [
{ “name” : “regionkey”,
“type” : [ “null”, “long” ],
“doc” : “Type inferred from ‘0’”,
“default” : null
}, {
“name” : “name”,
“type” : [ “null”, “string” ],
“doc” : “Type inferred from ‘AFRICA’”,
“default” : null
}, {
“name” : “comment”,
“type” : [ “null”, “string” ],
“doc” : “Type inferred from ‘lar depo’”,
“default” : null }]}

Fig. 3. Data schema example of the smallest dataset  
(region.tbl)

The main table of TPC-H database (lineitem.tbl) con-
sists of 1,799,989,091 rows and 16 columns. Although all 
*.TBL files have been copied into HDFS as a plain text for 
a shorter table schema insight the smallest table (region.tbl) 
has been chosen. Fig. 3 shows data schema for the smallest 
table (region.tbl).

The same schema (*.avsc) automatically created by 
kite-dataset csv-schema command has been chosen for data 
import into both formats (Avro and Parquet).

C. Data Load into Hive

Data was loaded into hive table by CREATE TABLE sta-
tement with “stored as TEXTFILE”, “stored as AVRO” or 
“stored as PARQUET” accordingly to each dataset location. 
Fig. 4 shows CREATE TABLE statement syntax for the main 
table (lineitems.tbl) stored as Parquet.

The total count of tables created in Hive database is 
24 accordingly to each of 8 TPC-H datasets and each of 
the three formats used for the experiments.

CREATE EXTERNAL TABLE dbase.tpc_lineitem_parq(
orderkey BIGINT, partkey BIGINT,
suppkey BIGINT, linenumber BIGINT,
quantity BIGINT, extendedprice DOUBLE,
discount DOUBLE, tax DOUBLE,
returnflag STRING, linestatus STRING,
shipdate STRING, commitdate STRING,
receiptdate STRING, shipinstruct STRING,
shipmode STRING, comment STRING)
STORED AS PARQUET
LOCATION ‘hdfs://tpc/datasets/lineitem_p’;

Fig. 4. CREATE TABLE statement example for lineitem data 
in Parquet format

D. queries

The queries from TPC-H Benchmark (TPC 2014) have 
been mostly used for the experiments. Compiling statement 
and unsupported SubQuery Expression errors have been 
received during some TPC-H query execution. Thus, these 
queries have been rewritten to be useful for experiments. 
Modified queries are published in GitHub (DaigaPlase 
2016) and are appropriately marked in Table 3. One of the 
modified queries (Q1) is showed in Fig. 5.

SELECT
RETURNFLAG, LINESTATUS,
SUM(QUANTITY) as sum_qty,
SUM(EXTENDEDPRICE) as sum_base_price,
SUM(EXTENDEDPRICE*(1-DISCOUNT)) as
sum_disc_price,
SUM(EXTENDEDPRICE*(1-DISCOUNT)*(1+TAX)) as
sum_charge,
AVG(QUANTITY) as avg_qty,
AVG(EXTENDEDPRICE) as avq_price,
AVG(DISCOUNT) as avg_discount,
COUNT(*) as count_order
FROM
dbase.tpc_lineitem_avro
WHERE
to_date(SHIPDATE)<=’1996–07–02’
GROUP BY RETURNFLAG, LINESTATUS;

Fig. 5. Modified query 1 to select data from Avro formatted 
lineitem table based on TPC-H Q1

Basically, it is the same query that is described in 
TPC-H Benchmark. The modification is related with 
‘where’ clause “l_shipdate <= date ‘1998–12–01’ - inter-
val ‘[DELTA]’ day (3)” where the date interval has been 
replaced with the exact date and function to_date() in order 
to return the date from string type date value stored in 
Hive table, because data load into Hive without workaround 
approach of at least 4 steps (create temp table, load data, 
create table with correct data types and insert data there 
from temp table) supports only string type date values.

In addition, query 0 and query x23 have been added 
to TPC-H 22 query list for following purposes.

Query 0 has been defined simply for test purpose in 
order to check if the record count of each hive table cor-
responds to row count of each original *.tbl file. To count 
rows of each original data table command “sed” has been 
used, for example “sed -n ‘$=’ lineitem.tbl” to output row 
count of lineitem table. Fig. 6 shows Query 0 used as ag-
gregation query to examine Parquet advantage and count 
records from lineitem table of all three formats (stored as 
TEXTFILE, AVRO and PARQUET).
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The output results that have been received with sed 
command and count(*) queries match. In addition, Query 0 
execution time has been measured and included in Table 3 
to illustrate performance of one simple aggregation function 
executed on different format tables.

select count(*) from dbase.tpc_lineitem_dsv
select count(*) from dbase.tpc_lineitem_avro
select count(*) from dbase.tpc_lineitem_parq

Fig. 6. Query 0 used as aggregation query to examine Parquet 
advantage and count records from lineitem table stored as 

TEXTFILE, AVRO and PARQUET

Query x23 has been defined as scan query for Avro 
format use case (Fig. 7), e. g., row-oriented data access, 
when only some columns are as interest of the processing. 
Query x23 does not include any aggregation.

select c.name, c.address from tpc_customer_dsv c where 
c.acctbal=100;
select c.name, c.address from tpc_customer_avro c where 
c.acctbal=100;
select c.name, c.address from tpc_customer_parq c where 
c.acctbal=100;

Fig. 7. Query x23 used to examine Avro (SCAN) advantage

In the experiments, 22 TPC-H queries and these two 
additional queries have been executed, one after the other 
for plain text, Avro and Parquet formatted Hive table. The 
execution time has been measured for each query. Three 
full runs have been performed for each file format and 
each query. Thus, for each query, the average response time 
across the three runs has been reported.

results

Data load in to Hadoop and conversion from the plain text 
format to Avro and Parquet format (Table 2) present signi-
ficant storage space economy. Fig. 8 shows that the same 
data takes 2 times less storage space in Avro format, and 
3 times less – in Parquet format. This is an answer to the 
second research question RQ.2.

The second research question related with null hy-
pothesis H0

C proves alternative hypothesis H1
C that there 

is a difference in the compactness between data format 
Avro and Parquet, e. g., probability p that Parquet is more 
compact than Avro, ( ) ( )C C C C C

1 :H A P P A> ≠ >p p .
Although the data format Avro and Parquet use the 

same compression Snappy, the difference between Avro 
and Parquet shows that Parquet is approximately 1.5 times 
more compact than Avro.

Fig. 8. Data size comparison between three formats

The answer to the first research question RQ.1 has 
been gained by performing the experiments and measuring 
execution time of 24 queries by using Beeline shell.

Beeline’s reported time is close to time reported by 
Cloudera Resource manager for the same query. In addition, 
for data validation purposes shell script has been written in 
order to compare Beeline’s reported time with shell output 
between two timestamps (query end time and start time). 
The shell time for each query is approximately 4 s higher 
than Beeline’s time. This margin is because of the time 
required for query start and end.

In the experiments, 24 queries have been executed 
for each table (stored respectively as Textfile, Avro and 
Parquet). Table 3 presents the running time of the queries 
for each file format used for the experiments. In addition, 
Table 3 presents how many times the Parquet format is 
faster than Textfile and Avro respectively. Modified TPC-H 
queries are appropriately marked with (*) except Q0 and 
Qx23 that are new queries defined separately.

As shown in Table 3 and Fig. 9, Parquet can provide 
2 times faster execution time on average when compared 
with Avro and Textfile.

Fig. 9. Times Parquet faster Textfile and Avro  
(on average of all queries)

In order to answer the first research question, queries 
have been grouped into two parts accordingly to hypothesis 

A
0H  and B

0H : 1) scan queries (Q2, Q3, Q4, Q20, Qx23); 
2) the remaining (aggregation) queries.
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Table 3. Query execution time (s, ms) and Parquet performance evaluation

TPC-H
Query*

Aggregation 
(AGR) or SCAN 

query

Data format
(Hive table ‘stored as’)

Times Parquet faster
in comparison

Textfile (*.tbl) Avro Parquet Textfile /
Parquet

Avro /
Parquet

Q0* AGR 132,724 209,394 34,398 3,9 6,1
Q1* AGR 306,444 321,427 142,364 2,2 2,3
Q2 SCAN FAILED FAILED FAILED
Q3* SCAN 429,944 499,45 277,121 1,6 1,8
Q4* SCAN 351,12 395,957 207,366 1,7 1,9
Q5* AGR 506,531 557,565 324,148 1,6 1,7
Q6* AGR 146,756 234,58 64,656 2,3 3,6
Q7* AGR 633,338 664,841 436,435 1,5 1,5
Q8 AGR FAILED FAILED FAILED
Q9 AGR FAILED FAILED FAILED
Q10* AGR 403,579 465,389 230,908 1,7 2,0
Q11 AGR 325,108 319,164 276,336 1,2 1,2
Q12* AGR 325,803 359,147 182,783 1,8 2,0
Q13 AGR 216,121 244,936 201,872 1,1 1,2
Q14* AGR 275,926 315,728 154,344 1,8 2,0
Q15* AGR 608,079 675,436 325,472 1,9 2,1
Q16* AGR 281,495 298,717 238,782 1,2 1,3
Q17 AGR 609,197 690,604 344,03 1,8 2,0
Q18 AGR 688,337 800,813 428,181 1,6 1,9
Q19 AGR FAILED FAILED FAILED
Q20* SCAN 542,506 645,825 391,9 1,4 1,6
Q21* AGR 1002,767 1266,491 678,115 1,5 1,9
Q22 AGR 215,96 295,432 152,604 1,4 1,9
Qx23* SCAN 28,169 55,592 25 1,1 2,2
AVERAGE 1,7 2,1

Fig. 10. Times Parquet faster Textfile and Avro  
(on average to SCAN queries)

Fig. 11. Times Parquet faster Textfile and Avro  
(on average to AGGREGATION queries)

As shown in Fig. 10 and Fig. 11, Avro presents the 
worst performance when compared with Textfile and Parquet 
on both kind of queries (scan and aggregation). There is an 
insignificant difference between scan queries presented in 
Fig. 10 and aggregation queries presented in Fig. 11.

Thus, there is wrong null hypothesis A
0H  that data 

format Avro is better than Parquet in performance to scan 
queries because data format Parquet performs better than 
Avro on both kinds of queries, e. g. scan and aggregation 
queries. Thereby the null hypothesis B

0H  is true.

summary and conclusions

1. The experiments performed within the scope of this 
article have been based on a systematic review of SQL-
on-Hadoop by using compact data formats (Plase 2016). 
As the result of systematic literature review, a gap and 
need for additional experiments and studies have been 
formulated in order to answer the research questions 
about Parquet and Avro format. All 17 studies analy-
zed at the last stage of the systematic literature review 
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(Plase 2016) are not containing direct focus on compa-
ring two binary data storage formats – Parquet and Avro 
because of both design specifics. Parquet as stated in the 
official documentation (Apache 2013) is a column-ori-
ented data storage format. Thus, it should provide better 
performance on column-oriented queries, e. g., when 
only a specific set of those is selected. As a counterpart, 
Avro format is designed for row-oriented data access, 
e.g., when all columns are the interest of processing. 
Considering this, three hypothesis have been formula-
ted in this article.

2. The experiments show that Avro usage is worth only 
from storage space economy point of view. Queries 
from Avro tables are slower when compared with qu-
eries even from Textfile format tables. However, all 
TPC-H queries from Parquet format tables provide a 
significant performance advantage over Textfile and 
Avro. Parquet can provide 2 times faster execution time 
on average when compared with Avro and Textfile. 
There is an insignificant difference between scan qu-
eries presented and aggregation queries.

3. A great deal of work has been done on the experiments 
with TPC-H datasets. TPC-H decision support bench-
marks are widely used today in evaluating the perfor-
mance of relational database systems. TPC-H datasets 
are usable in evaluating the performance of Big Data 
management systems because DBGEN allows to gene-
rate datasets with scale factor more than 1 TB. As future 
work might be mentioned query performance measu-
ring by TPC-DS standard benchmark what is more app-
ropriate to Big Data systems. In addition, other query 
engines like Impala, HAWQ, IBM Big SQL, Drill, Tajo, 
Pig, Presto and frameworks like Spark, Cascading, and 
Crunch could be considered for new experiments in or-
der to gain more detailed experience with compact data 
formats.

4. The topic about data formats is related with work exper-
ience in Big Data field. There are many companies that 
manage Big Data (mostly and at this moment – banks, 
telecommunication, travel and tourism companies) and 
asking to define best practices for Avro and Parquet uti-
lization. In addition, the result of previously done sys-
tematic review of SQL-on-Hadoop by using compact 
data formats (Plase 2016) and recognized research gap 
has been a motivation source for this research paper.
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HDFS glAuSTŲJŲ DuOMENŲ FORMATŲ 
pALYGinimAs: AVRO prieš PARQUET

D. plase, L. niedrite, r. taranovs

Santrauka

Straipsnyje vertinamas duomenų užklausų našumas lyginant Avro 
ir Parguet failų formatus su teksto failų formatu. Tyrimuose 
taikytos įvairios duomenų užklausų formos, naudota Cloudera 
atvirojo kodo Apache Hadoop CDH 5.4 versijos programinė 
įranga. Tyrimo rezultatai patvirtina, kad glaustieji duomenų 
formatai (Avro ir Parguet) dėl galimybės įterpti dvejetainį kodą 
ir naudoti glaudą taupo atmintį. Parodoma, kad duomenų užk-
lausos įvykdomos sparčiau naudojant Parquet nei Avro ar teksto 
failų formatus.

Reikšminiai žodžiai: didieji duomenys, Hadoop, HDFS, Hive, 
Avro, Parquet.
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