
Vaizdų technologijos T 111
Image Technologies T 111

Copyright © 2017 The Authors. Published by VGTU Press.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 (CC BY-NC 4.0) license, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited. The material cannot be used for commercial purposes.

MOKSLAS – LIETUVOS ATEITIS
SCIENCE – FUTURE OF LITHUANIA
ISSN 2029-2341 / eISSN 2029-2252
http://www.mla.vgtu.lt

https://doi.org/10.3846/mla.2017.1033

ElEkTroNIkA Ir ElEkTroTEChNIkA
ElECTroNICS ANd ElECTrICAl ENGINEErING

2017 9(3): 267–276

Hadoop technology is becoming popular in such areas
as cloud computing, internet data management (storage,
load balancing), implementing MapReduce algorithms for
providing solutions to various problems of handling large
amount of data, in proposing new models by using HDFS
(Sharma et al. 2014).

Big data enables organizations to gather, store, and
manipulate vast amounts of data at the right speed and time.
Considering big data advantages, many companies are star-
ting to leverage big data and advanced analytics to increase
their market share. In order to maintain and improve on
its market position, companies need to leverage advanced
analytics to better inform its marketing, sales and operation
functions through effective customer profiling and insights.

The experience of the authors shows, that there is a
growing business interest on how to store data better in
Hadoop and which data format usage provides faster access
to data with different kind of queries, e.g. scan and aggregate
queries. Some requirements for data and analytics platform
cover the need to store everything, analyze anything, and
build what users need to answer a full range of questions
from simple ones: “what happened”, “how many”, “how
often”, “in what place”, “where is the problem” to advanced
ones: “what is happening now”, “what will happen if this
trend continues”, and “what is the best option”.

A CompArison of HDfs CompACt DAtA formAts:
Avro versus pArquet

Daiga pLAse1, Laila nieDrite2, romans tArAnovs3

1,2University of Latvia, Riga, Latvia
3Riga Technical University, Riga, Latvia

E-mails: 1Daiga.Plase@accenture.com; 2Laila.Niedrite@lu.lv; 3Romans.Taranovs@accenture.com

Abstract. In this paper, file formats like Avro and Parquet are compared with text formats to evaluate the performance of the
data queries. Different data query patterns have been evaluated. Cloudera’s open-source Apache Hadoop distribution CDH 5.4
has been chosen for the experiments presented in this article. The results show that compact data formats (Avro and Parquet)
take up less storage space when compared with plain text data formats because of binary data format and compression adva-
ntage. Furthermore, data queries from the column based data format Parquet are faster when compared with text data formats
and Avro.

Keywords: Big Data, Hadoop, HDFS, Hive, Avro, Parquet.

introduction

The amount of data captured by social media, the Internet
of Things, enterprises and different types of applications is
growing exponentially. Every day people leave an incredi-
ble amount of data behind them in the digital environment.
It is not without a reason that data are called “the new oil”
nowadays. If data are used skillfully, companies can incre-
ase their revenues, predict future prospects and go ahead of
the competition. There are huge volumes of raw data every
day. However, these data do not yield much information
until processed. Because of processing, raw data sometimes
end up in a database, which enables the data to become
accessible for further processing and analysis in a number
of different ways.

Towards distributed and real-time processing of large
data sets – so-called Big Data – the traditional compu-
ting techniques are becoming insufficient (Chandra et al.
2012; Grover et al. 2015; Sharma et al. 2014; Wonjin et al.
2014). Hadoop is one of the most common open source Big
Data frameworks in the industry today, capable to carry
out common Big Data related tasks. There is growing bu-
siness demand for Hadoop technology usage in Big Data
analysis like storage, biological data, road, traffic, travel
and tourism, telecommunication, enterprise data, citizen’s
info (Grover et al. 2015; Sharma et al. 2014). In addition,

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.3846/mla.2017.1033
mailto:1Daiga.Plase@accenture.com
mailto:2Laila.Niedrite@lu.lv
mailto:3Romans.Taranovs@accenture.com

268

There is some amount of untapped value in the Big
Data. Data come from satellite images, eCommerce, TV,
GPS, video sensors, social media, the Internet of Things,
enterprises and different type of applications, from variety
of sources. It is necessary to correlate all data, use analytics
and predictive analytics, deep analytics, deeper insight of
data in order to come up with answers, to improve the return
of investment, to predict extreme weather conditions etc.
This need is important regardless of the purpose like just
looking at biodiversity trends or trying to understand cus-
tomers, learn their habits and predict their future behaviors.

Often raw data is stored in specific text formats, for
instance: JSON, CSV, XML, etc. These formats allow data
to be structured and available for humans to read and edit
it in the most convenient manner. However, storing raw
data in a plain text has a significant drawback – there is a
disk space need to store such files. However, for Big Data
cluster powered by Hadoop it is even a bigger problem
because of the high replication factor of each data block
within Hadoop File System – HDFS.

For instance, recommended HDFS replication fac-
tor is 3. That means each raw data block will be replica-
ted 3 times across data nodes. Thus, it is crucial to select
appropriate data format that enables HDFS storage space
utilization in a more efficient manner according to the task
defined. Secondly, data storage format may influence the
speed of data processing with Hadoop tools, like Hive.
Several binary data storage formats exist. Some of them are
RCFile, ORC, Avro, Parquet. These formats were designed
for systems that use MapReduce kinds of framework. A
structure is a systematic combination of multiple compo-
nents including data storage format, data compression, and
optimization techniques for data reading.

There is another application area of binary data sto-
rage format utilization on direct data sources. For instance,
service data gathering from mobile phones to get specific
insights of people’s behavior or in order to create another
kind of location intelligence reports. Assuming that a GPS
data packet (timestamp, longitude, latitude) is 100 B in
average and that smartphone generates it every 8 s, quick
math calculations result in 0.043 MB/h, 1.03 MB/day and
376 MB/year. In 2014, over 1.2 billion smartphones were
sold (Gartner 2014). If 1 billion devices produce a GPS data
packet every 8 s, it results in 1 PB/day. This means that
we need ~1000 disk drives with size 1 TB in order to store
these data. The volume of data is enormous. The question
is where and how to store this data in order to provide a
database for faster execution of data queries. This is the
main rationale for this article.

This article is based on the previously carried out sys-
tematic literature review of the research direction in Big
Data projects using Hadoop Technology, MapReduce kind
of framework and compact data formats such as Avro and
Parquet (Plase 2016). An experimental investigation was
performed.

The rest of the paper is organized as follows: in
section “Background” the current status of the research
question has been analyzed and background information
on the main research topics and terms are given. Section
“Goals and objectives” describes the research problem, go-
als, research questions and hypotheses. Section “Research
methodology” presents the research methodology, exper-
imental environment and how the experiments have been
performed. Section “Results” comprises the result set and
interpretation, followed by conclusions in the last section.

Background

The Hadoop Technology is commonly being used to manage
Big Data projects. Hadoop is now the de facto standard for
storing and processing big data, not only for unstructured
data but also for some structured data (Chen et al. 2014).
The Hadoop Distributed File System (HDFS) is designed to
store very large data sets reliably, and to stream those data
sets at high bandwidth to user applications (Shvachko et al.
2010). As a result, providing SQL analysis functionality to
the big data resided in HDFS becomes more and more im-
portant. Although there are other SQL-on-Hadoop systems
such as HortonWorks Stinger or Cloudera Impala, Hive is a
pioneer system that supports SQL-like analysis to the data
in HDFS (Wonjin et al. 2014). Hive has been chosen for the
experiments because of the same reason that is mentioned
in Section “Research methodology” for Cloudera choice.

The data storage formats mentioned in “Introduction”
section has some advantages and disadvantages. As shown
in Table 1, only Avro and Parquet data format support both
important advantages: schema evolution and compression.

Table 1. Comparison of data file formats

File format Schema
integration

Compression
support

Text/CSV (Shafranovich 2005) – –

JSON (Bray 2014) + –

Avro (Apache 2009a) + +

SequenceFile (Apache 2009b) – +

RCFile (He et al. 2011) – +

ORC file (Apache 2017) – +

Parquet (Apache 2013) + +

269

Avro (Apache 2009a) is a row-based storage format,
also described as a data serialization system similar to Java
Serialization. Avro provides rich data structures, a compact,
fast, binary data format, a container file to store persistent
data, remote procedure call (RPC) features. There is not
required code generation to read or write data files nor to
use or implement RPC protocols. Alternative systems inc-
lude Java Serialization, Thrift (Apache 2009c) and Protocol
Buffers (Google 2001) that only work with compile time
code generation. Furthermore, Avro can provide more op-
timized runtime performance (Palmer et al. 2011).

Avro relies on schemas. A schema defines the structure
of the data and is used in data reading and writing process.
A data schema is defined with JSON and stored into Avro
file during data writing process. When Avro data is read,
the schema used when writing it is always present. This
allows writing data with no per-value over-heads.

Avro is used to save many small files in a single Avro
file in HDFS to reduce the namenode memory usage be-
cause of user-defined patterns and specific data encoded
into binary sequence and stored into a large containing file
(Zhang et al. 2014).

Parquet (Apache 2013) is a column-based storage
format, optimized for work with multi column datasets.
Parquet use cases typically involve working with a subset
of those columns rather than entire records. One of the
most-often cited advantages of columnar data organizations
is data compression (Stonebraker et al. 2005) and reduced
disk I/O (Abadi et al. 2009) that improves performance of
analytical queries (Floratou et al. 2014). Data compression
algorithms perform better on data with low information
entropy (high data value locality). Thus, the system achie-
ves the I/O performance benefits of compression without
increase of CPU load during the decompression (Abadi
et al. 2009). The layout of Parquet data files is optimized
for queries that process large volumes of data.

There is a business demand to define how to utilize
Avro or Parquet and find the best practices. The main ques-
tion is what the differences in performance (query execution
time) between Parquet and Avro are?

Several research papers have been published on both
comparison of Hadoop high-level processing tools and
languages operating with data in binary formats and their
utilization.

Cejka et al. (2015) from Siemens AG Company co-
mpared the file size of four different formats: Java, Protocol
Buffers, Thrift and Avro. Avro’s results showed that it is
much slower in writing speed, however much faster in re-
ading speed than Protocol Buffers and Thrift. The file co-
mpression of Apache Avro is best. In order to evaluate the

time of retrieval of entries, the author’s defined benchmark
was used to retrieve data from such databases as Storacle,
H2, MongoDB. However, Parquet format was not analyzed
in that paper.

Luckow et al. (2015) compared different queries de-
rived from TPC-DS and TPC-HS benchmarks and executed
on Hive/Text, Hive/ORC, Hive/Parquet, Spark/ORC, Spark/
Parquet. Hive/Parquet showed better execution time than
Spark/Parquet. Select, aggregate and join queries were exe-
cuted on a comparable infrastructure Hive/Spark versus
RDBMS. Generally, the RDBMS can outperform Hive and
Spark – however, both deliver a solid performance at a
lower cost. Avro format was not analyzed there.

Zhang Shuo et al. (2014) compared raw data storage
formats versus Avro and proposed original solution to store,
read and write different small files on HDFS. However,
there is no direct comparison of different data formats and
Parquet was not presented there. It is worth mentioning
that authors selected Avro as a target binary data format
and demonstrated its efficiency in both read and write
operations.

Grover et al. (2015) focused on benchmarking mul-
tiple SQL-like big data technologies over Hadoop based
distributed file system (HDFS) for Study Data Tabulation
Model (SDTM) used in clinical trial databases for impro-
ving the efficiency of research in clinical trials. The ben-
chmark proposed in that paper provides an overview of the
capabilities of SQL-on-Hadoop platforms such as Hive,
Presto, Drill and Spark. The authors mentioned Avro and
Parquet formats, but they did not analyze these formats
in any kind of comparison. Only Parquet format was me-
ntioned in the future work section as a lightweight and fast
format with columnar layout, hence they can significantly
boost IO performance.

Floratou et al. (2014) compared three analytical job
execution environments available in Hadoop ecosystem.
Hive on MapReduce, Hive on Tez and Impala have been
analyzed here by using a world-renowned benchmark like
TPC-H. As a result, the authors confirmed that Impala had
better performance versus Hive (both versions). Although,
the authors mentioned Parquet and Avro, they did not ana-
lyze those formats in any kind of comparison.

Tapiador et al. (2014) compared the data set size
for different compression and format approaches like
CSV(Row), Plain(Row), Snappy(Row), GBIN(Row),
Snappy(Column), GBIN (Column). Google Snappy codec
gave a much better result as the decompression was faster
than that of Deflate (GBIN). It took half of the time to pro-
cess the histograms (50%) and the extra size occupied on
disk was only around 23%. This confirmed the suitability

270

of Snappy codec for data to be stored in HDFS and later on
analyzed by Hadoop MapReduce workflows. Although this
article gave the answer to the question about compactness,
it did not compare Avro versus Parquet in another kind of
comparison, for instance, SQL query execution time. The
data storage model approaching performance comparison
did not give a transparent view of how it was obtained.

There remains a significant gap and need for additio-
nal experiments and studies in order to answer the research
question about the best practice for data storage in Avro or
Parquet format.

Goals and objectives

In context of the information given in “Introduction” and
“Background” sections of this article, it is crucial to select
an appropriate data format that reduces HDFS storage space
and improves the speed of data processing with Hadoop
tools, like Hive. The objective of this work is to perform
experiments in order to answer the research questions:

− RQ.1: What are the differences in performance
(query execution time) between Avro and Parquet?

− RQ.2: Which data format (Avro or Parquet) is
more compact?

In order to answer the research questions, the exper-
imental investigation has been chosen as a research method.
The experimentation process consisted of five stages. It
started with scoping and continued with planning, opera-
tion, analysis and interpretation, report. In order to formu-
late the scope of the experiments, independent variables
has been defined. The data format type (Avro / Parquet) has
been defined as an independent variable, but performance
and compactness – as another. Therefore, the scope of the
experiments has been formulated as follows: Analyze data
format Avro versus Parquet for the purpose of evaluation
with respect to performance and compactness from the
point of view of the researcher in the context of a Big Data
storage format.

Avro and Parquet choice for the experiments was
based on assumption that the row-oriented data access
supported by Avro should provide a better performance
on scan queries, e.g. when all columns are as interest of
the processing, but Parquet format as a counterpart should
provide a better performance on column-oriented queries,
e.g. when only specific set of those is selected. Thus, the
research problem can be expressed as null hypotheses.

H0
A Data format Avro is better than Parquet in perfor-

mance on scan queries.
H0

B Data format Parquet is better than Avro in perfor-
mance on aggregation queries.

H0
C There is no difference in the compactness between

data format Avro and Parquet.
Each hypothesis H0

X, where X refers to a certain qu-
antity (A – performance on scan queries, B – performance
on aggregation queries, C – compactness) has been me-
asured by the corresponding random variable AX and PX –
respectively Avro and Parquet data format. For instance,
H0

C tests the compactness of the data format Avro AC and
Parquet PC. Therefore, the null hypothesis H0

C is expres-
sible as:

 () ()C C C C C
0 :H A P P A> = >p p , (1)

that is, the probability p that Avro is more compact than
Parquet equals the probability that Parquet is more compact
than Avro. Correspondingly, the alternative hypothesis H1

C
is that there is a difference in probability:

 () ()C C C C C
1 : .H A P P A> ≠ >p p (2)

research methodology

A. Cluster configuration

Nowadays there exist many different big data management
systems, like Oracle’s Big Data Appliance, IBM’s Apache
Hadoop, Cloudera’s CDH, Hortonwork’s HDP, Microsoft’s
Dryad, Apache Spark, etc. All these systems are mainly
focused on big data storage and processing, however they
may differ in approaches. For instance, MapReduce idea of
processing differs from Spark’s DAG approach. In the cur-
rent paper, Cloudera Enterprise 5.4 distribution of Hadoop
has been selected. The main reason for that is high populari-
ty of the platform because of its openness. Cloudera has in-
corporated more open source Hadoop ecosystem’s projects
than any other platform. Thus, it leads to bigger popularity
among enterprises since it does not lead to vendor lock-in.

For the experimental investigation, a 12 node cluster
has been chosen, designed and configured for large text
format data processing. There two nodes are name nodes
running in a high-available manner. This is an advisab-
le number of master nodes recommended by Cloudera
(Cloudera 2013). The remaining 10 data nodes run the wor-
ker roles for the Hadoop services. This is an empirically
chosen number of data nodes.

Data nodes in the cluster have 4x Intel(R) Xeon(R)
CPU E5–2680 v3 @ 2.50GHz, with 12x physical cores,
256 GB RAM, 10 TB HDD and Ethernet card each. Each
node runs CentOS 6.7.

For the e several additional tools have been chosen:
Hive version 1.10 (Hive-MR) on top of Hadoop 2.6.0-
cdh5.4.8, Java version 1.6.0_31 and kite-dataset version

271

1.0.0-cdh5.4.8 to create a schema and dataset, import data
from a text file, and view the results.

After scoping and planning, the operation stage has
been performed. Organizing the experiments includes
preparation, execution and data validation tasks that are
described in the next Section.

B. Data used for experiments

Various databases and raw data examples exist. However,
for the experiments a TPC-H (TPC 2014) database with
a scale factor of 300 has been chosen due to its worl-
d-renowned characteristic. The scale factor of 300 means
approximately 300 GB of data. An analysis shows that this
is sufficient to provide insights into the advantages and
limitations of each data format.

For data generation, a database population program
DBGEN has been used. It is available on TPC website
(TPC 2014) and designated for use with the TPC-H ben-
chmark. As shown in Table 2, the TPC-H database consists
of 8 separate and individual tables described in the TPC-H
Benchmark Standard Specification Revision 2.17.1 (TPC
2014). All *.TBL files have been copied into HDFS as a
plain text and converted to Avro and Parquet. For a shorter
insight in the amount of data, the main table of TPC-H
database (lineitem.tbl) consists of 1,799,989,091 rows and
16 columns. It is 230 MB large in plain text format (*.tbl),
116 MB large in Avro and 72 MB large in Parquet format.

A “put” command has been used to load data in to
Hadoop distributed file system (HDFS). Fig. 1 shows an
example of it for one of the tables in plain text format
(region.tbl).

hdfs dfs –put region.tbl hdfs://tpc/data/

Fig. 1. Command line example used for data load into HDFS

After data load in to Hadoop, a kite-dataset command
line (Apache 2015) has been used to convert data from the
plain text format to Avro and Parquet format. The exper-
iments have been performed with the default compression
algorithm snappy for Avro and Parquet format because
snappy compression provides a slightly better query per-
formance than zlib and gzip (Floratou et al. 2014). Fig. 2
shows an example of kite-dataset commands used for plain
text data converting to Avro and Parquet for one of the
smallest TPC-H database table (region.tbl).

By default, kite-dataset supports converting from CSV
and JSON formats. Thus a csv-schema argument has been
used for data schema creation and a csv-import argume-
nt has been used for data import accordingly in Avro or
Parquet format because original data has pipe delimited
(“|”) *.tbl format that is similar to delimiter separated va-
lues (DSV). Considering the fact that generated data files
have lack of header, field names have been added with
header argument in accordance with TPC-H data schema
(TPC 2014).

Table 2. TPC-H table original size vs Avro and Parquet

TPC table name Record count *.tbl size MB *.avro size MB *.parquet size MB
customer.tbl 45,000,000 7,069.6777 3,971.8981 3,633.9168
lineitem.tbl 1,799,989,091 230,545.6467 116,639.3754 72,130.2250
nation.tbl 25 0.0021 0.0018 0.0028
orders.tbl 450,000,000 51,361.8456 24,943.3918 19,646.2062
partsupp.tbl 240,000,000 35,184.6488 14,446.4901 12,978.3418
part.tbl 60,000,000 7,040.0864 3,170.4650 1,843.1135
region.tbl 5 0.0004 0.0008 0.0014
supplier.tbl 3,000,000 410.8828 244.3105 231.1390
total – 331,612.7905 163,415.9335 110,462.9465

kite-dataset csv-schema hdfs://tpc/data/region.tbl –output hdfs://tpc/schemas/region.avsc --delimiter ‘|’ --class TPC
--header ‘regionkey|name|comment’
kite-dataset create dataset:hdfs://tpc/datasets/region_a -f avro --schema hdfs://tpc/schemas/region.avsc
kite-dataset csv-import hdfs://tpc/data/region.tbl dataset:hdfs://tpc/datasets/region_a --delimiter ‘|’
--header ‘regionkey|name|comment’
kite-dataset create dataset:hdfs://tpc/datasets/region_p -f parquet --schema hdfs://tpc/schemas/region.avsc
kite-dataset csv-import hdfs://tpc/data/region.tbl dataset:hdfs://tpc/datasets/region_p --delimiter ‘|’
--header ‘regionkey|name|comment’

Fig. 2. Example of command lines used for plain text data converting to Avro and Parquet

272

{“type” : “record”,
“name” : “TPC”,
“doc” : “Schema generated by Kite”,
“fields” : [
{ “name” : “regionkey”,
“type” : [“null”, “long”],
“doc” : “Type inferred from ‘0’”,
“default” : null
}, {
“name” : “name”,
“type” : [“null”, “string”],
“doc” : “Type inferred from ‘AFRICA’”,
“default” : null
}, {
“name” : “comment”,
“type” : [“null”, “string”],
“doc” : “Type inferred from ‘lar depo’”,
“default” : null }]}

Fig. 3. Data schema example of the smallest dataset
(region.tbl)

The main table of TPC-H database (lineitem.tbl) con-
sists of 1,799,989,091 rows and 16 columns. Although all
*.TBL files have been copied into HDFS as a plain text for
a shorter table schema insight the smallest table (region.tbl)
has been chosen. Fig. 3 shows data schema for the smallest
table (region.tbl).

The same schema (*.avsc) automatically created by
kite-dataset csv-schema command has been chosen for data
import into both formats (Avro and Parquet).

C. Data Load into Hive

Data was loaded into hive table by CREATE TABLE sta-
tement with “stored as TEXTFILE”, “stored as AVRO” or
“stored as PARQUET” accordingly to each dataset location.
Fig. 4 shows CREATE TABLE statement syntax for the main
table (lineitems.tbl) stored as Parquet.

The total count of tables created in Hive database is
24 accordingly to each of 8 TPC-H datasets and each of
the three formats used for the experiments.

CREATE EXTERNAL TABLE dbase.tpc_lineitem_parq(
orderkey BIGINT, partkey BIGINT,
suppkey BIGINT, linenumber BIGINT,
quantity BIGINT, extendedprice DOUBLE,
discount DOUBLE, tax DOUBLE,
returnflag STRING, linestatus STRING,
shipdate STRING, commitdate STRING,
receiptdate STRING, shipinstruct STRING,
shipmode STRING, comment STRING)
STORED AS PARQUET
LOCATION ‘hdfs://tpc/datasets/lineitem_p’;

Fig. 4. CREATE TABLE statement example for lineitem data
in Parquet format

D. queries

The queries from TPC-H Benchmark (TPC 2014) have
been mostly used for the experiments. Compiling statement
and unsupported SubQuery Expression errors have been
received during some TPC-H query execution. Thus, these
queries have been rewritten to be useful for experiments.
Modified queries are published in GitHub (DaigaPlase
2016) and are appropriately marked in Table 3. One of the
modified queries (Q1) is showed in Fig. 5.

SELECT
RETURNFLAG, LINESTATUS,
SUM(QUANTITY) as sum_qty,
SUM(EXTENDEDPRICE) as sum_base_price,
SUM(EXTENDEDPRICE*(1-DISCOUNT)) as
sum_disc_price,
SUM(EXTENDEDPRICE*(1-DISCOUNT)*(1+TAX)) as
sum_charge,
AVG(QUANTITY) as avg_qty,
AVG(EXTENDEDPRICE) as avq_price,
AVG(DISCOUNT) as avg_discount,
COUNT(*) as count_order
FROM
dbase.tpc_lineitem_avro
WHERE
to_date(SHIPDATE)<=’1996–07–02’
GROUP BY RETURNFLAG, LINESTATUS;

Fig. 5. Modified query 1 to select data from Avro formatted
lineitem table based on TPC-H Q1

Basically, it is the same query that is described in
TPC-H Benchmark. The modification is related with
‘where’ clause “l_shipdate <= date ‘1998–12–01’ - inter-
val ‘[DELTA]’ day (3)” where the date interval has been
replaced with the exact date and function to_date() in order
to return the date from string type date value stored in
Hive table, because data load into Hive without workaround
approach of at least 4 steps (create temp table, load data,
create table with correct data types and insert data there
from temp table) supports only string type date values.

In addition, query 0 and query x23 have been added
to TPC-H 22 query list for following purposes.

Query 0 has been defined simply for test purpose in
order to check if the record count of each hive table cor-
responds to row count of each original *.tbl file. To count
rows of each original data table command “sed” has been
used, for example “sed -n ‘$=’ lineitem.tbl” to output row
count of lineitem table. Fig. 6 shows Query 0 used as ag-
gregation query to examine Parquet advantage and count
records from lineitem table of all three formats (stored as
TEXTFILE, AVRO and PARQUET).

273

The output results that have been received with sed
command and count(*) queries match. In addition, Query 0
execution time has been measured and included in Table 3
to illustrate performance of one simple aggregation function
executed on different format tables.

select count(*) from dbase.tpc_lineitem_dsv
select count(*) from dbase.tpc_lineitem_avro
select count(*) from dbase.tpc_lineitem_parq

Fig. 6. Query 0 used as aggregation query to examine Parquet
advantage and count records from lineitem table stored as

TEXTFILE, AVRO and PARQUET

Query x23 has been defined as scan query for Avro
format use case (Fig. 7), e. g., row-oriented data access,
when only some columns are as interest of the processing.
Query x23 does not include any aggregation.

select c.name, c.address from tpc_customer_dsv c where
c.acctbal=100;
select c.name, c.address from tpc_customer_avro c where
c.acctbal=100;
select c.name, c.address from tpc_customer_parq c where
c.acctbal=100;

Fig. 7. Query x23 used to examine Avro (SCAN) advantage

In the experiments, 22 TPC-H queries and these two
additional queries have been executed, one after the other
for plain text, Avro and Parquet formatted Hive table. The
execution time has been measured for each query. Three
full runs have been performed for each file format and
each query. Thus, for each query, the average response time
across the three runs has been reported.

results

Data load in to Hadoop and conversion from the plain text
format to Avro and Parquet format (Table 2) present signi-
ficant storage space economy. Fig. 8 shows that the same
data takes 2 times less storage space in Avro format, and
3 times less – in Parquet format. This is an answer to the
second research question RQ.2.

The second research question related with null hy-
pothesis H0

C proves alternative hypothesis H1
C that there

is a difference in the compactness between data format
Avro and Parquet, e. g., probability p that Parquet is more
compact than Avro, () ()C C C C C

1 :H A P P A> ≠ >p p .
Although the data format Avro and Parquet use the

same compression Snappy, the difference between Avro
and Parquet shows that Parquet is approximately 1.5 times
more compact than Avro.

Fig. 8. Data size comparison between three formats

The answer to the first research question RQ.1 has
been gained by performing the experiments and measuring
execution time of 24 queries by using Beeline shell.

Beeline’s reported time is close to time reported by
Cloudera Resource manager for the same query. In addition,
for data validation purposes shell script has been written in
order to compare Beeline’s reported time with shell output
between two timestamps (query end time and start time).
The shell time for each query is approximately 4 s higher
than Beeline’s time. This margin is because of the time
required for query start and end.

In the experiments, 24 queries have been executed
for each table (stored respectively as Textfile, Avro and
Parquet). Table 3 presents the running time of the queries
for each file format used for the experiments. In addition,
Table 3 presents how many times the Parquet format is
faster than Textfile and Avro respectively. Modified TPC-H
queries are appropriately marked with (*) except Q0 and
Qx23 that are new queries defined separately.

As shown in Table 3 and Fig. 9, Parquet can provide
2 times faster execution time on average when compared
with Avro and Textfile.

Fig. 9. Times Parquet faster Textfile and Avro
(on average of all queries)

In order to answer the first research question, queries
have been grouped into two parts accordingly to hypothesis

A
0H and B

0H : 1) scan queries (Q2, Q3, Q4, Q20, Qx23);
2) the remaining (aggregation) queries.

274

Table 3. Query execution time (s, ms) and Parquet performance evaluation

TPC-H
Query*

Aggregation
(AGR) or SCAN

query

Data format
(Hive table ‘stored as’)

Times Parquet faster
in comparison

Textfile (*.tbl) Avro Parquet Textfile /
Parquet

Avro /
Parquet

Q0* AGR 132,724 209,394 34,398 3,9 6,1
Q1* AGR 306,444 321,427 142,364 2,2 2,3
Q2 SCAN FAILED FAILED FAILED
Q3* SCAN 429,944 499,45 277,121 1,6 1,8
Q4* SCAN 351,12 395,957 207,366 1,7 1,9
Q5* AGR 506,531 557,565 324,148 1,6 1,7
Q6* AGR 146,756 234,58 64,656 2,3 3,6
Q7* AGR 633,338 664,841 436,435 1,5 1,5
Q8 AGR FAILED FAILED FAILED
Q9 AGR FAILED FAILED FAILED
Q10* AGR 403,579 465,389 230,908 1,7 2,0
Q11 AGR 325,108 319,164 276,336 1,2 1,2
Q12* AGR 325,803 359,147 182,783 1,8 2,0
Q13 AGR 216,121 244,936 201,872 1,1 1,2
Q14* AGR 275,926 315,728 154,344 1,8 2,0
Q15* AGR 608,079 675,436 325,472 1,9 2,1
Q16* AGR 281,495 298,717 238,782 1,2 1,3
Q17 AGR 609,197 690,604 344,03 1,8 2,0
Q18 AGR 688,337 800,813 428,181 1,6 1,9
Q19 AGR FAILED FAILED FAILED
Q20* SCAN 542,506 645,825 391,9 1,4 1,6
Q21* AGR 1002,767 1266,491 678,115 1,5 1,9
Q22 AGR 215,96 295,432 152,604 1,4 1,9
Qx23* SCAN 28,169 55,592 25 1,1 2,2
AVERAGE 1,7 2,1

Fig. 10. Times Parquet faster Textfile and Avro
(on average to SCAN queries)

Fig. 11. Times Parquet faster Textfile and Avro
(on average to AGGREGATION queries)

As shown in Fig. 10 and Fig. 11, Avro presents the
worst performance when compared with Textfile and Parquet
on both kind of queries (scan and aggregation). There is an
insignificant difference between scan queries presented in
Fig. 10 and aggregation queries presented in Fig. 11.

Thus, there is wrong null hypothesis A
0H that data

format Avro is better than Parquet in performance to scan
queries because data format Parquet performs better than
Avro on both kinds of queries, e. g. scan and aggregation
queries. Thereby the null hypothesis B

0H is true.

summary and conclusions

1. The experiments performed within the scope of this
article have been based on a systematic review of SQL-
on-Hadoop by using compact data formats (Plase 2016).
As the result of systematic literature review, a gap and
need for additional experiments and studies have been
formulated in order to answer the research questions
about Parquet and Avro format. All 17 studies analy-
zed at the last stage of the systematic literature review

275

(Plase 2016) are not containing direct focus on compa-
ring two binary data storage formats – Parquet and Avro
because of both design specifics. Parquet as stated in the
official documentation (Apache 2013) is a column-ori-
ented data storage format. Thus, it should provide better
performance on column-oriented queries, e. g., when
only a specific set of those is selected. As a counterpart,
Avro format is designed for row-oriented data access,
e.g., when all columns are the interest of processing.
Considering this, three hypothesis have been formula-
ted in this article.

2. The experiments show that Avro usage is worth only
from storage space economy point of view. Queries
from Avro tables are slower when compared with qu-
eries even from Textfile format tables. However, all
TPC-H queries from Parquet format tables provide a
significant performance advantage over Textfile and
Avro. Parquet can provide 2 times faster execution time
on average when compared with Avro and Textfile.
There is an insignificant difference between scan qu-
eries presented and aggregation queries.

3. A great deal of work has been done on the experiments
with TPC-H datasets. TPC-H decision support bench-
marks are widely used today in evaluating the perfor-
mance of relational database systems. TPC-H datasets
are usable in evaluating the performance of Big Data
management systems because DBGEN allows to gene-
rate datasets with scale factor more than 1 TB. As future
work might be mentioned query performance measu-
ring by TPC-DS standard benchmark what is more app-
ropriate to Big Data systems. In addition, other query
engines like Impala, HAWQ, IBM Big SQL, Drill, Tajo,
Pig, Presto and frameworks like Spark, Cascading, and
Crunch could be considered for new experiments in or-
der to gain more detailed experience with compact data
formats.

4. The topic about data formats is related with work exper-
ience in Big Data field. There are many companies that
manage Big Data (mostly and at this moment – banks,
telecommunication, travel and tourism companies) and
asking to define best practices for Avro and Parquet uti-
lization. In addition, the result of previously done sys-
tematic review of SQL-on-Hadoop by using compact
data formats (Plase 2016) and recognized research gap
has been a motivation source for this research paper.

Acknowledgements

The authors would like to thank Accenture Latvia for pro-
viding the infrastructure used for the experiments.

references

Abadi, D. J.; Boncz, P. A.; Harizopoulos, S. 2009. Column-oriented
database systems, Processing of the VLDB Endowment 2(2):
1664–1666. https://doi.org/10.14778/1687553.1687625

Apache. 2009a. Avro specification [online], [cited 30 November
2016]. Avro. Available from Internet: http://avro.apache.org/
docs/current/spec.html

Apache. 2009b. Sequence file [online], [cited 30 November
2016]. Hadoop Hive. Available from Internet:
https://wiki.apache.org/hadoop/SequenceFile

Apache. 2009c. Thrift [online], [cited 30 November 2016]. Apache
Thrift. Available from Internet: http://thrift.apache.org

Apache. 2013. Parquet official documentation [online], [cited 30
November 2016]. Parquet. Available from Internet: https://
parquet.apache.org/documentation/latest/

Apache. 2015. Kite Dataset command line interface docume-
ntation [online], [cited 30 November 2016]. Kite Software
Development Kit. Available from Internet: http://kitesdk.org/
docs/1.1.0/cli-reference.html

Apache. 2017. Language manual ORC [online], [cited 30
November 2016]. Apache Hive. Available from Internet:
https:/ /cwiki.apache.org/confluence/display/Hive/
LanguageManual+ORC

Bray, T. 2014. The JavaScript object notation (JSON) data
interchange format [online], [cited 30 November 2016].
Google, Inc. Available from Internet: https://tools.ietf.org/
html/rfc7159

Cejka, S.; Mosshammer, R.; Einfalt, A. 2015. Java embedded
storage for time series and meta data in Smart Grids, in
Proceedings of IEEE International Conference on Smart
Grid Communications (SmartGridComm), 2–5 November,
2015, Miami, USA, 434–439.

 https://doi.org/10.1109/smartgridcomm.2015.7436339

Chandra, D. G.; Prakash, R.; Lamdharia, S. 2012. A stu-
dy on cloud database. Computational Intelligence and
Communication Networks (CICN), in Proceedings of Fourth
International Conference on Computational Intelligence
and Communication Networks, IEEE, 3–5 November, 2012,
Mathura, India, 513–519.

 https://doi.org/10.1109/cicn.2012.35

Chen, Y.; Qin, X.; Bian, H.; Chen, J.; Dong, Z.; Du, X.; Zhang,
H. 2014. A study of SQL-on-Hadoop systems, in J. Zhan,
R. Han, C. Weng (Eds.). Big data benchmarks, performance
optimization, and emerging hardware. BPOE 2014. Lecture
notes in Computer Science, Vol. 8807. Springer International
Publishing, 154–166.

 https://doi.org/10.1007/978–3–319–13021–7_12

Cloudera. 2013. How-to: select the right hardware for your new
Hadoop cluster [online], [cited 30 November 2016]. Available
from Internet: https://blog.cloudera.com/blog/2013/08/ho-
w-to-select-the-right-hardware-for-your-new-hadoop-cluster/

Shafranovich, Y. 2005. Common format and MIME type for com-
ma-separated values (CSV) files [online], [cited 30 November
2016]. SolidMatrix Technologies, Inc. Available from Internet:
https://tools.ietf.org/html/rfc4180

DaigaPlase. 2016. Personal repository ‘DaigaPlase’ in GitHub,
[online], [cited 30 November 2016]. Git Hub. Available from
Internet: https://github.com/DaigaPlase/tpc_hive.git

https://doi.org/10.14778/1687553.1687625
https://doi.org/10.1109/smartgridcomm.2015.7436339
https://doi.org/10.1109/cicn.2012.35
https://doi.org/10.1007/978-3-319-13021-7_12

276

Floratou, A.; Minhas, F. U.; Özcan, F. 2014. SQL-on-Hadoop:
full circle back to shared-nothing database architectures,
Processing of the VLDB Endowment 7(12): 1295–1306.
https://doi.org/10.14778/2732977.2733002

Gartner. 2014. Gartner says smartphone sales surpassed one
billion units in 2014 [online], [cited 30 November 2016].
Gartner. Available from Internet: http://www.gartner.com/
newsroom/id/2996817

Google. 2001. Protocol buffers [online], [cited 30 November
2016]. Google. Available from Internet: https://github.com/
google/protobuf

Grover, A.; Gholap, J.; Janeja, V. P.; Yesha, Y.; Chintalapati, R.;
Marwaha, H.; Modi, K. 2015. SQL-like big data environ-
ments: case study in clinical trial analytics, in Proceedings
of 2015 IEEE International Conference on Big Data (Big
Data), 29 October–01 November, 2015, Santa Clara, USA,
2680–2689.

He, Y.; Lee, R.; Huai, Y.; Shao, Z.; Jain, N.; Zhang, X.; Xu, Z.
2011. RCFile: a fast and space-efficient data placement struc-
ture in MapReduce-based warehouse systems, in Proceedings
of IEEE 27th International Conference on Data Engineering
(ICDE), 11–16 April, 2011, Hannover, Germany, 1199–1208.
https://doi.org/10.1109/icde.2011.5767933

Luckow, A.; Kennedy, K.; Manhardt, F.; Djerekarov, E.;
Vorster, B.; Apon, A. 2015. Automotive big data: applica-
tions, workloads and infrastructures, in Proceedings of 2015
IEEE International Conference on Big Data (Big Data), 29
October–01 November, 2015, Santa Clara, USA, 1201–1210.

Palmer, N.; Miron, E.; Kemp, R.; Kielmann, T.; Bal, H. 2011.
Towards collaborative editing of structured data on mo-
bile devices, in Proceedings of 12th IEEE International
Conference on Mobile Data Management (MDM), 6–9 June,
2011, Lulea, Sweden, 1: 194–199.

 https://doi.org/10.1109/mdm.2011.48

Plase, D. 2016. A systematic review of SQL-on-Hadoop by using
compact data formats [online], [cited 30 November 2016].
Preprint (MII). Available from Internet: https://dspace.lu.lv/
dspace/handle/7/34452

Sharma, M.; Hasteer, N.; Tuli, A.; Bansal, A. 2014. Investigating
the inclinations of research and practices in Hadoop: a sys-
tematic review. Confluence the next generation informa-
tion technology summit (confluence), in Proceedings of 5th
International Conference – Confluence The Next Generation
Information Technology Summit (Confluence 2014), 25–26
September, 2014, Noida, India, 227–231.

 https://doi.org/10.1109/confluence.2014.6949381

Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. 2010. The
hadoop distributed file system, in Proceedings of IEEE 26th
Symposium on Mass Storage Systems and Technologies
(MSST), 3–7 May, 2010, Lake Tahoe, USA, 1–10.

 https://doi.org/10.1109/msst.2010.5496972

Stonebraker, M.; Abadi, D. J.; Batkin, A.; Chen, X.; Cherniack
M.; Ferreira M.; O’Neil, P. 2005. C-store: a column-oriented
DBMS, in Proceedings of the 31st international conference
on Very large databases, VLDB Endowment, August 30–
September 2, 2005, Trondheim, Norway, 553–564.

Tapiador, D.; O’Mullane, W.; Brown, A. G. A.; Luri, X.;
Huedo, E.; Osuna, P. 2014. A framework for building hyper-
cubes using MapReduce, Computer Physics Communications
185(5): 1429–1438. https://doi.org/10.1016/j.cpc.2014.02.010

TPC. 2014. TPC-H benchmark standard specification revision
2.17.1 [online], [cited 30 November 2016]. TPC. Available
from Internet: http://www.tpc.org/tpc_documents_curre-
nt_versions/current_specifications.asp

Wonjin, L.; On, B. W.; Lee, I.; Choi, J. 2014. A big data mana-
gement system for energy consumption prediction models,
in Proceedings of 9th International Conference on Digital
Information Management (ICDIM), 29 September–01
October, 2014, Bankok, Thailand, 156–161.

Zhang, S.; Miao, L.; Zhang, D.; Wang, Y. 2014. A strategy to deal
with mass small files in HDFS, in Proceedings of 2014 Sixth
International Conference on Intelligent Human-Machine
Systems and Cybernetics (IHMSC), 26–27 August, 2014,
Hangzhou, Zhejiang, China, 1: 331–334.

 https://doi.org/10.1109/ihmsc.2014.87

HDFS glAuSTŲJŲ DuOMENŲ FORMATŲ
pALYGinimAs: AVRO prieš PARQUET

D. plase, L. niedrite, r. taranovs

Santrauka

Straipsnyje vertinamas duomenų užklausų našumas lyginant Avro
ir Parguet failų formatus su teksto failų formatu. Tyrimuose
taikytos įvairios duomenų užklausų formos, naudota Cloudera
atvirojo kodo Apache Hadoop CDH 5.4 versijos programinė
įranga. Tyrimo rezultatai patvirtina, kad glaustieji duomenų
formatai (Avro ir Parguet) dėl galimybės įterpti dvejetainį kodą
ir naudoti glaudą taupo atmintį. Parodoma, kad duomenų užk-
lausos įvykdomos sparčiau naudojant Parquet nei Avro ar teksto
failų formatus.

Reikšminiai žodžiai: didieji duomenys, Hadoop, HDFS, Hive,
Avro, Parquet.

https://doi.org/10.14778/2732977.2733002
https://doi.org/10.1109/icde.2011.5767933
https://doi.org/10.1109/mdm.2011.48
https://doi.org/10.1109/confluence.2014.6949381
https://doi.org/10.1109/msst.2010.5496972
https://doi.org/10.1016/j.cpc.2014.02.010
https://doi.org/10.1109/ihmsc.2014.87

