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Abstract. The purpose of the paper is to present technology applied for the global optimization of grillage-type pile foundations 
(further grillages). The goal of optimization is to obtain the optimal layout of pile placement in the grillages. The problem can 
be categorized as a topology optimization problem. The objective function is comprised of maximum reactive force emerging 
in a pile. The reactive force is minimized during the procedure of optimization during which variables enclose the positions of 
piles beneath connecting beams. Reactive forces in all piles are computed utilizing an original algorithm implemented in the 
Fortran programming language. The algorithm is integrated into the MatLab environment where the optimization procedure 
is executed utilizing a genetic algorithm. The article also describes technology enabling the integration of MatLab and Fortran 
environments. The authors seek to evaluate the quality of a solution to the problem analyzing experimental results obtained 
applying the proposed technology. 
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Introduction

The search for a global optimal solution is common and in-
separable routine in engineering practice. The paper analy-
zes a particular civil engineering problem – the optimization 
of pile positions in grillage-type foundations (further grilla-
ges). Such foundations are composed of connective beams 
lying on supporting piles. The grillages are widely reco-
gnized as the most popular and efficient foundation design, 
particularly in the case of unstable soil. All generated load 
from the structure is distributed through connective beams 
to piles. The optimum grillage should meet dual criteria: 
the quantity of piles should be minimum and connective 
beams should receive minimum possible bending moments 
resulting in minimum demand of concrete for beams. Thus, 
two separate optimization problems confront each other: 
search for a minimum volume of beams and search for a 
minimum quantity of piles. The first optimization problem 
is equivalent to the minimization of the maximum bending 
moment in beams. Since the carrying power of a separate 
pile is known, the second optimization problem can be ren-
dered as the minimization of the maximum reactive force in 
piles throughout the entire set of piles. Both problems can 
be incorporated into one utilizing a compromise objecti-
ve function. The design parameters for both problems are 
the location of piles. An algorithm for local search was 
employed for the optimum location of piles beneath a se-

parate beam of the grillage (Belevičius, Valentinavičius 
2001, 2000) and under the whole grillage using an itera-
tive algorithm on the basis of the above mentioned work 
(Belevičius et al. 2002). Experience demonstrates that the 
objective function possesses many local minima points for 
practical grillage optimization problems. Consequently, 
local search is certainly not a proper choice, and therefore 
global optimization algorithms must be utilized. 

This paper also considers the second problem – the 
minimization of the maximum reactive force in piles. Since 
the problem may have several tens of design parameters, the 
only choice for optimization algorithms is to use stochastic 
optimization algorithms. Simulated annealing (Groenwold, 
Hindley 2002) and the genetic algorithm (Goldberg 1989) 
are the most promising algorithms for these problems 
(Belevičius et al. 2011). 

Thus, we formulate a problem of pile location sear-
ching for proper pile positions beneath connective beams. 
Identical reactive forces for all piles would be an indicator 
the ideal pile placement scheme is obtained. This is hardly 
possible, particularly in case when immovable piles prevail 
in design. Consequently, such piles always retain their po-
sitions and do not participate in the optimization process. 
Some technological constraints may also make an ideal 
scheme non-achievable, i.e. the distance between adjacent 
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piles should not be too small due to the specific capacities 
of a pile-driver. The current paper does not consider im-
movable piles and allow for a pile to reserve whichever 
position in the grillage; however, piles are not typically 
placed at the joints of the grillage.

Bowles (1997); Reese et al. (2005) describe exhaus-
tive technical details on grillages. 

The following initial data are considered for the pro-
blem of grillage optimization:

− cross-section data on all beams (area, moments of 
inertia);

− loading data – active forces can be applied in the 
form of concentrated loads and moments at any 
point on the beam or in the form of distributed tra-
pezoidal loadings at any segment of the beam; 

− maximum allowable reactive force at any pile;
− material data of all beams (material in one beam is 

treated as isotropic);
− minimum possible distance between adjacent piles;
− positions of immovable piles (if any);
− the stiffness of a pile (vertical, rotational);
− geometrical scheme for connecting beams;
The outcome of optimization includes the required 

number of piles and the location of such piles.
However, only a few works so far deal with the opti-

mization of foundation schemes. Chan et al. (2009) com-
bine sizing and topology optimization; however piles are 
aggregated to special groups. Chamoret et al. (2008) ana-
lyzed beam optimization problems taking into account the 
form of the optimal sizing of beams in grillage structures 
under given boundary and loading conditions. 

Mathematical Model of Grillage Optimization

The problem is attractive from a mathematical point of 
view, because the global solution of the objective function 
is possible to obtain in advance: it is enough to calculate 
the ratio of the total active forces and the number of piles. 
Thus, the quality of the obtained solution is possible to 
evaluate. 

The following single objective optimization problem 
is formulated as follows:
 min ( )

∈x D
G x , (1)

where G – maximum reactive force in the pile; D – a fea-
sible region of design parameters.; x – design parameters.

In order the value of reactive forces could vary in 
different piles (in the case the characteristics of piles are 
different), instead of maximum reactive force, we consider 

maximum difference between vertical reactive force in the 
pile and allowable reactive force for the pile: 
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where aP – allowable reactive force, o iP  – reactive force 
for the i-th pile; aN  – number of piles; it  – multipliers 
enabling to utilize different allowable reactive forces for 
different piles.

Since piles may be located only beneath connective 
beams, obvious restrictions on the location of piles emerge: 
in the course of the optimization process, piles can move 
only along connective beams. Hence, a two-dimensional 
beam structure of the grillage is mathematically “unfolded” 
to a one-dimensional construct, and piles can freely shift 
their position through this space. The backward transforma-
tion restores the location of piles into the two-dimensional 
beam structure of the grillage. 

The article solves a direct problem of identifying ma-
ximum reactive force in piles utilizing the finite element 
method (FEM) and employing a fast and original program 
written using the Fortran programming language; the pro-
gram is incorporated within the MatLab optimization en-
vironment applying the “black-box” principle depending 
on the response of which an appropriate pile placement 
scheme is defined by the optimization program. One de-
sign parameter corresponds to one location of the pile in 
one-dimensional space. Constraints for design parameters 
are as follows:
 0 ≤ ≤ix L , 1,2,...,= ai N , (3)

where ix  – the i-th pile coordinate within one-dimensional 
space; L  – the total length of all beams in the grillage.

When investigating the grillage, connective beams 
are idealized as beam elements, whilst piles are idealized 
as supports, i.e. finite element mesh nodes with assigned 
elastic boundary conditions. Beam elements are comprised 
of 2 nodes with 6 degrees of freedom each (3 displacements 
along coordinate axes and 3 rotations about these axes). The 
stiffness matrix [ ]K  for beam element is available in many 
textbooks (e.g. Spyrakos, Raftoyiannis 1997):
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The main statics equation that secures the stability 
constraints of the structure is as follows: 

 [ ] { } { }=a aaK u F , (5)

where index a – the ensemble of elements (not shown in the 
equation below); { }u  –nodal displacements and { }F  – acti-
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ve forces. Since nodal displacements are defined, reactive 
forces for piles can be computed as follows:

   =  ∑i ij j
j

R K u . (6)

Technology

Herein the proposed calculation technology is presented 
analyzing the optimization problem of 10-pile grillage 
(Fig. 1). The technology is composed of two stages: 

1. Investigation into the grillage and a solution to a di-
rect problem of computing reactive forces in piles are 
performed utilizing FEM. It can be implemented ap-
plying an original algorithm created using the Fortran 
programming language.

2. The “Black-box” principle is utilized to integrate the 
algorithm within the MatLab environment where the 
optimization problem is solved employing the genetic 
algorithm. 

Fig. 1. 10-pile grillage

At the first stage, the objective function (2) is calcu-
lated and at the second stage this function is optimized. In 
such a case, the technological problem emerges, i.e. to call 
the Fortran function from the MatLab environment.

Further, one of the algorithms is proposed to solve 
such problem in practice:

1. It is necessary to create a library in the Fortran envi-
ronment. The subroutine of the objective function (2) 
should be included within the library. Therefore, two 
files - *.dll  and *.lib are created;

2. File *.h  where the objective function (2) is declared 
within the Fortran library utilizing the syntax of the 
+ +C  programming language is created;

3. Created files (*.dll , *.lib  and *.h ) must be uploaded 
into the corresponding catalogues:
3.1.1.  file *.dll  – into catalogue 

  ...\bin\win32;
3.1.2.   file *.lib  – into catalogue 

 ...\ extern\lib\win32\microsoft;
3.1.3. file *.h  – into catalogue  ...\extern\include;

4. Within the MatLab environment, file *.h  utilizing 
command hfile , i.e. 

[ '\ \ \ . ']=hfile matlabroot extern include grill h
should be defined;

5. When utilizing command loadlibrary , the library we 
will use, i.e. ( )' ',loadlibrary grillage hfile  should be 
defined;

6. Following these actions, a possibility of operating all 
functions of .grillage dll  libraries appears. These 
functions are described in the file .grill h ; 

7. Command calllib  is utilized to call functions from an 
external library integrated within the MatLab envi-
ronment and the arguments should be transferred by 
arrows. Therefore, an additional function (within the 
MatLab environment) where all these actions will be 
performed have been created. 
An example of a function:
function [r]= grill_10(x)
pX = libpointer(‘doublePtr’, x);
pR_best = libpointer(‘doublePtr’, 100000.);
calllib(‘grillage’, 
‘OBJECTIVE_FUNCTION’, pX,10,pR_best);
r = get(pR_best, ‘Value’);

The created library function ‘OBJECTIVE_FUNCTION’ 
contains 3 parameters:

pX – an array of pile coordinates,
10 – the number of piles,
pR_best – maximum reactive force in piles.

8. Next, we are enabled to use function grill_10(x) within 
the MatLab environment – The genetic algorithm and 
direct search Toolbox (Fig. 2).

Fig. 2. Optimization toolbox in MatLab



567

Numerical Experiments

To solve the optimization problem for 10-pile grillage, 30 
independent numerical experiments have been performed. 
The total length of all beams in the grillage is 75, and the-
refore the following boundary conditions for pile position 
have been applied:
x0 = [0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]
xn =  [74.99 74.99 74.99 74.99 74.99 74.99 74.99 74.99 

74.99 74.99]
Almost all parameters of the genetic algorithm are 

selected by default, except the parameters shown in Fig. 3. 

Fig. 3. Parameters of the genetic algorithm  

The results of the conducted experiments are presen-
ted in Table 1. The average duration of one experiment 
is 2 min 30 sec (computer Intel(R) Core(TM)2 Duo CPU 
T7500 @ 2.20GHz, 984 MB of RAM). Fig. 4 shows a typical 
convergence of the objective function (2) average and the 
best values depending on the number of generation. 

Table 1. The results of numerical experiments

No. of a 
numerical 
experiment

The best 
value of an 
objective 
function

No. of a  
numerical 
experiment

The best 
value of the 

objective 
function

1 223.1701 16 207.5362
2 205.0659 17 208.0543
3 204.2530 18 210.5133
4 210.9061 19 199.6463
5 204.5285 20 201.4831
6 202.5660 21 195.1419
7 221.4256 22 205.5572
8 222.8372 23 216.9473
9 195.8146 24 221.8892
10 202.8087 25 203.1146
11 204.2033 26 211.5554
12 222.0529 27 214.2275
13 246.9790 28 217.9776
14 208.4597 29 205.0124
15 258.9327 30 214.2355

Fig. 4. Typical convergence of the objective function  

The results of numerical experiments (Table 1) have 
revealed the best value of the objective function (2) is 
195,1419. A scheme for pile placement that corresponds 
to the best value of the solution is shown in Fig. 5. 

Fig. 5. Scheme for pile placement corresponding to the best 
solution  

The previous works (Belevičius et al. 2011) have de-
monstrated that the global solution of the objective function 
is possible to be obtained in advance (considering a si-
milar type of problem); however, the locations of piles 
(corresponding to such global solution) are to be determi-
ned during the optimization process. The global solution 
for 10-pile grillage is 183,7656. Therefore, the difference 
between the best obtained value of the objective function 
(195,1419) during optimization and the global solution is 
approx. 6,2%. Hence, the proposed calculation technology 
is a perspective tool for optimizing small scale grillages. 

Conclusions

The proposed technology enables a researcher to poten-
tiate from MatLab opportunities and optimizes objecti-
ve functions realized utilizing the Fortran programming 
language. It seems to be very useful particularly in the 
case, when objective functions are very complicated and 
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enormous time consumption would be required to create 
similar functions directly within the MatLab environment. 
Since the best obtained optimization result is very close to 
the global solution of the problem, this technology can be 
successfully applied for optimizing small scale grillages. 
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MATLAB IR FORTRAN aplINKų SUJUNGIMaS 
RoSTVERKAMS oPTIMIZUoTI GENETINIAIS 
ALGoRITMAIS 

D. Mačiūnas, J. Kaunas, D. Šešok

Santrauka

Straipsnyje pateikiama sijynų tipo pamatų (toliau sijynų) glo-
balaus optimizavimo technologija. Optimizavimo tikslas – 
nustatyti optimalų polių išdėstymą sijynuose. Šis uždavinys 

priskiriamas topologijos optimizavimo uždavinių grupei. Tikslo 
funkciją sudaro maksimali poliuje kylanti atraminė reakcijos 
jėga, kuri minimizuojama optimizavimo procese. Šio uždavinio 
projektavimo kintamieji - polių padėtys po jungiančiosiomis si-
jyno sijomis. Tiesioginis reakcijų poliuose skaičiavimo uždavinys 
sprendžiamas originaliu algoritmu, sukurtu Fortran programa-
vimo kalba. Šis algoritmas juodosios dėžės principu jungiamas 
prie MatLab aplinkos, kurioje genetiniu algoritmu sprendžiamas 
optimizavimo uždavinys. Straipsnyje taip pat aprašyta tech-
nologija, kuri leidžia sujungti Matlab ir Fortran aplinkas, t. y. 
iš Matlab aplinkos iškviesti Fortran paprogramį. Analizuodami 
eksperimentinius duomenis autoriai bando įvertinti gaunamų 
sprendinių kokybę.

Reikšminiai žodžiai: globalusis optimizavimas, genetiniai al-
goritmai, rostverkų optimizavimas, baigtinių elementų metodas, 
MatLab, Fortran. 

http://dx.doi.org/10.1080/13923730.2002.10531259
http://dx.doi.org/10.1061/%28ASCE%291090-0241%282009%29135:4%28497%29
http://dx.doi.org/10.1007/s00158-002-0246-7
http://dx.doi.org/10.1002/9780470172773

