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abstract. A mathematical model of the system Railway Vehicle Wheel–Track with a wheel flat of a wheelset has been made. 
The system Railway Vehicle Wheel–Track has been examined on the vertical plane. The mathematical model of the system 
Railway Vehicle Wheel–Track has employed linear, nonlinear, elastic and damping discrete elements. Rail dynamics haves 
been described using the finite element method. The unevenness of the rail and the wheel of the wheelset have been evaluated 
considering the contact between the rail and the wheel flat of the wheelset. The analysis of dynamic processes taking place in 
a railway vehicle wheel with the wheel flat moving at speed V = 60 km/h has been accomplished. The results of mathematical 
modelling of the above introduced dynamic system have been presented along with graphically displayed research findings of 
the conducted research.
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introduction

Rail traffic safety, power output, fuel efficiency, track us-
age, etc. depend on the wheel-rail interaction of a railway 
vehicle. The distribution of forces resulting from wheel-rail 
interaction influences the wheel of the railway vehicle and 
track dynamics. Interaction forces affecting the wheel of 
the railway vehicle and the rail occur in the contact of the 
wheel having a defect and the rail. The extent of contact 
force directly depends upon the velocity of the railway 
vehicle, wheel-rail geometric parameters as well as phys-
ical and mechanical characteristics of the system Railway 
Vehicle Wheel–Track. Therefore, the majority of defects are 
detected on the rail head and tread surface.

One of the most common numerical methods are the 
finite element method. When analysing the wheel-rail in-
teraction of the railway vehicle, the theories evaluating 
forces resulting from the wheel-rail interaction of the rail-
way vehicle are used, Hertz, Kalker, “Johnson, Kendall, 
Roberts” (JKR), Bradley, etc.

The Hertz theory of elastic bodies is the most pop-
ular one stating that if two bodies are compressed, the 
contact area is elliptical in shape and is formed in the 
centre of maximum pressure. Having integrated pressure 
distribution in the contact area, it is possible to determine 
the maximum load.

The mathematical model of railway vehicle wheels 
and a track (Ferrara et al. 2012) has been designed to ex-
plore the dynamics of the railway vehicle. 

Research on the interaction between a wheel with 
a flat and the rail has been carried out (Zhu et al. 2007) 
when a wheel flat is 100 mm and the railway vehicle is 
moving at different speeds. The values of the maximum 
strength emerging in wheel-rail interaction are compared to 
the Hertz theory. The article states that an adaptive model 
for calculating the length and depth of contact with pos-
sible wheel profile asymmetry that allows the exploration 
of forces arising between the wheel and the rail has been 
developed. The effect of forces on vertical vibrations in 
adjacent wheels has been determined.  

The articles (Wu, Thompson 2001) have examined 
the interaction between a railway track and a moving train 
and evaluated the irregularities of the track, damage to the 
wheelset, the axial load of the rail, etc. A mathematical 
model of the railway vehicle wheelset having the wheel 
flat and rail interaction have been designed (Uzzal 2012), 
which allows determining forces arising from the interac-
tion and prediction of their noise. It has been found that if 
the railway vehicle is moving faster than 30 km/h, contact is 
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lost when wheel flats are 2 mm deep and 86 mm in length. 
It is also argued that an increase in speed and wheel load 
may also increase noise level.

The articles by (Nielsen, Oscarsson 2004) examine 
the interaction of the railway train wheelset with the wheel 
flat and the rail on the vertical plane. Studies were per-
formed when the length of the wheel flat was 100 mm and 
depth – 0.9 mm. Test results (Wasiwitono et al. 2007) on 
forces showed that the interaction between the wheel flat 
and the rail was dependant on different axial forces acting 
into the rail and the speed of the train.

The analysis of scientific papers has revealed there 
is no single method for determining the dynamics of the 
interaction between the railway vehicle wheelset with wheel 
flat and the rail. The article analyses the dynamic processes 
of the system Railway Vehicle Wheel–Track (Fig. 1) moving 
at speed V = 60 km/h.  

( )/ ξ = eN x L  – the matrix of shape functions where 
/ξ = ex L  – a local coordinate; eL  – the length of the finite 

element.
The potential energy of beam finite element pE  con-

sists of the potential energy of bending  ,p bE , tension force

 ,p TE  and elastic foundation  ,p FE , 
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where E – the modulus of rail elasticity; ( )YJ x  – the 
axial moment of inertia; aF  – axial force; ( )Sk x  – the 
coefficient of the stiffness of elastic foundation.

The system of equations for sleepers, ballast and sub 
ballast blocks are established from Lagrange equation of 
the second order:

 { } { } { } { }, , , , , , ,      + + =      i j i j i j i j i j i j i jM q C q K q F , (4)

where ,   i jM , ,   i jC , ,   i jK  – mass, damping and stiff-
ness matrices of the ballast and sub– ballast block and a part 
of the rail; { }, i jq , ( )1+k ,{ }, i jq  – displacement vectors, the 
velocity and acceleration of ballast, sleeper and rail, 

 { } { } { } { }, 
 =   

T T TT
i j bi bj Rijq q q q , (5)

{ }biq ,{ }bjq ,{ }Rijq  – displacement vectors of the ballast 
and sub ballast block and a part of the rail:

{ }     , 1, 2, 3, =  
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Mathematical model of  
railway Vehicle Wheel–Track

The dynamics of the rail has been considered using the 
finite element method. The finite element is applied in the 
two node beam element with rail unevenness (see Figure 2). 

Displacement vector and the initial displacement of 
the beam finite element are equal to:

 ( ) { } = ξ w ew N q , ( ) { }0 0 = ξ w ew N w , (1)

where { }0ew  – displacement vector; w – displacement 
vectors along axes X and Z; { }eq  – displacement vector; 

Fig. 1. Dynamic model of the system Railway Vehicle 
Wheel– Track: (a) scheme; (b) nonlinear elastic–damping discrete 

element, (c) linear elastic–damping discrete element
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Irregularities of the rail are described as function 
( )∆ RZ x . The profile of the railway wheel is defined as a 

function of radius ( )θWR  and depends on polar angle θ. 
The profile of the railway wheel is defined as a func-

tion of a variable radius depending on the polar angle. 
Radius ( )θWR  of the wheel profile is described by Fourier 
series:

 ( ) ( )
1

( ) cos sin
=

θ = θ + θ∑
NH

W ck sk
k

R a k a k , (6)

where ,  ck ska a  – Fourier coefficients; NH – the number 
of harmonics.

While under operation, the profile of the rail-wheel 
changes and affects rail-wheel – rail interaction. Rail wheel 
flats are most commonly caused by the uneven surface, 
temperature differences, etc. Axle wheel flats occur on the 
tread surface. Wheel damage is usually determined visually 
or by template support, depending on the qualifications of 
the staff. Other diagnostic methods are also used for having 
control on the rolling surface. For example, by applying 
Lenz and vibrant force sensors, the critical values of the 
wheel surface are measured by comparison. 

When determining rail – wheel-rail intersection 
points, it is necessary to know the coordinates of the rail-
wheel and rails X and Ƶ. 

Penetration rate at point k with local coordinate ξck
of the contact is:  
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where 0WR – a nominal diameter of the rail–wheel; 
( )Ψk kR – the radius of the rail–wheel profile; 1bgq – the 

vertical displacement of the rail–wheel; { }eq  – the displace-
ment vector of the rail finite element; Ψk – angle (Fig. 3).

Force k appearing at the contact point is determined 
by the Hertz theory and formula: 
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and where 0bgk  – contact stiffness; ke  – speed restitution 
coefficient; ,  R WE E  – the modulus of elasticity of the rail 
and the wheel; ,  ν νR W  – Poisson’s coefficients.

In the contact area, load distribution in interval 
  1 NPx x x∈     is equal to:

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
.

= = +

δ
+

δ

contact contact

contact contact

dF x dF x dk x
q x

dx dk dx
dF x dR x dF x d x

dR dx d dx

 (9)

The load vector of the finite element of the e–th rail 
in contact length is equal to:
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where ne – the number of contact intervals in the rail 
finite element when penetration, in all contact interval 

 1,i i+ξ∈ ξ ξ   , is positive, 0δ ≥ .
In the contact interval, vertical force acts to the first 

body of the wheel and is equal to:
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The general equation system (Fig. 2) of all movement 
systems is equal to: 

 [ ]{ } [ ]{ } [ ]{ } ( ){ } ( ){ } , ,+ + + =  NLM q C q K q F q q F t  (12)

where { } { } { } { }  , , =   

TT T T
R B bgq q q q  – displacement 

vector; { }Rq – rail displacement vector; { }Sq – ballast dis-

placement vector; { }bgq – rail vehicle displacement vector.
Fig. 3. Geometric parameters of the contact area of the wagon 

wheel and the rail
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Numerical results of dynamic processes in the 
system railway Vehicle Wheel–Track  

The system Railway Vehicle Wheel–Track uses data on the 
four–axle freight wagon 12–9780. It is assumed that the 
wagon moves at a speed of 60 km/h chosen randomly at 
our discretion. The flat of the wagon wheel is L = 100 mm. 
A static load on the rail is 100 kN. Rail R65 of 16.2 m in 
length has been analysed. The distance between sleepers 
is 0.5435 m and is divided into 10 beam finite elements. 
Integration time step is 65 10−∆ = ⋅t s. The profile of the 
railway wagon with the wheel flat is described using the 
two hundred harmonic 201=NH . The total number of un-
knowns is 730. Calculations have been performed apply-
ing our developed program and using Fortran software. 
The parameters of the developed system are presented in 
Table 1. 

Table 1. Parameters of the system Railway Vehicle Wheel–Track

Railway track

Force of axial loading 0 kN=xF ballast damping coefficient: 11, , 10 kNs/m=s i jC
The second moment of the area of the 
rail about Y

5 43.54 10 mRJ −= ⋅ 22, , 13 kNs/m=s i jC 33, , 15 kNs/m=s i jC

Cross-sectional area of the rail 4 282.65 10  mRA −= ⋅ 01 90 kNs/m=sC 12 70 kNs/m=sC

Poisson’s coefficient of the rail 0.30Rν = 23 60 kNs/m=sC 34 50 kNs/m=sC

Elastic modulus of the rail 206 GPa=RE ballast stiffness coefficient: 11, , 15 MN/m=s i jk

Rail density 37850 kg/mρ =R 22, , 16 MN/m=s i jk 33, , 17 MN/m=s i jk

Rail mass per meter 65 kg/m=Rm 01 180 MN/m=sk 12 170 MN/m=sk

Pad damping coefficient 45 kNs/m=padC 23 160 MN/m=sk 34 150 MN/m=sk

Pad stiffness 140 MN/m=padk ballast mass: 1 500 kg=sm

Sleeper spacing 0.5435 mpL = 2 300 kg=sm 3 200 kg=sm

Sleeper mass 265 kg=slm friction coefficient ( ), 0.3e iµ ε =

Railway vehicle

1/8 car body mass 4 8743 kg=bgm car body damping coefficient 4  10 kNs/m=bgC

1/4 bogie mass 3 700 kg=bgm frame damping coefficient 3 100 kNs/m=bgC

1/2 wheelset mass 2 640 kg=bgm wheelset damping coefficient 2 50 kNs/m=bgC

Mass in contact 1 110 kg=bgm damping coefficient of mass  
in contact

1 44.2 kNs/mbgC =

Car body stiffness 34 2.55 MN/mbgk = wheel Radius 0,495 m=WR

Frame stiffness 23 6.5 MN/mbgk = elastic modulus of wheel 210 GPa=WE

Wheelset stiffness 12 56 MN/m=bgk restitution coefficient max 10 m/sδ =

Maximal penetration velocity max 10 m/sδ = Poisson’s coefficient of wheel 0.65e =

Exponent 3 / 2=n

The wheel loses contact with the railway track due to 
the rail, sleepers, the high stiffness of the rail bed and low 
damping, dynamic properties, a high speed of the wagon 
and a significant wheel flat. Changes in wheel radius over 
time are shown in Figure 4.

Fig. 4. Changes in radius RW of the railway wheelset with the 
flat (L = 100 m) over time
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Rail displacements and accelerations are shown in 
Figures 5 and 6.

The shifts of rail displacements in time when the 
velocity of the train is 60 km/h at different nodes of the 
finite element like 31-th node (4-th sleeper), 41-th node 
(5- th sleeper), 51-th node (6-th sleeper) (d) 61-th node (7-th 
sleeper); (e) 71-th node (8-th sleeper) are shown in Figure 5.

Fig. 5. Displacements of the rail at different nodes of the finite 
element: (a) 31-th node; (b) 41-th node; (c) 51-th node;  

(d) 61-th node; (e) 71-th node
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The shifts of rail accelerations in time, when the ve-
locity of the train is 60 km/h at different nodes of the finite 
element, including (a) 31-th node (4-th sleeper); (b) 41-th 
node (5-th sleeper); (c) 51-th node (6-th sleeper); (d) 61- th 
node (7-th sleeper); (e) 71-th node (8-th sleeper), are shown 
in Figure 6.
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Fig. 6. Accelerations of the rail when the velocity of the train is 
60 km/h at different nodes of the finite element: (a) 31-th node; 
(b) 41-th node; (c) 51-th node; (d) 61-th node; (e) 71-th node
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Penetration describes the contact between the wagon 
wheel and the rail. When the value of penetration is positive 
( 0δ ≥ ), the wheel is in contact with the rail; however, when 
penetration is negative ( 0δ < ) the wheel is not in contact 
with the rail. Changes in penetration δ  in the centre of the 
contact of the moving wagon with the flat and the rail over 
time are shown in Figure 7. 
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Fig. 9. Changes in the second order time derivative of 
penetration ( )δ t  over time
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First and second order time derivatives of penetration 
are shown in Figures 8 and 9.

The dependency of load distribution on the railway 
vehicle, when velocity V 60=  km/h and the length of 
wheel flat 100 =L mm, is shown in Figure 10. 

D
2  d

el
ta

 D
T2 , 

m
/s

2

1000

500

0

–500

–1000
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time, s

1500

Changes in of the railway vehicle wheelset with ac-
celerations of the flat over time are shown in Figure 11.

Along with an increase in the speed of the railway 
vehicle and the vertical load of the wheel on the rail, max-
imum vertical acceleration increases in the railway vehicle 
wheelset. 

Fig. 10. The dependency of load distribution (9) on the 
railway vehicle under velocity V = 60 km/h

Fig. 11. Changes in the railway vehicle wheelset with vertical 
accelerations of the flat (L = 100 mm) over time:  

(a) car body; (b) frame; (c) wheelset; (d) contact mass
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A comparison of the vertical acceleration of the mass 
of the wagon with the wheel flat, under the wagon velocity 
of 60 km/h, is shown in Figure 12.

A comparison of the vertical accelerations of the 
masses (Fig.12) of the wagon with the wheel flat provides 
that acceleration decreases due to different physical and 
mechanical parameters of masses. 

conclusions

1. The developed mathematical model of the system 
Railway Vehicle Wheel–Track enables to examine the 
interaction between the wheel flat and the rail and to 
assess the soil of the rail bed, sleepers and intermediary 
physical and mechanical properties, wheel geometry, 
the dynamic characteristics of the wagon at different 
running speeds and the sizes of wheel flats. Research on 
the dynamic processes of the system Railway Vehicle 
Wheel–Track with wheel flat L = 100 mm under speed 
V = 60 km/h shows that the static load of the wheel is 
equal to 0.1 MN.  

3. When the speed of the wagon is 60 km/h and the wheel-
set with the wheel flat is in contact with the rail, the 
wheelset wheel loses its contact with the rail once after 
the impact.

4. When the railway vehicle wheelset with the flat is mov-
ing at a speed of 60 km/h, during 0.4 s, two impacts oc-
cur at wheel – rail contact. The first impact takes place 
in 0.14 s and the second one occurs in 0.32. Penetration 
is negative at 0.14 s and 0.32 s, and the wheel of the 
wheelset loses contact with the rail for a short time. 
The value of the vertical acceleration of mass mbg1 is at 
maximum in 0.14 s and 0.32 s.

5. When the length of the wheelset with the wheel flat is 
100 mm and the speed of the wagon is 60 km/h, the ver-
tical acceleration of the wheelset wheel is equal to 61 g.
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DINAMINĖS SIStEMOS „GELEŽINKELIŲ VAGONO 
RAtAS – KELIAS“ SU RAtO IŠČIUOŽA MAtEMAtINIS 
MODELIS IR MODELIAVIMO REZULtAtAI 

R. Žygienė, M. Bogdevičius, L. Dabulevičienė

Santrauka

Sukurtas sistemos „Geležinkelių vagono ratas – kelias“ su aši-
račio rato iščiuoža matematinis modelis. Sistema „Geležinkelių 
vagono ratas – kelias“ nagrinėjama vertikalioje plokštumoje. 
Sistemos „Geležinkelių vagono ratas – kelias“ matematiniame 
modelyje yra panaudoti tiesiniai ir netiesiniai tamprieji ir slopi-
nimo diskretiniai elementai. Bėgio dinamika aprašoma baigtinių 
elementų metodu. Kontakte tarp bėgio ir aširačio rato su iščiuoža 
įvertinti bėgio ir aširačio rato nelygumai. 

Atlikta geležinkelio vagono rato su iščiuoža, judančio greičiu 
V = 60 km/val., dinaminių procesų analizė.

Pateikti šios dinaminės sistemos matematinio modeliavimo 
rezultatai. Tyrimų rezultatai pavaizduoti grafiškai ir pateiktos 
tyrimų išvados.

Reikšminiai žodžiai: rato bėgio kontaktas, dinamika, pagreitis, 
penetracija, skaitinis metodas.

Fig. 12. A comparison of vertical accelerations of the mass  
of the wagon
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