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Abstract. The paper is devoted to investigation of the robust stability of system with delay. The influence of process parameters 
on the stability of the whole system is tested and impact to the system parameters using the Smith predictor for robust systems 
is defined.
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Introduction

Modern process automation and production involves not 
only the introduction of new techniques and technologies, 
but also the implementation of effective control algorithms 
(Sosin 2007). One of the common problems of manageme-
nt systems formation is delay. Delay is common to many 
facilities, like building central heating systems, various 
processes of technological chain production, communica-
tion systems, space systems, chemical and other processes. 
Delay systems require special methods for controls creation 
due to possibility of significant process quality degrada-
tion or even process might become unstable (Normey-Rico 
2007).

The robust stability of system with delay

In this context the delay correct registration task, evaluation 
of its impact on the work quality, as well as management 
systems formation is highly demand today and does not 
have a final resolution yet.

Robust control considers the design of decision or 
control rules that fare well across a range of alternative 
models. Thus robust control is inherently about model 
uncertainty, particularly focusing on the implications of 
model uncertainty for decisions. Robust control originated 
in the 1980s in the control theory branch of the engineering 
and applied mathematics literature, and it is now perhaps 
the dominant approach in control theory. Robust control 
gained a foothold in economics in the late 1990s and has 
seen increasing numbers of economic applications in the 
past few years.

The basic issues in robust control arise from adding 
more details to the opening sentence above – that a decision 
rule performs well across alternative models. To begin, 
define a model as a specification of a probability distri-
bution over outcomes of interest to the decision maker, 
which is influenced by a decision or control variable. Then 
model uncertainty simply means that the decision maker 
faces subjective uncertainty about the specification of this 
probability distribution. A first key issue in robust control 
then is to specify the class of alternative models which the 
decision maker entertains. As we discuss below, there are 
many approaches to doing so, with the most common cases 
taking a benchmark nominal model as a starting point and 
considering perturbations of this model. How to specify 
and measure the magnitude of the perturbations are key 
practical considerations.

With the model set specified, the next issue is how to 
choose a decision rule and thus what it means for a rule to 
“perform well” across models. In Bayesian analysis, the 
decision maker forms a prior over models and proceeds as 
usual to maximize expected utility (or minimize expected 
loss). Just as we defined a model as a probability distribu-
tion, a Bayesian views model uncertainty as simply a hier-
archical probability distribution with one layer consisting of 
shocks and variables to be integrated over, and another layer 
averaging over models. In contrast, most robust control 
applications focus on minimizing the worst case loss over 
the set of possible models (a minimax problem in terms 
of losses, or max-min expected utility). Stochastic robust 
control problems thus distinguish sharply between shocks 
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which are averaged over, and models which are not. The 
robust control approach thus presumes that decision makers 
are either unable or unwilling to form a prior over the forms 
of model misspecification. Of course decision makers must 
be able to specify the set of models as discussed above, 
but typically this involves bounding the set of possibilities 
in some way rather than fully specifying each alternative.

This study task is to analyse the robust system with 
delay. Let’s assume we have a system (Figs 1, 2) with the 
following settings:

− Kp = 0.46; Ki = 0.013;
− Transport Delay, D = 20;
− Time constant, C = 50;
− Object gain, G.

Fig. 1. Investigated system
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Fig. 2. Transient process gain

The gain factor, object time constant and time delay 
will be increased in series until stability boundary is ide-
ntified.

Increasing the gain factor tenfold the system is rea-
ching stability boundary (Fig. 3).

Increasing the object time constant more than 50 mil-
lion times with current regulator settings the system is re-
aching stability boundary (Fig. 4).

Increasing object time delay two fold the system is 
reaching stability boundary with current regulator settings 
(Fig. 5).

Fig. 5. Transient process with different object Transport Delay 
D values: 1 – D = 20; 2 – D = 30; 3 – D = 40
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Fig. 3. Transient process with different object gain G values: 
1 – G = 1; 2 – G = 5; 3 – G = 7; 4 – G = 10

0 0.5 1 1.5 2 2.5 3
x106

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time, s

O
ut

pu
tv

al
ue

Fig. 4. Transient process with object time constant C = 5×107
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Our studies verify that the gain factor and object 
time constant have weak influence on the system stability 
(Kuz’mickij, Kulakov 2010). At the same time transport 
delay modification in two or three times leads to unstable 
system behaviour in general.

To manage a separate class of objects with signifi-
cant delay values the specialized management systems 
are being used.

If a time delay is introduced into a tuned up system, 
the gain must be reduced to maintain stability. The Smith 
predictor control scheme can help overcome this limita-
tion and allow larger gains, but it is critical that the model 
parameters exactly match the plant parameters. An adapt-
ive control system can be added to the Smith predictor 
to change the model parameters, so that they continually 
match the changing plant parameters (Marshall 1979).

This new system has good performance characte-
ristics, but it tracks input signals with a time delay. In some 
circumstances it is possible to design time-delay systems 
that track predictable targets with no delay.

Currently the most common approach to reduce the data 
signal delay is Smith predictors utilization (Fig. 6). Transient 
process with the Smith predictor is presented in Fig. 7.

Conclusions

1. To maintain stability of a control system after a time 
delay is introduced, the gain must be reduced.

2. The Smith predictor algorithm allows larger gains. 
However, it requires an exact matching of model and 
plant parameters.
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sIsTEMų, KuRIų sAVyBĖ VĖLInTI, TyRIMAs 
pATIKIMAM sTABILuMuI nusTATyTI

A. shumski, D. Karpovich

Santrauka

Pristatomas sistemų, kurioms būdingas vėlinimas, tyrimas 
patikimam stabilumui nustatyti. Ištirta proceso parametrų įtaka 
visos sistemos stabilumui ir įvertinta Smito prognozės taikymo 
nauda numatant patikimas sistemas.

Reikšminiai žodžiai: sistema, vėlinimas, Smito prognozės.
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Fig. 7. Transient process gain of different investigated systems: 
1 – system with Smith predictor, D = 20; 2 – system with Smith 

predictor, D = 30; 3 – system, D = 20; 4 – system, D = 30
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Fig. 6. Investigated system with Smith predictor




