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Abstract. This paper discusses on the numerical model flattening algorithms enabling the representation of straightened surface
of three-dimensional objects in the plane. These algorithms are widely used in the engineering industry which requires a precise
representation of surfaces of various fragments of 2D maps, such as the automotive industry. One of the examples of the appli-
cation in the manufacture of footwear could be automatic formation of molds using shoetrees, which are usually produced by a
unit ignoring the fact that manufacturers are still using wax foil for flattening. This paper provides an investigation of the most
widely used 3D object surface flattening algorithms and also the comparison of molds of shoetrees obtained by these methods.
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Introduction

Recent innovation in 3D acquisition technology, such
as computer tomography or 3D laser scanning, enabled
highly accurate digitalization of complex 3D objects. So
efficient algorithms able to preprocess and handle these
objects are needed. Invention of 3D scanning technology
played an important role in new fields of application rese-
arch and development regarding 3D data analysis (Telfer,
Woodburn 2010; Rodriguez-Quinonez et al. 2011). Fast-
growing mass customization markets require new fields
of research to improve manufacturing efficiency regarding
unique products (Pataky ez a/. 2011). Digital drawings and
3D models provide 70% of technical data (Luximon, A.,
Luximon, Y. 2012; Patrikalakis, Maeckawa 2000) that is
needed for clear manufacturing, however there are still
some unused applications where 3D data can be applied to
operate with complete efficiency. Innovative solutions are
needed to develop an automatic system that will flatten the
surface of the foot’s complex geometry. Successful results
can be applied to different fields of nowadays manufac-
turing, such as: clothes industry, furniture industry, medical
equipment industry, automotive industry and especially for
virtual design based on operating with individual scanned
data to apply efficient manufacturing of custom products.
Developed a complex digital 3D geometry surface and outer
shell modeling to a planar surface method that can be used
in more than just footwear manufacturing. This automated

manufacturing process could be widely adapted for indivi-
dual orthopedic and other medicinal equipment, automotive
and wheelchair seats, clothing, furniture and other possible
branches of manufacturing that requires a perfect fit to a
person’s specific form.

Today all acting solutions are focused on serial
production (Azariadis, Papagiannis 2010). Digital modeling
processes in serial production are very clear and accurate
however technology requires 70—-80 % set-up time (Kolisch
2000). It is quite difficult to embed virtual design and data
processing systems, adapted for serial production, to mass
customization manufacturing processes. Considering to
custom output manufacturing setup time requires too much
time comparing with serial production. Accordingly in cus-
tom production main processes still are performed by hu-
mans. Currently in custom footwear production flattening
of individual lasts is a manual job. There are a number of
decisions in market relating to the automated manufacturing
of footwear. Decisions are implemented in separated sys-
tems, or realized as a universal plug-ins.

Flattening algorithms

There are many 3D modelling programs, which have flat-
tening functions, for example ShoeMaster, Blender 3D,
Rhinoceros, 3D coat. Unfortunately, flattened shells of
non-standard shoetrees by these programs do not match a
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technical data of flattened shells, obtained by digitization
of wax foil. To compute a flattened surface of a given 3D
object (or graph) means to construct an isomorphic graph
on plane. One of the main applications of that construction
is texture mapping. The parameterization is used to put
the surface into one-to-one correspondence with an image,
stored in the 2D domain. There are many methods for sur-
face flattening, called mesh parametrization, such as pure
methods: authalic (area-preserving) mapping (Alliez et al.
2002), conformal (angle-preserving) mapping (Levy ef al.
2002), isometric (length-preserving) mapping (Liu et al.
2008) and mixed methods which are combinations of these.

The main goal for footwear modelling is to minimize
stretching of leather. That’s means area preserving mapping
is inappropriate, because it deforms a surface mostly. So
for experimentation chosen methods are: pure conformal
mapping, pure isometric mapping and angle based flatte-
ning, that is closely related to conformal mapping.

Angle based flattening

Angle based flattening (ABF) is a method of mapping that
preserves similarity of triangles of a given mesh to corres-
ponding triangles of flattened mesh (Sheffer, Sturler 2001).
ABF minimizes the augmented objective function F :
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vertices o are unknown edges Ay, A,, A3 are unknown
Lagrange multipliers, o} are given edges and o = (ch)
are weights, which reflects relative rather than absolute
angular distortion. There are three more constraints for
planar parametrization:
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ABEF algorithm uses Newton’s method:
while || VF (x)[|> € do
solve V2F(x)8=-VF(x)
X< x+90
end while
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There is the same formulated problem for algorithm
ABF++ (Sheffer et al. 2005). The difference between ABF
and ABF++ algorithms is that ABF++ method based on
mathematical results that dramatically improve the per-
formance for solving linear system V2F (x)8 =-VF (x).

Least-squares conformal mapping

The least-squares conformal mapping (LSCM) paramete-
rization is an angle preserving algorithm that generates a
discrete approximation of a conformal map (Levy et al.
2002). LSCM minimizes the conformal energy & (S) of
the mapping X , defined by:
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where S is an area of the surface, Vv = (Vu)t are Cauchy-
Riemann equations and X :R3 > C, (x,y,z)— u+iv
is the inverse of parametrization. For a piecewise linear
parametrization, the conformal energy e expressed as a
function in a parameter-space coordinates (1, vy ). These
2D coordinates could be calculated using the Conjugate
Gradient method.

As rigid as possible

Another group of flattening methods belongs to methods
that are preserving edges of surface triangles. Most widely
used algorithm for length-preserving is as rigid as possible
(ARAP) that generates a projection of surface in the plane
by keeping triangles as rigid as possible (Liu ez al. 2008).
Consider an energy function:
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where xt:{xto,x},xtz} are triangles of 3D mesh,

up = {uf uf u?
of 3D triangle t € T, J, (u) -
defines linear distance between triangles x, and u,, L(¢)—

} are triangles of flattened mesh, 4, —area

2x 2 Jacobian matrix which

2x 2 transformation matrix between triangles x, and u,,
||0|| - is the Frobenius norm. ARAP algorithm minimizes

E(u,L) by minimizing following function:
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where 6, and o,, are signed values of the Jacobian J,
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of the #-th triangle’s transformation.



Experimental investigation Table 1. Flattening results using ABF++ algorithm
To test the overlooked algorithms we have chosen five dif- S ié g Margins,
ferent digitized pairs of shoetrees with correspondent to 5 é ) A B C | 2C4rB) mm
molds which made by wax foil. After appreciation of cor- allid
respondent molds of shoetrees, each shoetree was processed L L | 578734 | 558968 | 558795 | 98.23 % O+4+7
by cutting down a sole and head and then cutted straight 1 R 570831 ] 549012 | 524288 | 93.63% | 16+10+18
from the middle of a heel to the middle of the second foot’s R L | 5841711564993 | 565251 | 98.37 % 124547
finger (see Fig. 1). R | 574593 | 556319 | 547799 | 96.87 % 3+19+4
In total 20 fragments were flattened by ABF++, L ]l; 232% 2(1)3222 2(1;?2? zzzj ://: 13:?:;
LSCM and ARAP algorithms. An error of each fragment 2
. . L | 638950 | 611153 600192 | 96.02 % | 13+9+10
was calculated by 2C/( 4+ B), where 4 is area of original R Teas0a | c13351 (607965 | 9757 % | l6r16:12
. . . . o
mould, B is a.rea of ﬂattenec% half—sh.oetree, C is the I.nE.lXI— L 1550236 1532187 1527929 | 9736 % | 6+16%3
mum area which can be obtained by intersection of original L R 1539557 [ 5220011 521194 | 98.19 % Srats
mould and flattened half-shoetree. A, B and C values were 3 L (547289 | 533744 | 5332366 | 98.47 % 21316
calculated by counting colored pixels of intersection of R R 13539960 1519292 | 512104 | 96.69 % | 2116417
molds (Table 1-3). We’ve measured also differences be- L 1591323 | 573492 | 566721 | 97.30 % 71545
tween corner points, called margins (see Fig. 2). The dotted L R | 584236 1 562025 | 559188 | 97.56 % | 745+15
line corresponds to original mould, the solid line corres- 4 L 1588692 | 573845 | 571064 | 9824 % 9+643
ponds to boundary edges of flattened surface of shoetree. R R 1582918 | 564142 | 555682 | 96.88 % | 8+4+21
The values in Margins column in Table 1-3 coincides to L 1505229514098 | 505060 | 99.09 % 54742
difference in millimeters between corner points, numbered L R 1513236 1502834 500893 | 98.59 %% 5+9+4
from 1 to 3 in Fig. 2. > L | 511584 508920 (496786 | 97.36 % | 9+7+3
R R | 508042 | 507705 | 501837 | 98.81 % 8+4+3
Table 2. Flattening results using LSCM algorithm
s |8 .
% = = A B C 2C/ Margins,
8 _US) N (A+B) mm
L L | 578734 | 558968 | 558795 | 98.23 % 6+4+7
1 R | 570831 | 549012 | 524288 | 93.63 % | 16+10+18
R L | 584171 | 564993 | 565251 | 98.37 % 12+5+7
R | 574593 | 556319 | 547799 | 96.87 % | 3+19+4
L L | 632804 | 619086 | 613302 | 97.98 % | 4+12+3
5 R | 637810 | 609969 | 603171 | 96.67 % | 10+23+21
Fig. 1. View of divided shoetree R L | 638950 | 611153 | 600192 | 96.02 % | 13+9+10
R | 632804 | 613351 | 607965 | 97.57 % | 16+16+12
L L | 550236 | 534187 [ 527929 | 97.36 % | 6+16+3
3 R | 539557 | 522001 | 521194 | 98.19 % 5+4+5
R L | 547489 | 533744 | 532366 | 98.47 % 2+3+6
R [ 539960 | 519292 | 512104 | 96.69 % | 21+6+7
L L | 591323 | 573492 | 566721 | 97.30 % 7+5+5
4 R | 584236 | 562025 | 559188 | 97.56 % | 7+5+15
R L | 588692 | 573845 | 571064 | 98.24 % 9+6+3
R | 582918 | 564142 | 555682 | 96.88 % | 8+4+21
L L | 505229 | 514098 | 505060 | 99.09 % 5+7+2
Fig. 2. Comparison of molds of shoetrees 5 R | 513236 | 502834 | 500893 | 98.59 % | 5+9+4
R L | 511584 | 508920 [ 496786 | 97.36 % 9+7+3
R | 508042 | 507705 | 501837 | 98.81 % 8+4+3
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Table 3. Flattening results using ARAP algorithm
s |8
% = % A B C 2C/ Margins,
E é’ n (4A+B) mm
L L | 578734 | 564603 | 551139 | 96.40 % | 17+16+9
1 R [ 570831563310 | 556483 | 98.13 % | 13+14+4
R L | 584171 |570637| 559070 | 96.82 % 9+6+7
R | 574593 | 569054 | 557354 | 97.46 % | 9+16+9
L L | 632804 | 611394 | 614813 | 98.82 % | 4+17+7
5 R [ 637810| 612580 | 612370 | 97.94 % | 14+10+13
R L | 638950 | 611928 | 603507 | 96.49 % | 15+3+11
R | 632804 | 613421 | 612873 | 98.35% 12+5+2
L L | 550236 | 530668 | 527524 | 97.60 % 8+4+2
3 R | 539557524405 | 521426 | 98.01 % | 12+13+28
R L | 547489 | 534803 | 534732 | 98.81 % T+7+4
R [ 539960 | 517571 | 499708 | 94.50 % | 17+14+21
L L [ 591323574939 | 566718 | 97.18 % 5+2+7
4 R | 584236| 566640 | 566392 | 98.42 % | 18+114+9
R L | 588692 | 576627 | 568218 | 97.52 % | 25+6+25
R [ 582918561662 | 552297 | 96.50 % 9+2+9
L L | 505229 | 505701 | 498905 | 98.70 % 8+4+6
5 R | 513236 511408 | 505028 | 98.57 % | 11+13+15
R L | 511584 |508521| 504457 | 98.90 % 7+4+7
R | 508042 | 506398 | 501156 | 98.80 % 5+2+9
Conclusions

In this paper an investigation of flattening algorithms was
presented. Experimental results has showed that average va-
lues of relative similarity of flattened half-shoetrees equal to
97.49%, 97.36%, 97.70%, which were obtained by ABF++,
LSCM and ARAP algorithms, respectively.

According it is advisable to use ARAP algorithm for
shoetree flattening. However, algorithms were compared
interdependently and according results there still wasn’t
suitable evolvents for shoe production.

The main thing is that difference between corner
points fluctuates middling about 10 mm, though permis-
sible error is only 2 mm. Therefore, future works on this
problem can be testing of mixed parametrization algorithms
or flattening by 3D contour.
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KURPALIU ISKLOTINIU SUDARYMO TAIKANT
PARAMETRIZAVIMO METODUS ABF++, LSCM, ARAP
TYRIMAS

M. Sabaliauskas, V. Marcinkevicius

Santrauka

Apzvelgiami skaitmeniniy modeliy pavirsiy isklotiniy sudarymo
algoritmai ABF++, LSCM, ARAP, pagal kuriuos trimaciy objekty
pavir§iai atvaizduojami istiesinti plokstumoje. Sie isklotiniy
sudarymo algoritmai placiai taikomi ne tik 3D skaitmeniniy
modeliy tekstiiroms generuoti bei atkurti, bet ir pramonés in-
zinerijoje, kur biitina jvairiy detaliy pavirsiy fragmentus tiksliai
atvaizduoti plokStumoje. Vienas i§ taikymo pavyzdziy avalynés
gamyboje galéty biiti automatinis lekaly sudarymas pagal jvairius
kurpaliy modelius, kurie dazniausiai gaminami vienetiniams
gaminiams. ki Siol pavirSiaus iSklotinei sudaryti naudojama
vasko folija. Atliktas tyrimas parodé, kad i$ kurpaliy isklotiniy,
gauty remiantis teoriniais metodais, geriausiy rezultaty pasiekta
taikant ARAP algoritma, taciau jis néra pakankamai tikslus, kad
biity galima tiesiogiai taikyti avalynés gamyboje.

ReikSminiai ZodZiai: 3D objektai, 3D skenavimas, pavirsiy
iSklotiniy sudarymo algoritmai, kurpaliai.





