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Abstract. Pneumonia detection from chest X-rays is crucial for early diagnosis, and deep learning models – 
specifically convolutional neural networks (CNNs) – have shown promise in automating this process. In this 
study, a CNN using the DenseNet-121 architecture was developed and trained, referred to as LDCS2, to 
classify chest X-ray images as pneumonia or normal, using a combined dataset from three publicly available 
sources. The CNN approach was chosen over Vision Transformers (ViT) due to lower computational require-
ments and better performance with limited data. A traditional training, validation, and testing split was used 
instead of k-fold cross-validation to reduce execution time. LDCS2 demonstrated excellent discrimination be-
tween pneumonia and normal images alongside high computational efficiency. These findings highlight the 
potential of DenseNet-based CNNs for automated pneumonia diagnosis, particularly in resource-constrained 
settings.
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1.	Introduction

Pneumonia is a severe respiratory infection characterized 
by inflammation of the lung tissues, commonly caused 
by bacteria, viruses, or fungi. It remains a leading cause 
of morbidity and mortality worldwide, especially among 
vulnerable populations such as children under five years 
old, elderly individuals, and immunocompromised pa-
tients (World Health Organization, 2023). Early diagnosis 
of pneumonia is critical, as delayed treatment can lead 
to severe complications or death (Katz & Williams, 2021). 
Chest radiography (X-ray) remains the most accessible and 
frequently utilized diagnostic imaging technique due to 
its relative affordability, rapid acquisition, and broad avail-
ability across various healthcare settings (Rajpurkar et al., 
2017). Nevertheless, interpreting chest X-rays for pneumo-
nia remains challenging due to variations in disease pres-
entation, overlapping anatomical structures, and subtle 
pathological signs that can be difficult to discern even for 
experienced radiologists (Rajpurkar et al., 2018; Sait et al., 
2022). These challenges result in considerable diagnostic 
inconsistency and inter-observer variability, emphasizing 
the need for reliable and automated diagnostic solutions 
(Sait et al., 2022).

Recent advancements in deep learning, particularly 
convolutional neural networks (CNNs), have shown excep-
tional potential in medical image analysis, demonstrating 
accuracy comparable to or surpassing human experts in 
various diagnostic tasks (Irvin et al., 2019; Rajpurkar et al., 
2018). CNNs excel at extracting relevant visual features 
from imaging data, significantly improving the accuracy 
and consistency of pneumonia diagnosis from chest X-rays 
(Irvin et al., 2019). Although Vision Transformers (ViT) have 
recently emerged as powerful image classification tools, 
their effectiveness heavily depends on large datasets and 
substantial computational resources, making CNNs more 
practical for medical applications where resources may be 
limited (Dosovitskiy et al., 2021).

In this study, DenseNet-121 CNN architecture was uti-
lized due to its proven capability and efficiency in medical 
image classification tasks, including chest X-ray analysis 
(Irvin et al., 2019; Rajpurkar et al., 2018). To enhance the 
robustness and generalizability of the model, three pub-
licly available datasets were integrated: the Kaggle Chest 
X-Ray Pneumonia dataset (Mooney, 2018), the COVID-19 
Radiography Database (Rahman et  al., 2021b), and the 
Curated Dataset for COVID-19 Posterior-Anterior Chest 
Radiography Images (X-rays) dataset (Sait et  al., 2022). 
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Combining these diverse datasets aims to provide com-
prehensive coverage of various clinical manifestations of 
pneumonia.

Traditional data splitting strategy was choosen (train-
ing, validation, and testing subsets) instead of k-fold cross-
validation to reduce computational requirements and ex-
ecution time, aligning with practical constraints commonly 
encountered during model development (Vabalas et  al., 
2019). The goal of this research is to assess the effective-
ness of CNN-based approaches for pneumonia detection 
from chest X-rays, focusing on their applicability in real-
world clinical scenarios, particularly in resource-limited 
healthcare settings.

2.	Related work

2.1. CNNs for pneumonia detection
CNNs have revolutionized pneumonia detection from 
chest radiographs due to their exceptional ability to learn 
discriminative features directly from images. Several CNN 
architectures, notably ResNet, DenseNet, and EfficientNet, 
have been extensively explored. ResNet architectures have 
shown remarkable performance, achieving accuracies ex-
ceeding 90% and AUC-ROC scores around 0.97 (Rajpurkar 
et  al., 2017). DenseNet, particularly DenseNet-121, has 
gained attention due to its efficient use of parameters 
and high diagnostic performance, often reporting sensitiv-
ity and specificity above 90% (Irvin et al., 2019; Rajpurkar 
et  al., 2018). EfficientNet models further advanced CNN 
capabilities by optimizing network depth, width, and reso-
lution, resulting in even higher accuracy and robustness 
in pneumonia detection tasks (Sahiner et al., 2019; Tan & 
Le, 2019).

2.2. Vision transformers (ViTs) in medical 
imaging
Vision Transformers (ViTs), a more recent development 
in medical imaging, have introduced an alternative ap-
proach by leveraging self-attention mechanisms. ViTs 
have been successfully applied to chest X-ray classifi-
cation, with studies reporting comparable or superior 
performance to CNNs in terms of accuracy, sensitivity, 
and specificity. For example, Shamshad et al. (2023) dem-
onstrated ViT models achieving accuracies up to 97.6%, 
with sensitivity of 95.4% and specificity of 98.1% in pneu-
monia detection tasks. Similarly, Dosovitskiy et al. (2021) 
showed that ViTs could achieve performance comparable 
to the best CNN architectures, reporting accuracy rates 
around 96%. However, their higher computational de-
mands, including increased training time and substantial 
GPU memory requirements, remain significant drawbacks. 
These computational and data-intensive requirements 
limit their practical deployment, particularly in resource-
constrained healthcare environments (Han et  al., 2022; 
Shamshad et al., 2023).

2.3. Traditional machine learning approaches
Traditional machine learning approaches, such as Support 
Vector Machines (SVMs), Random Forests, and k-Nearest 
Neighbors (k-NN), historically played a prominent role in 
pneumonia detection tasks. These methods typically rely 
on manually engineered features such as texture descrip-
tors, shape features, and radiomic parameters extracted 
from chest X-rays. Varshni et  al. (2019) compared tradi-
tional classifiers like SVMs and Random Forests with deep 
CNN methods, reporting that traditional approaches often 
achieved lower accuracy, generally ranging from 70% to 
85%. In a comparative study, SVM classifiers using hand-
crafted features achieved accuracy rates around 85–90%, 
significantly lower than deep CNN methods (Elshazly et al., 
2020; Varshni et  al., 2019). Furthermore, SVMs coupled 
with CNN-derived deep features slightly improved perfor-
mance, achieving accuracies around 91%, but still did not 
surpass fully CNN-based approaches. Thus, deep learning 
methods, particularly CNNs, have become preferred due 
to their superior automatic feature extraction capabilities, 
consistently higher sensitivity, specificity, and overall diag-
nostic accuracy (Varshni et al., 2019).

2.4. Benchmark datasets and evaluation 
metrics
Benchmark datasets have played a crucial role in evalu-
ating pneumonia detection models by providing stand-
ardized platforms for performance comparisons. Promi-
nent datasets include the Kaggle Chest X-ray Pneumo-
nia dataset (Mooney, 2018), consisting of approximately 
5.863 pediatric chest radiographs labeled as pneumonia 
or normal; the COVID-19 Radiography Database (Rah-
man et al., 2021b), comprising 42.335 radiographs labeled 
as COVID-19, other pneumonia types, and normal cases; 
and the Curated Dataset for COVID-19 Posterior-Anterior 
Chest Radiography Images (X-rays) dataset (Sait et  al., 
2022), which includes 9.209 pediatric chest radiographs 
labeled for pneumonia research. These datasets have 
significantly contributed to consistent performance com-
parisons. For instance, models evaluated on the Kaggle 
Chest X-ray Pneumonia dataset frequently report accuracy 
rates ranging from 95% to 98%, sensitivity rates exceed-
ing 95%, and AUC-ROC scores typically approaching 0.99 
(Irvin et al., 2019; Sahiner et al., 2019). Additionally, models 
validated on the COVID-19 Radiography Database have 
achieved accuracy around 97–99%, demonstrating robust 
performance in multi-class scenarios involving COVID-19 
pneumonia differentiation (Rahman et al., 2021b).

2.5. Real-world deployment and challenges
Despite impressive performance in controlled experiments, 
real-world deployment of AI-based pneumonia detection 
systems faces several challenges. Data scarcity, variability 
across different patient populations, and differences in im-
aging protocols significantly affect model generalizability 
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(2020; Roberts et al., 2021). Additionally, issues related to 
interpretability and explainability remain barriers to clinical 
adoption, as healthcare providers require transparency in 
model predictions for decision-making (Rudin, 2019; Sham-
shad et al., 2023). Moreover, computational limitations and 
resource constraints in clinical environments further com-
plicate widespread implementation (Han et al., 2022). Ad-
dressing these challenges through robust model validation, 
explainable AI techniques, and resource-aware optimiza-
tion is essential for successful integration into clinical work-
flows (Roberts et al., 2021; Shamshad et al., 2023).

2.6. LDCS2 comparison with existing 
approaches
Comparing the LDCS2 model developed in this research 
to existing models described in recent literature dem-
onstrates notable performance enhancements. Moujahid 
et  al. (2020) utilized pre-trained CNN models, achieving 
a maximum accuracy of 96.81%, sensitivity of 96.5%, and 
specificity of 96.8% using the VGG16 model, which are 
slightly lower than the metrics achieved by LDCS2.

Similarly, studies by Hassantabar et al. (2020) and Das 
et  al. (2021), focusing on binary classification for COV-
ID-19 detection, reported accuracies of 93.2% and 95.58%, 

respectively, both of which are significantly lower com-
pared to LDCS2 model’s accuracy of 97.13%. The precision 
and recall scores reported by Das et al. (2021) were also 
lower, further highlighting the superior performance of 
LDCS2 model based on DenseNet-121 architecture.

The multi-class classification studies conducted by 
Ibrahim et al. (2024) and Wang and Zhang (2022) achieved 
high accuracies of 98.05% and 83.3%, respectively. Al-
though Ibrahim et  al. (2024) reported higher accuracy, 
their dataset included four distinct disease classes, mak-
ing direct comparison challenging due to the inherently 
increased complexity and lower baseline performance 
typically seen in multi-class classification tasks.

Moreover, Albahli et  al. (2021) tested DenseNet-121 
for multi-class lung disease detection with significantly 
lower accuracy (41.02%), emphasizing the complexity as-
sociated with multi-class scenarios. The results presented 
in this research thus demonstrate that the developed 
DenseNet-121 model provides superior performance 
specifically for binary pneumonia classification tasks, out-
performing or closely matching state-of-the-art models 
referenced in recent literature (Abbas et al., 2021; Podder 
et al., 2021).

Below in Table 1, full comparison with existing ap-
proaches can be seen.

Table 1. LDCS2 comparison with existing approaches

Reference Main research 
question/problem Used approach Dataset used Attributes used for 

prediction Main result

Podder 
et al. 
(2021)

Can Mask R-CNN 
effectively classify 
COVID-19 and Non-
COVID-19 cases?

Mask R-CNN with 
region-based feature 
extraction

COVID-19 X-ray 
dataset (publicly 
available)

2 classes (COVID-19,  
Not-COVID-19)

Accuracy: 96.98%

Mouja-
hid et al. 
(2020)

How effective 
are CNN models 
in distinguishing 
Normal and 
Pneumonia cases?

Pre-trained models 
(VGG16, VGG19, 
NasNetMobile, 
ResNet152V2, 
InceptionResNetV2)

Public chest X-ray 
dataset (e.g., 
Kaggle Chest X-ray 
Pneumonia dataset)

2 classes (Normal, 
Pneumonia)

VGG16 achieved 
Accuracy: 96.81%, 
Sensitivity: 96.5%, 
Specificity: 96.8%

Das et al. 
(2021)

Can CNN-based 
models classify 
Normal and 
COVID-19 cases with 
high accuracy?

Combined model 
using InceptionV3, 
ResNet50V2, 
DenseNet201

Public COVID-19 
dataset (2,905 
images)

2 classes (Normal, 
COVID-19)

ResNet50V2 achieved 
Accuracy: 95.58%, 
Precision: 95.91%, Recall: 
95.11%

Irmak 
(2021)

How can CNN 
models classify 
COVID-19 severity 
levels (Mild, 
Moderate, Severe, 
Critical)?

Novel CNN 
architecture with 
custom layers for 
severity classification

COVID-19 X-ray 
dataset (publicly 
available)

4 classes (COVID-19 
(Mild, Moderate, Severe, 
Critical))

Accuracy: 83.4%, 
demonstrating potential 
for severity classification

Has-
santabar 
et al. 
(2020)

Can CNN models 
accurately classify 
Normal and 
COVID-19 cases?

Deep Neural Network 
(DNN) combined with 
CNN

Chest X-ray 
datasets (e.g., 
COVID-19 
Radiography 
Database)

2 classes (Normal, 
COVID-19)

Accuracy: 93.2%, 
Sensitivity: 92.8%, 
Specificity: 93.5%

Ismael 
and 
Şengür 
(2021)

How effective is 
ResNet50+SVM in 
classifying Normal 
and COVID-19 
cases?

Fine-tuned ResNet50 
combined with 
Support Vector 
Machine (SVM)

Public COVID-19 
dataset (e.g., 
COVIDx dataset)

2 classes (Normal, 
COVID-19)

Accuracy: 94.7%, 
Precision: 94.5%, Recall: 
94.9%
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3.	Methodology

3.1. Data collection for LDCS2
The study leveraged three publicly available chest X-ray 
datasets for pneumonia detection:

Kaggle Chest X-ray Pneumonia dataset, containing 
5.863 pediatric radiographs labeled as normal or pneu-
monia (Mooney, 2018).

COVID-19 Radiography Database, consisting of 42.335 
images classified as COVID-19, other pneumonia, or nor-
mal (Rahman et al., 2021b).

Curated Dataset for COVID-19 Posterior-Anterior Chest 
Radiography Images (X-rays) dataset, comprising 9.209 
pediatric radiographs for pneumonia classification (Sait 
et al., 2022).

Below Figure 1 depicts normal and pneumonia affected 
lungs X-ray sample images from Kaggle Chest X-ray Pneu-
monia dataset (Mooney, 2018).

Reference Main research 
question/problem Used approach Dataset used Attributes used for 

prediction Main result

Wang and 
Zhang 
(2022)

Can MARnet 
classify Nodules, 
Atelectasis, Infection, 
and Normal cases 
effectively?

MARnet with multi-
class classification 
layers

Five different 
datasets (X-rays 
and CT scans)

4 classes (Nodules, 
Atelectasis, Infection, 
Normal)

Accuracy: 83.3%, 
demonstrating uniformly 
high performance across 
all classes

Ibrahim 
et al. 
(2024)

How effective 
are CNN models 
in classifying 
Normal, COVID-19, 
Pneumonia, and 
Lung Cancer cases?

VGG19+CNN, 
ResNet152V2+GRU, 
ResNet152V2+Bi-GRU

Chest X-ray and 
CT scans (e.g., 
COVID-19 CT and 
X-ray datasets)

4 classes (Normal, 
COVID-19, Pneumonia, 
Lung cancer)

VGG19+CNN achieved 
Accuracy: 98.05%, 
Sensitivity: 97.8%, 
Specificity: 98.3%

Podder 
et al. 
(2021)

What is the 
performance 
of multi-class 
CNN models 
in lung disease 
classification?

Hybrid CNN models 
(Vanilla Gray, Vanilla 
RGB, VGG, VDSNet, 
Modified CapsNet, 
Basic CapsNet)

Chest X-ray 
datasets (e.g., 
NIH Chest X-ray 
dataset)

15 classes (No finding, 
Infiltration, Mass, 
Effusion, Atelectasis, 
Nodule, Pneumothorax, 
Consolidation, Plural 
thickening, Hernia, 
Cardiomegaly, 
Emphysema, Edema, 
Fibrosis, Pneumonia)

VDSNet achieved 
Accuracy: 73%, 
emphasizing recall for 
early detection of lung 
diseases

Rahman 
et al. 
(2021a)

Can CNN + HOG 
classify Normal, 
Pneumonia, and 
COVID-19 cases 
accurately?

CNN combined with 
Histogram of Oriented 
Gradients (HOG)

COVID-19 X-ray 
dataset (publicly 
available)

3 classes (Normal, 
Pneumonia, COVID-19)

Accuracy: 92.95%, 
Sensitivity: 92.5%, 
Specificity: 93.1%

Abbas 
et al. 
(2021)

How effective are 
DeTrac models in 
classifying Normal, 
COVID-19, and SARS 
cases?

DeTrac ensemble 
models (AlexNet, 
VGG19, ResNet, 
GoogleNet, 
SqueezeNet)

Chest X-ray 
datasets (e.g., 
COVID-19 
Radiography 
Database)

3 classes (Normal, 
COVID-19, SARS)

DeTrac+VGG19 achieved 
Accuracy: 97.53%, 
Sensitivity: 97.2%, 
Specificity: 97.8%

Albahli 
et al. 
(2021)

What is the 
performance of 
DenseNet121 and 
InceptionResNetV2 
in multi-class 
lung disease 
classification?

DenseNet121, 
InceptionResNetV2, 
ResNet152V2

Chest X-ray 
datasets (e.g., 
NIH Chest X-ray 
dataset)

14 classes (Atelectasis, 
Cardiomegaly, Consolida-
tion, Edema, Mass, Effu-
sion, Emphysema, Nodule, 
Pneumothorax, Fibrosis, 
Infiltration, Plural thicken-
ing, Pneumonia, Normal)

InceptionResNetV2 
achieved Accuracy: 
41.02%, demonstrating 
limited performance 
for complex multi-class 
tasks

Proposed 
approach

How effectively 
can a DenseNet-
121-based CNN 
(the LDCS2 model) 
detect pneumonia 
in chest X-rays, 
while remaining 
computationally 
efficient for 
resource-limited 
environments?

DenseNet-121 
(Normal vs. 
Pneumonia) + 
balanced data, 
extensive 
augmentation, and 
AdamW (AMSGrad) 
with LR scheduling & 
early stopping

Three public 
datasets combined, 
yielding 20,550 
balanced images 
split into train/val/
test

2 classes. Chest X-ray 
images resized to 
224×224, focusing on 
binary classification 
(Normal vs. Pneumonia)

Test Accuracy: 97.13% 
Sensitivity: 98.69% 
Specificity: 95.58% 
Precision: 99.87% 
F1-score: 99.27% 
ROC-AUC: 0.9958

End of Table 1
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The combined dataset initially contained 57.407 la-
beled chest X-ray images. However, due to class imbal-
ance across datasets, a balancing procedure was applied 
to ensure equal representation of pneumonia and normal 
cases. The final balanced dataset contained 20.550 images, 
equally distributed between pneumonia-positive and nor-
mal cases.

As shown in Table 2 the dataset was split into three 
subsets and then balanced:

Training Set: 67% of the images (28.140) used to train 
the model.

Validation Set: 20% of the images (8.400) used for hy-
perparameter tuning.

Test Set: 13% of the images (5.460) reserved for final 
model evaluation.

Table 2. LDCS2 data balancing

Split Normal Pneumonia Total

Training 8.937 6.018 14.955
Validation 2.870 2.355 5.225
Test 3.239 1.902 5.141
Balanced training 6.018 6.018 12.036
Balanced validation 2.355 2.355 4.710
Balanced test 1.902 1.902 3.804

3.2. LDCS2 data preprocessing and 
augmentation
To effectively train the DenseNet-121 model for accurate 
pneumonia detection, all input images underwent stand-
ardized preprocessing to ensure uniformity across the 
dataset. Each image was resized to a fixed dimension of 
224×224  pixels to align with the input requirements of 
the DenseNet-121 architecture. Additionally, images were 
normalized using parameters derived from the ImageNet 
dataset, specifically setting the pixel intensities to a mean 
of [0.485, 0.456, 0.406] and a standard deviation of [0.229, 
0.224, 0.225].

To enhance the robustness and generalization capabili-
ties of the model, extensive data augmentation techniques 
were employed during the training phase. The augmenta-
tions included:

Random affine transformations: Images underwent 
random scaling between 0.85 to 1.15, translations within 
±10% of the original dimensions, and rotations within 
±20°, thereby improving the model’s invariance to orien-
tation and positional variations.

Random brightness and contrast adjustments: Pixel 
intensities were randomly modified by up to ±20%, help-
ing the model to become resilient to variations in image 
acquisition settings.

Horizontal flips: Implemented with a probability of 
50%, these flips contributed to the diversity of the dataset, 
reducing directional bias.

Gaussian noise addition: Applied with a 30% probabil-
ity to simulate real-world imaging conditions, such as sen-
sor noise or low-quality captures.

Gaussian blur: Introduced with a 20% probability, this 
augmentation emulated scenarios of suboptimal imaging 
focus or movement artifacts.

Grid distortion: Executed with a probability of 30%, 
grid distortion introduced subtle spatial variations, aid-
ing the model to better generalize to different anatomical 
alignments and orientations.

Mixup augmentation: Implemented with a 50% prob-
ability and an alpha parameter of 0.2, Mixup augmentation 
helped in enhancing model calibration and regularization 
by generating new training examples through linear com-
binations of existing image pairs.

Validation and testing images were subjected to mini-
mal preprocessing, involving resizing to 224×224 and 
normalization only, thereby preserving their original char-
acteristics to accurately evaluate the model’s true predic-
tive performance. Additionally, during inference, test-time 
augmentation (TTA) was conducted, involving five distinct 
transforms that included horizontal flips and minor rota-
tions, ensuring predictions were robust against minor vari-
ations in input data.

This comprehensive preprocessing and augmentation 
strategy, as summarized in Table 3, contributed significant-
ly to the model’s effectiveness in distinguishing between 
normal and pneumonia-affected images, ultimately sup-
porting higher validation and test accuracies.

Table 3. LDCS2 data augmentation techniques

Technique Value

Random Affine (scale: 0.85–1.15, translate: 
±10%, rotate: ±20°)

Random Brightness/Contrast (±20%)
Horizontal Flip (50% probability)
Gaussian Noise (30% probability)
Gaussian Blur (20% probability)
Grid Distortion (30% probability)
Mixup Augmentation (50% probability, alpha = 0.2)
Test-Time Augmentation 5 transforms with flips and 

small rotations

a) b)

Figure 1. X-ray samples from Kaggle Chest X-ray 
Pneumonia dataset: a) normal lungs; b) pneumonia affected 
lungs (source: Mooney, 2018)
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3.3. LDCS2 model architecture
The implemented deep learning model utilizes 
DenseNet-121 as its backbone, selected specifically for its 
efficient handling of parameters and robust feature extrac-
tion performance. DenseNet-121 is advantageous due to 
its densely connected convolutional layers, which alleviate 
the vanishing gradient problem, enhance feature propaga-
tion, and significantly improve gradient flow through the 
network.

The chosen DenseNet-121 architecture comprises 
a total of 6,955,906 trainable parameters, ensuring the 
model’s complexity remains manageable while still cap-
turing intricate patterns present in medical imaging data 
effectively. This relatively modest parameter count pro-
motes computational efficiency without compromising 
the accuracy and precision necessary for medical image 
classification tasks.

To further enhance model performance and reduce the 
risk of overfitting, a customized classification head was in-
tegrated into the base architecture. This classification head 
incorporates a dropout layer with a dropout rate of 0.2, 
strategically implemented to randomly deactivate neurons 
during training, thus increasing model generalizability. Fol-
lowing dropout, a fully connected linear layer was applied, 
transforming the extracted features into the final class 
predictions. Specifically, this linear layer maps 1024 input 
features directly to the two defined classes: NORMAL and 
PNEUMONIA. The total number of trainable parameters 
within this structure amounts to 6,955,906, all of which are 
fine-tuned during the training process.

In summary, the customized DenseNet-121 model em-
ployed in this study, as summarized in Table 4, effectively 
balances computational demands with classification accu-
racy, ensuring suitability for practical deployment in clini-
cal environments.

Table 4. LDCS2 model architecture

Layer Output shape Parameters

Input Layer (224, 224, 3) 0
DenseNet-121 Base (7, 7, 1024) 6,952,832
Global Average Pooling (1024) 0
Dropout (0.2) (1024) 0
Dense (Output) (2) 2,050

3.4. LDCS2 training strategy
The DenseNet-121 model training incorporated ad-
vanced optimization strategies aimed at maximizing 
performance and reducing the risk of overfitting. The 
AdamW optimizer was selected due to its effectiveness 
in handling large-scale neural networks and its inherent 
capability to manage weight decay directly, enhancing 
generalization. Specifically, the AMSGrad variant of Ad-
amW was utilized (amsgrad = True) to stabilize conver-
gence during training. An initial learning rate of 0.00020 
was chosen to ensure a balance between fast conver-

gence and model stability, with weight decay configured 
at 0.00010 to further regularize the learning process and 
prevent overfitting.

Learning rate scheduling was dynamically adjusted us-
ing the ReduceLROnPlateau algorithm, which decreased 
the learning rate by a factor of 0.5 after 5 epochs without 
improvement in validation loss, facilitating finer conver-
gence as the model approached optimal parameters.

The training batch size was set at 64, providing a bal-
anced trade-off between memory consumption and gradi-
ent estimation stability. This size allowed optimal utiliza-
tion of the GPU’s memory resources, peaking at approxi-
mately 4.56 GB usage per epoch, ensuring efficient GPU 
utilization without excessive memory overhead.

To enhance the robustness of training and perfor-
mance, a combination of data augmentations was applied 
alongside mixup augmentation (α = 0.2) with a 50% prob-
ability. Early stopping was configured with a patience of 
15 epochs, halting training if validation accuracy failed to 
improve, thus conserving computational resources and 
avoiding unnecessary epochs.

Overall, these meticulous optimization choices, as sum-
marized in Table 5, were essential for ensuring efficient re-
source utilization and maximizing the predictive capabili-
ties of the DenseNet-121 model for pneumonia detection.

Table 5. Proposed model hyperparameters

Parameter Value Description

Batch Size 64 Number of images 
processed in each 
training step

Initial 
Learning Rate

0.00020 (2e-4) Starting learning rate

Optimizer AdamW Optimizer with 
weight decay and 
amsgrad = True

Weight Decay 0.00010 L2 regularization factor
LR Scheduler ReduceLROnPlateau Reduces learning rate 

by factor of 0.5 with 
5 epochs patience

Dropout Rate 0.2 Dropout probability for 
regularization

Loss Function CrossEntropyLoss With class balancing
Early 
Stopping

15 Patience in epochs 
before stopping training

Mixup Alpha 0.2 Alpha parameter for 
mixup augmentation

Max Epochs 100 Maximum number of 
training epochs

3.5. LDCS2 evaluation metrics
The model’s effectiveness in classifying pneumonia cases 
from chest X-ray images was comprehensively evaluated 
using multiple standard metrics designed to assess its di-
agnostic accuracy and clinical applicability. The primary 
metrics included:
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Accuracy: This measures the proportion of total cor-
rect predictions (both true positives and true negatives) 
out of all predictions. The model demonstrated an im-
pressive accuracy of 97.13% on the test dataset, indicat-
ing a high proportion of correct predictions across both 
classes.

Sensitivity (Recall): Sensitivity, a critical metric in medi-
cal diagnostics, represents the model’s ability to correctly 
identify patients with pneumonia. The model achieved a 
high sensitivity of 98.69%, indicating robust performance 
in correctly diagnosing true positives and effectively mini-
mizing false-negative cases.

Specificity: Specificity measures the model’s ability to 
correctly recognize individuals who do not have pneumo-
nia. Achieving 95.58% specificity demonstrates that the 
model effectively minimizes false-positive rates, providing 
confidence in negative diagnosis predictions.

Precision: Precision quantifies the proportion of pre-
dicted positive results that are actual positive cases of 
pneumonia. A precision of 99.87% highlights the model’s 
strong reliability in predicting positive results, greatly re-
ducing the risk of incorrect diagnoses.

F1-score: The harmonic mean of precision and sensi-
tivity, the F1-score provides a balanced measure of per-
formance. The model recorded an impressive F1-score of 
99.27%, confirming its balanced efficacy in maintaining a 
favorable trade-off between precision and recall.

AUC-ROC: The Area Under the Receiver Operating 
Characteristic Curve (AUC-ROC) measures the model’s 
capability to distinguish between classes across all clas-
sification thresholds. An AUC-ROC value of 99.58% un-
derscores the model’s excellent overall classification 
capability, demonstrating its consistency across various 
threshold settings.

A detailed threshold analysis indicated the optimal 
classification threshold at 0.90, determined based on bal-
anced accuracy. At this threshold, the model achieved a 
balanced accuracy of 97.37%, optimizing both sensitivity 
and specificity for practical clinical deployment.

The confusion matrix further validated these met-
rics with 1818 true negatives, 84 false positives, 25 false 
negatives, and 1877 true positives. These results were fur-
ther visualized through confusion matrix heatmaps, ROC 
curves, and Precision-Recall curves, providing clear visual 
insights into the model’s discriminative abilities and areas 
of strength.

These rigorous assessments collectively confirmed the 
proposed model’s high reliability and potential effective-
ness as a diagnostic aid for pneumonia detection in clinical 
environments.

3.6. Libraries and frameworks used for LDCS2
1. The Data ingestion & preprocessing (CPU)
Images are loaded from disk, resized to 224×224, 

and normalized (ImageNet mean/std) using OpenCV and 
NumPy.

A PyTorch DataLoader with multiple worker threads 
handles I/O and batching to keep the GPU fed.

2. Data augmentation (CPU workers)
Random affine transforms, brightness/contrast adjust-

ments, Gaussian noise/blur, grid distortions, and Mixup 
are applied on the CPU in parallel via DataLoader workers, 
avoiding GPU contention.

3. Model training & inference (GPU)
The DenseNet-121 backbone plus custom dropout + 

FC head run on an NVIDIA RTX 4080 (12 GB).
PyTorch v2.1.2+cu118 orchestrates forward/backward 

passes, with CUDA and cuDNN accelerating convolutions, 
pooling, and normalization.

The AdamW (AMSGrad) optimizer, ReduceLROnPlateau 
scheduler, and early-stopping loops all execute within the 
PyTorch kernel.

4. Evaluation & visualization (CPU)
After a training/inference batch completes, metrics (ac-

curacy, sensitivity, specificity, ROC-AUC) are computed on 
the CPU.

Matplotlib (and optionally Seaborn) generate ROC/PR 
curves and confusion-matrix heatmaps without tying up 
GPU memory.

3.7. User interface of the LDCS2 prototype
The LDCS2 prototype exposes a simple, Bootstrap 
5.3.0-based web interface (Figure  2) that was designed 
explicitly to meet the needs of busy clinical staff and radi-
ographers. At the top, a succinct data‐entry form gathers 
only the most essential patient metadata (name, ID, date 
of birth, gender), minimizing typing effort and avoiding 
distraction from clinical tasks. Immediately below, a large 
drag-and-drop zone accepts DICOM, JPEG, or PNG chest‐
X-ray files in one step, eliminating the need for cumber-
some file‐naming conventions or external pre‐processing.

Once an image is in place, clicking Analyze Image 
instantly invokes the DenseNet-121 model in the back-
ground. A clear progress indicator and color-coded prob-
ability bars (green for “Normal,” red for “Pneumonia”) give 
immediate visual feedback, enabling rapid triage decisions. 
No deep technical knowledge is required – clinicians see 
only “Pneumonia Probability = 87%” rather than raw logits 
or thresholds.

Beneath the analysis area, a Recent Predictions panel 
serves as a lightweight audit log. It lists past patients (or 
runs) in reverse chronological order, showing thumbnail‐
X-rays, key metadata, and the model’s result at a glance. 
Quick “Edit” and “Delete” actions let users correct mis-
entered patient data or clear out test cases, so the system 
stays in sync with the electronic health record.

By focusing on simplicity, minimal clicks, and instant, 
color-driven feedback, this interface directly supports the 
LDCS2 goals of (1) speeding up pneumonia screening in 
resource-limited settings, (2) reducing cognitive load for 
non-AI-savvy staff, and (3) preserving an audit trail for 
quality control and follow-up.
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Figure 2. User interface of the LDCS2 prototype

4.	Results and limitations of LDCS2

4.1. Model performance
The DenseNet-121 model was trained for pneumonia de-
tection on a balanced dataset to address class imbalance, 
achieving robust predictive performance across several 
evaluation metrics. After training for a total of 26 epochs, 
early stopping was triggered due to no improvement in 
validation accuracy for 15 consecutive epochs, indicating 
convergence of the model.

The highest validation accuracy achieved was 90.74% 
at epoch 11. The final model selection was based on this 
highest validation performance. Evaluation on the inde-
pendent test dataset yielded excellent performance met-
rics, demonstrating the effectiveness and generalizability 
of the trained model. Key performance metrics at the op-
timal classification threshold of 0.90 (selected based on 
balanced accuracy) were:

Accuracy: 97.13%, Sensitivity (Recall): 98.69%, Specific-
ity: 95.58%, Precision: 99.87%, F1-Score: 99.27%, ROC AUC: 
99.58%.

These results were derived from a threshold analysis 
conducted to optimize the balanced accuracy of the bi-
nary classification task. A summary of threshold analysis 
highlighted a notable trade-off between sensitivity and 
specificity, with the optimal balance found at a threshold 
of 0.90.

Disclaimer. Reported accuracies may be inflated due 
to potential image overlap across the three source data-
sets, which could have introduced information leakage 
into the test set.

4.2. Threshold selection analysis
A detailed threshold analysis was conducted to identify 
the best operating point for classification. Accuracy was 
observed to range significantly depending on the deci-
sion threshold, emphasizing the importance of selecting 
an appropriate threshold to balance false positives and 
false negatives in clinical settings.

At a lower threshold (0.10), the model attained 100% 
sensitivity but had a specificity of just 39.01%, resulting in 
a lower accuracy of 69.51%.

Incrementally increasing thresholds led to improved 
specificity and overall accuracy:

Threshold 0.50: Accuracy reached 89.62% with sensitiv-
ity remaining at 100% and specificity at 79.23%.

Ultimately, the optimal threshold of 0.90 was selected, 
providing a balanced accuracy of 97.37% by effectively 
balancing sensitivity and specificity.

4.3. Visualization of model performance
In order to better understand the results, 6 diagnostic 
plots were generated:
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The presented Receiver Operating Characteristic (ROC) 
curve, as shown in Figure  3, illustrates the performance 
of a deep learning model in distinguishing between two 
classes, normal and pneumonia cases. The ROC curve is a 
graphical representation of the trade-off between sensitiv-
ity (true positive rate) and specificity (false positive rate) 
across various classification thresholds.

The blue curve represents the model’s ability to differ-
entiate between the two classes, with a near-perfect trajec-
tory towards the upper-left corner, indicating high classifi-
cation performance. The Area Under the Curve (AUC) value 
is 0.9958, demonstrating the model’s exceptional ability 
to discriminate between positive and negative cases. The 
diagonal red dashed line represents a random classifier, 
serving as a baseline reference.

This high AUC score suggests that the model maintains 
a low false positive rate while achieving a high true posi-
tive rate, making it highly effective for pneumonia detec-
tion. The curve’s steep rise near the origin further indicates 
strong sensitivity, ensuring that a majority of actual pneu-
monia cases are correctly identified while keeping misclas-
sifications minimal.

The Precision-Recall (PR) curve, as shown in Figure 4, 
evaluates the performance of a DenseNet-121 model 
trained for pneumonia detection. The PR curve illustrates 
the relationship between precision (positive predictive 
value) and recall (sensitivity) across various classification 
thresholds.

The model demonstrates high precision and high re-
call across most thresholds, as indicated by the curve’s 
sustained elevation near 1.0 until a steep decline towards 
the far right. The Area Under the PR Curve (AUC-PR) is 
0.996, signifying superior model performance, particularly 
in handling imbalanced datasets where the minority class 
(pneumonia cases) is of primary interest.

A high AUC-PR score confirms the model’s capability 
in maintaining low false positive rates while capturing the 
majority of true positives, making it well-suited for medical 
diagnostic tasks. The near-perfect curve further suggests 
minimal trade-offs between precision and recall, reinforc-
ing the model’s robustness.

The confusion matrix, as shown in Figure 5, provides 
a detailed performance evaluation of the DenseNet-121 
model trained for pneumonia detection. The matrix con-
sists of four quadrants, indicating the model’s classification 
outcomes:

True Negatives (TN): 1.818 cases were correctly classi-
fied as “Normal.”

False Positives (FP): 84 normal cases were misclassified 
as “Pneumonia.”

False Negatives (FN): 25 pneumonia cases were mis-
classified as “Normal.”

True Positives (TP): 1.877 cases were correctly classified 
as “Pneumonia.”

The model exhibits high classification performance, 
with a low false negative rate, suggesting that most pneu-
monia cases were successfully detected. Furthermore, the 
false positive rate is minimal, ensuring reliable diagnostic 
predictions. The high sensitivity (0.9869) and specificity 
(0.9558), as derived from the confusion matrix, reinforce 
the model’s robustness in distinguishing between normal 
and pneumonia cases, making it a reliable tool for medical 
image analysis.

Figure 3. ROC curve

Figure 4. Precision-recall curve

Figure 5. Confusion matrix heatmap
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The training and validation curves, as illustrated in Fig-
ure 6, provide insight into the learning dynamics of the 
DenseNet-121 model employed for pneumonia classifica-
tion. The first plot illustrates the training and validation 
loss over the course of 26 epochs. The training loss (blue 
curve) remains consistently low, indicating that the model 
effectively learns the patterns in the training dataset. How-
ever, the validation loss (red curve) exhibits high variance, 
with notable spikes, suggesting potential overfitting or 
sensitivity to variations in the validation data.

The second plot depicts the training and validation ac-
curacy across epochs. The training accuracy (blue curve) 
reaches nearly 100%, further confirming that the model 
learns well on the training set. In contrast, the validation 
accuracy (red curve) fluctuates significantly, peaking at 
90.74% but experiencing multiple declines. This instability 
indicates generalization challenges, possibly arising from 
dataset imbalances or overfitting.

Overall, while the model achieves high training ac-
curacy, the observed disparity in validation performance 
underscores the need for further regularization, additional 
data augmentation, or fine-tuning of hyperparameters to 
enhance generalization to unseen data.

The learning rate schedule, as depicted in Figure 7, il-
lustrates the adaptation of the learning rate throughout 
training in the pneumonia classification model based on 
DenseNet-121. The model was trained using the AdamW 
optimizer with an initial learning rate of 0.00020, and the 
ReduceLROnPlateau scheduler was employed to dynami-
cally adjust the learning rate in response to validation per-
formance.

The plot demonstrates that the learning rate remained 
constant during the initial 16 epochs before experiencing 
the first drop at epoch 17, reducing by a factor of 0.5 to 
0.00010. A subsequent reduction occurred at epoch 23, 
lowering the rate further to 0.00005, indicating that the 
model may have encountered a plateau in performance. 
The final decrease took place at epoch 25, stabilizing at 

approximately 0.00004 before early stopping was trig-
gered at epoch 26.

This controlled reduction in learning rate suggests an 
effort to fine-tune model weights more precisely during 
later stages of training, preventing abrupt weight updates 
and improving convergence. However, the observed fluc-
tuations in validation performance indicate that additional 
hyperparameter tuning may be required for optimal gen-
eralization.

The epoch training time analysis, as illustrated in Fig-
ure 8, demonstrates the computational efficiency of the 
DenseNet-121 model during training. The plot shows a 
significant drop in training time after the first epoch, sta-
bilizing at approximately 120–130 seconds per epoch for 
the remainder of the training process.

The initial high training time can be attributed to sev-
eral factors, including PyTorch CUDA optimizations, cach-
ing of data augmentations, and initialization of model 
parameters. The subsequent reduction in training time 
suggests that caching mechanisms and GPU optimiza-
tions contributed to improved efficiency. However, slight 
fluctuations in training duration across later epochs indi-
cate that variations in batch-level computations, memory 

Figure 6. Training and validation loss and accuracy curves

Figure 7. Learning rate schedule

Figure 8. Epoch training time
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utilization, and data augmentation complexity influenced 
training speed.

Overall, the stability in epoch duration demonstrates 
the computational consistency of the training pipeline. 
The results confirm that hardware acceleration (NVIDIA 
RTX 4080 Laptop GPU) was effectively utilized, ensuring 
efficient deep learning training while maintaining consist-
ent training time across multiple epochs.

These plots facilitated a comprehensive interpretation 
of model training dynamics, performance trade-offs, and 
final predictive effectiveness. All visualizations are available 
and stored for future reference, providing transparency 
and interpretability for further analysis and clinical review.

In summary, the DenseNet-121 model has shown ex-
ceptional predictive capability, high sensitivity, and strong 
specificity, making it highly suitable for automated pneu-
monia detection from chest X-rays. Further exploration 
through Explainable AI (XAI), specifically Grad-CAM visu-
alizations, will enhance model interpretability and clinical 
trust.

4.4. Computational efficiency
The computational efficiency of the DenseNet-121 model 
was carefully evaluated to assess its suitability for clini-
cal deployment. Training was conducted using an NVIDIA 
GeForce RTX 4080 Laptop GPU 60W with a total memory 
capacity of 12.00  GB. The training process utilized only 
4.56  GB of GPU memory per epoch, significantly below 
the available maximum, which demonstrates efficient use 
of GPU resources.

Each training epoch lasted on average 128.02 sec-
onds, showcasing rapid training times that are conducive 
to iterative model development and rapid deployment in 
clinical settings. The training concluded in approximately 
1 hour and 1 minute after 26 epochs due to early stopping 
triggered by the best validation accuracy reaching 90.74% 
at epoch 11, ensuring computational resources were con-
served without compromising model performance.

The computational efficiency demonstrated in this 
study, coupled with the minimal GPU memory usage, 
suggests that the DenseNet-121 model is highly suit-
able for deployment in clinical environments, even where 
computational resources are moderately constrained. The 
use of AdamW optimizer with AMSGrad, a learning rate 
scheduler, and sophisticated data augmentation strategies 
contributed significantly to the model’s computational and 
predictive efficiency.

4.5. Limitations
Despite impressive performance metrics, several limita-
tions must be considered. Firstly, the generalizability of the 
model might be constrained by the characteristics of the 
datasets used, predominantly comprising pediatric chest 
radiographs (Mooney, 2018; Sait et al., 2022). Thus, further 
validation on diverse and adult populations is necessary to 
ensure broader applicability.

Secondly, the heavy reliance on data augmentation 
techniques, although beneficial in enhancing generaliza-
tion, may inadvertently introduce artificial patterns, po-
tentially leading to slight overestimations of model per-
formance in real-world settings (Shorten & Khoshgoftaar, 
2019).

Thirdly, the threshold selection process, although op-
timized for balanced accuracy, might require adjustment 
when applied to clinical scenarios with different risk toler-
ances or prevalence rates. The fixed threshold approach 
could limit the flexibility needed for personalized clinical 
decision-making.

Fourthly, despite achieving high specificity and sensi-
tivity, the model’s interpretability remains limited due to 
its deep-learning nature, often referred to as a “black-
box” model. This lack of interpretability may hinder clini-
cian trust and adoption, necessitating the integration of 
explainable AI techniques to provide greater insight into 
model predictions (Rudin, 2019).

Finally, the study aggregated three chest X-ray data-
sets. Identical or near-identical images may appear in 
more than one source, creating a possibility that duplicates 
reached the test partition. Such leakage can yield optimis-
tic performance estimates; the true generalization accuracy 
may therefore be lower. Future work should incorporate 
image-level de-duplication and patient-level disjoint splits, 
and confirm findings on an independent cohort.

4.6. Future directions
Future research directions will focus on expanding the di-
agnostic capability of the model to include classification 
of four or more disease categories, addressing the chal-
lenges observed in multi-class scenarios. Incorporation of 
explainable artificial intelligence (XAI) techniques, specifi-
cally Grad-CAM, will enhance interpretability and clinical 
acceptance of the model by elucidating the rationale be-
hind model predictions (Selvaraju et al., 2020). Additional 
future work includes assessing model performance across 
diverse demographic groups and investigating integration 
into clinical workflows to validate its utility as an effective 
clinical decision-support tool.

5.	Conclusions

The DenseNet-121-based deep learning model developed 
for pneumonia detection demonstrates strong computa-
tional performance and predictive accuracy, making it 
well-suited for practical medical applications. Throughout 
training, significant emphasis was placed on robustness 
and reliability, leveraging comprehensive data augmenta-
tion strategies, balanced class distributions, and sophis-
ticated training methodologies such as early stopping, 
Mixup augmentation, and a customized AdamW optimizer 
with AMSGrad.

The final trained model achieved a best validation ac-
curacy of 90.74% at epoch 11 out of 26 completed epochs. 
Evaluation on the independent test set demonstrated 
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impressive performance, achieving an optimal accuracy of 
97.13% at a classification threshold of 0.90. This threshold 
provided a well-balanced trade-off, yielding high sensitiv-
ity (98.69%), specificity (95.58%), and precision (99.87%), 
alongside an F1-score of 99.27%. The ROC-AUC of 99.58% 
further highlights the model’s strong ability to distinguish 
between normal and pneumonia cases effectively.

Computational efficiency was noteworthy, with the 
model leveraging GPU acceleration and maintaining mod-
est GPU memory usage (approximately 4.56 GB per epoch). 
Average epoch completion time was around 128 seconds, 
demonstrating effective resource utilization.

Future development will enhance the model’s clinical 
relevance by incorporating four or more additional class-
es, enabling the detection of a broader range of medical 
conditions. Moreover, to address the critical demand for 
explainability in clinical deployments, Explainable AI (XAI) 
techniques such as Grad-CAM will be integrated. Grad-
CAM’s visualization of model predictions will provide clini-
cians transparent insights into decision-making processes, 
bolstering trust and facilitating model validation in medical 
environments.

In summary, the current implementation represents 
a robust foundation, poised for further improvements 
through expanded class coverage and integration of ex-
plainability techniques, ultimately enhancing its clinical ap-
plicability and interpretability.
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PNEUMONIJOS NUSTATYMAS IŠ KRŪTINĖS LĄSTOS 
RENTGENOGRAMŲ, NAUDOJANT KONVOLIUCINIUS 
NEURONINIUS TINKLUS

P. Bundza, J. Trinkūnas 

Santrauka

Pneumonijos nustatymas iš krūtinės ląstos rentgenogramų yra 
itin svarbus ankstyvajai diagnostikai, o giliojo mokymosi mode-
liai  – ypač konvoliuciniai neuroniniai tinklai (CNN)  – rodo didelį 
potencialą automatizuojant šį procesą. Šiame tyrime sukurtas ir 
apmokytas CNN, paremtas DenseNet-121 architektūra ir pavadin-
tas LDCS2, skirtas klasifikuoti krūtinės ląstos rentgeno vaizdams, iš 
kurių matyti pneumonija arba sveiki plaučiai, naudojant sujungtą 
duomenų rinkinį iš trijų viešai prieinamų šaltinių. CNN metodas 
pasirinktas vietoje Vision Transformers (ViT) dėl mažesnių skai-
čiavimo išteklių reikalavimų ir geresnių rezultatų, kai duomenų 
kiekis ribotas. Siekiant sutrumpinti vykdymo laiką, vietoje k kartų 
kryžminės validacijos taikytas tradicinis mokymo, validacijos ir tes-
tavimo skaidymas. LDCS2 pademonstravo puikią atskyrimo gebą 
tarp pneumonijos ir sveikų plaučių vaizdų bei aukštą skaičiavimo 
efektyvumą. Šie rezultatai pabrėžia DenseNet pagrindu veikiančių 
CNN potencialą automatizuotai plaučių uždegimo diagnostikai, 
ypač išteklių stokojančiose aplinkose.

Reikšminiai žodžiai: LDCS2, konvoliuciniai neuroniniai tinklai 
(CNN), krūtinės ląstos rentgeno vaizdų klasifikavimas, pneumo-
nijos aptikimas, DenseNet-121, medicininis vaizdavimas, gilusis 
mokymasis sveikatos priežiūros srityje, duomenų augmentacija, 
perkėliminis mokymasis.

https://doi.org/10.1038/s42256-021-00307-0
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1002/mp.13264
https://doi.org/10.17632/9xkhgts2s6.4
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1016/j.media.2023.102802
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1109/ICECCT.2019.8869364
file:///D:/Rasa_Stankevi%c4%8diut%c4%97_2017-11-11/DARBAI/D%20A%20R%20B%20A%20I/Z%20U%20R%20N%20A%20L%20A%20I/MLA/2025/2025_Informac/txt/../../../../../../../AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/2KXYP2CP/19
file:///D:/Rasa_Stankevi%c4%8diut%c4%97_2017-11-11/DARBAI/D%20A%20R%20B%20A%20I/Z%20U%20R%20N%20A%20L%20A%20I/MLA/2025/2025_Informac/txt/../../../../../../../AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/2KXYP2CP/1
https://doi.org/10.3934/mbe.2022017
https://www.who.int/news-room/fact-sheets/detail/pneumonia
https://www.who.int/news-room/fact-sheets/detail/pneumonia

