
Copyright © 2020 The Author(s). Published by Vilnius Gediminas Technical University

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unres-
tricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

COMPARISON OF GPU AND CPU EFFICIENCY WHILE SOLVING HEAT
CONDUCTION PROBLEMS

Julija SEMENENKO , Aliaksei KOLESAU, Vadimas STARIKOVIČIUS ,
Artūras MACKŪNAS *, Dmitrij ŠEŠOK

Vilnius Gediminas Technical University, Vilnius, Lithuania

Received 03 September 2020; accepted 11 November 2020

Abstract. Overview of GPU usage while solving different engineering problems, comparison between CPU and GPU
computations and overview of the heat conduction problem are provided in this paper. The Jacobi iterative algorithm was
implemented by using Python, TensorFlow GPU library and NVIDIA CUDA technology. Numerical experiments were
conducted with 6 CPUs and 4 GPUs. The fastest used GPU completed the calculations 19 times faster than the slowest
CPU. On average, GPU was from 9 to 11 times faster than CPU. Significant relative speed-up in GPU calculations starts
when the matrix contains at least 4002 floating-point numbers.

Keywords: CUDA, GPU, Jacobi iterative algorithm, parallel computing, heat conduction problem.

Introduction

The first generation of Graphics Processing Units (GPUs)
was created at the end of the 20th century to fulfil the
demands of computer games. Starting from shadowing
algorithms, like Shadow Mapping (Williams, 1978) and
Shadow Volume (Crow, 1977), devices and coding pos-
sibilities were becoming more and more sophisticated to
give birth for the second generation of GPUs with shaders,
small programs, consisting of 20 lines of GPU assembler
code. Loops, branching, etc., made their way to the GPU
programming with the understanding that GPU can not
only be used for game graphics but is also a powerful cal-
culation tool that allows reducing the execution time of
computationally intensive applications.

General-Purpose computing on Graphics Processing
Units (GPGPU) is now supported by many platforms.
GPU manufacturers, NVIDIA, and AMD provide neces-
sary functions and libraries to enable GPU calculations.
These calculations can be performed on GPU only if it’s
possible to split a problem into smaller parts which can be
solved concurrently. Also, it is important to mention that
on average CPUs are usually more efficient than GPUs
when data size isn’t big enough to effectively use all GPU
cores. The primary task of this paper is to compare GPU

and CPU calculations efficiency while solving heat con-
duction problems with different amount of data.

1. Prior and related works

GPUs are widely used in Machine Learning because they
allow teaching the models concurrently.

Kuckuk and Köstler (2018) used GPU to model shal-
low water equation which allowed to calculate large, ti-
me-consuming systems via Piz Daint supercomputer. Fi-
lonenko et al. (2018) applied GPU to detect fumes from a
real-time camera. Lu et al. (2019) used GPU to serve the
medical Drug-Drug Interaction (DDI) system, which col-
lects information from 150,000 publication-wide PubMed
database. Warrena et al. (2019) enhanced Finite-Differen-
ce Time-Domain (FDTD) electromagnetic modelling.
Fambrini et al. (2018) used GPU calculations for the JSEG
algorithm optimization.

Bohacek et al. (2019) used CUDA to solve the inverse
heat conduction problem. They suggested 3 solutions and
made a comparison with classical OpenFOAM (FDIC)
and ANSYS Fluent (AMG). GPU solution appeared to be
the best one and increases the calculations speed up to
15 times.

Information technologies and multimedia
Informacinės technologijos ir multimedija

Mokslas – Lietuvos ateitis / Science – Future of Lithuania
ISSN 2029-2341 / eISSN 2029-2252

2020 Volume 12, Article ID: mla.2020.13500, 1–5

https://doi.org/10.3846/mla.2020.13500

*Corresponding author. E-mail: amackunas.research@gmail.com

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9523-4920
https://orcid.org/0000-0003-3533-7466
https://orcid.org/0000-0003-0590-9291
https://orcid.org/0000-0003-0590-9291)*
https://orcid.org/0000-0002-0968-7596
https://doi.org/10.3846/mla.2020.13500

J. Semenenko et al. Comparison of GPU and CPU efficiency while solving heat conduction problems

2

2. Heat conduction problem

The heat conduction problem arises when a body isn’t
equally heated. The heat equation allows us to find the
temperature at each point of the observed body at the spe-
cified point in time. This problem has 3 types based on the
dimensions of the body:

 – One-dimensional, where only x coordinate of a uni-
form rod and time are used: T = f(x, t);

 – Two-dimensional, where the heated object is pla-
nar and x and y coordinates are used accordingly:
T = f(x, y, t) (Figure 1);

 – Three-dimensional, where space bodies are heated:
T = f(x, y, z, t).

The heat conduction problem has 2 more types:
 – Stationary – temperature does not depend on time
(when the thermal field does not evolve over time).
The main purpose of those problems is to find the
temperature at each point of the body;

 – Non-stationary – temperature is not constant over
time. The task is to determine how temperature is
changing for each point of the body.

In this paper, the stationary two-dimensional problem
is solved.

2.1. Heat equation

The following equation was named after Poisson and is wi-
dely used in Physics to calculate different potential fields,
for example, electric, pressure, etc.

2 2
2 2 (,)u u

x y
f x y∂ ∂

∂ ∂
+ = (,) (0,1) (0,1),x y ∈ × (1)

(,) (,)u x y x y= μ (,) ,x y ∈γ (2)

where u(x, y) is the temperature at the point (x, y), γ marks
a boundary, μ(x, y) is the temperature at the boundary
point (x, y), f(x, y) defines a heat source.

The equation is solved by the finite-difference method.
To use approximation by finite differences, a uniform dis-
crete grid for this problem has been chosen:

{(,) : , , 0 , }h i j i jw x y x ih y jh i j N= = = ≤ ≤ ,

where h = 1/N is a grid step.

A discrete solution Uij = U(xi, yj) needs to be found.
The temperature at the boundary grid points is calculated
by the (2) equation. In order to calculate the temperature
at the inner points, the (1) differential equation at each
point is replaced by the algebraic equation. It is achieved
by approximating the derivatives with finite differences
which are calculated by using three-point stencil method
in vertical and horizontal directions (Figure 2).

(i, j + 1)

(i, j – 1)

(i – 1, j) (i + 1, j)

Figure 2. Discrete grid and scheme stencil

Thus, the system of linear equations is the following:

1, , 1, , 1 , , 1
,2 2

2 2i j i j i j i j i j i j
i j

U U U U U U
f

h h
− + − +− + − +

+ = ,

1 , 1i j N≤ ≤ − . (3)

The system is made up of (N – 1)2 equations.

2.2. Jacobi method

Eventually, to solve the heat conduction problem there is
a need to solve the system of linear equations. This can
be done in many ways, but the Jacobi method has been
selected for this paper.

Jacobi method is an iterative algorithm for determi-
ning the solutions of a diagonally dominant system of li-
near equations. Each element is calculated approximately
by using this equation:

2
, 1, 1, , 1 ,

1 ()
4i j i j i j i j i jU U U U h f− + −= + + − ,

1 , 1i j N≤ ≤ − . (4)

The process is iterated until it converges.
Jacobi method converges slower than, for example,

Krylov or Gauss-Seidel (Amador & Gomes, 2012). On the
other hand, a big advantage of this algorithm is its suitabi-
lity for concurrent calculations (Margaris et al., 2014) and
thus is an effective option for GPU calculations. Created
by Jacobi (2009), the algorithm started to be used only a
hundred years later when computers were invented.

3. Experiments

The code has been written in Python, using Numpy and
TensorFlow GPU libraries. Mainly, NVIDIA GPUs were
used. To run TensorFlow GPU on NVIDIA, Compute
Capability of processing unit must be 3.0 or higher, CUDA
and cuDNN (NVIDIA CUDA Deep Neural Network)
have to be installed.

One of the TensorFlow GPU advantages is that code is
suitable not only for NVIDIA but also for the AMD devi-
ces. If the TensorFlow ROCm library is installed instead of

Figure 1. Two-dimensional example of the heat conduction
problem. Here, the height and the colour define the

temperature at that point: high and red means hot, low
and green means cold. Notice, how the displayed object is
“melting” from the state a) to the state c) – the heated area

is cooling and passing the heat to the nearby area
(the images are taken from https://en.wikipedia.org/wiki/

Heat_equation#/media/File:Heat_eqn.gif)

 a) b) c)

https://en.wikipedia.org/wiki/Heat_equation#/media/File:Heat_eqn.gif
https://en.wikipedia.org/wiki/Heat_equation#/media/File:Heat_eqn.gif

Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 2020, 12, Article ID: mla.2020.13500

3

TensorFlow GPU, the same code can be run without ma-
king any changes. Same with CPU and GPU – the selected
device is passed to the function as a parameter and no
code changes are needed.

Two experiments were conducted: a heat conduction
problem with and without the heat source.

3.1. Equipment

GPUs used to conduct the experiments:
1. AMD Radeon™ RX VEGA 56;
2. NVIDIA GeForce GTX 1060;
3. NVIDIA GeForce GTX 860M;
4. NVIDIA Tesla M40.
CPUs used to conduct the experiments:
1. Intel® Core™ i7-3630QM;
2. Intel® Core™ i7-4720HQ;
3. Intel® Core™ i7-6700K;
4. Intel® Core™ i7-7700;
5. Intel® Core™ i7-7820HQ.
The source code used in the experiments can be found

at https://github.com/kolesov93/tf_jacobi/tree/master.
In order to get the most from a vectorized computati-

on both on CPU and GPU, the matrix form of the com-
putation was chosen. The form of a single equation (4)
can be reformulated in the matrix form if we “extract” 4
submatrices from u (L: without a left column, R: without
a right column, T: without a top row, B: without a bottom
row). Then the equation becomes

21 ()
4

u L R T B f h′ = + + + − ⋅

with appropriate padding. See build_iteration method in
the source code for implementation details.

Note that TensorFlow doesn’t recompute f · h2 each
iteration due to the constant propagation technique.

3.2. First experiment: heat conduction problem
without a heat source

First experiment parameters:
1. N, where N2 is a grid size. N = 100i, where i =

[1 .. 10], later N = 1000j, where j = [1 .. 10];
2. Boundary condition: µ(x, y) ≡ 1;
3. Without a heat source: f(x, y) ≡ 0;
4. Accuracy of the calculations: ε = 2·10–5;
5. Device: CPU or GPU.
We see in Table 1 and Figure 3 that if N < 400, the

CPU solves this problem faster than the GPU as there is
no need for the CPU to transfer data and the calculati-
ons are faster up to 2 times but it is just several seconds.
The bigger the N, the faster the GPU solves this problem
compared to the CPU. Maximum GPU speed up for N =
[100; 1000] is up to 6.4 times. Figure 4 shows the CPU and
GPU calculation speed comparison when N is between
500 and 1000.

Experiment with N = 1000 for the first experiment
was conducted with several different devices. Out of the-
se, even the slowest NVIDIA GTX 860M GPU solves the

problem 1.3 times faster than the fastest Intel i7-6700K
CPU. The fastest GPU solves the problem 19.6 times faster
than the slowest CPU. On average, GPU devices solve this
problem 5.9 times faster than CPU devices. Tables 2 and 3
show average calculation time for CPU and GPU devices
when N = 1000.

Table 1. First experiment. NVIDIA GeForce GTX 1060 GPU
and Intel i7-7700 CPU

N CPU, s GPU, s
100 2.6 4.5
200 9.2 11.9
300 18.7 20.7
400 19.7 17.6
500 23.4 20.6
600 105.7 24.9
700 147.9 29.0
800 186.2 35.3
900 237.7 40.2

1000 302.6 46.8

0

5

10

15

20

25

100 200 300 400 500

T
im

e,
 s

N, square matrix dimension size

First experiment, from 1002 to 5002 elements

CPU GPU

Figure 3. GPU and CPU solving times for the
first experiment with N = [100; 500]

0

50

100

150

200

250

300

350

500 600 700 800 900 1000

T
im

e,
 s

N, square matrix dimension size

First experiment, from 5002 to 10002 elements

CPU GPU

Figure 4. GPU and CPU solving times for the
first experiment with N = [500; 1000]

Table 3. First experiment calculation time comparison with
different GPU devices when N = 1000

GPU NVIDIA
Tesla M40

NVIDIA
GTX 1060

AMD RX
VEGA 56

NVIDIA
GTX 860M

Time, s 42.00 46.82 79.12 85.00

https://github.com/kolesov93/tf_jacobi/tree/master

J. Semenenko et al. Comparison of GPU and CPU efficiency while solving heat conduction problems

4

If the grid size is further increased to N = 5000, the
problem is solved in ~3 hours with the CPU and in ~16
minutes with the GPU. Thus, the GPU is 11 times faster
than the CPU with this grid size (Table 4 and Figure 5).

Maximum calculations speed increase for [1000;
10000] range is 11.7 times. With N = 10000 CPU needed
~12h and GPU ~1h to solve the problem (Figure 6).

NVIDIA GTX 1060 belongs to gaming series. The cal-
culation would be faster with a specialized unit from Tesla
or Quadro series, for example, Tesla M40.

Table 4. First experiment. NVIDIA GTX 1060 GPU and Intel
i7-7700 CPU for N = [1000; 10000]

N CPU, s GPU, s

1000 302.6 46.8
2000 1507.1 166.5
3000 4039.6 356.3
4000 7215.7 617.8
5000 11157.3 957.0
6000 15920.6 1384.1
7000 21837.9 1867.9
8000 28295.8 2445.0
9000 35861.9 3091.2

10000 44406.1 4297.4

3.3. Second experiment: heat conduction problem
with a heat source

Second experiment parameters:
 – N, where N2 is a grid size. N = 100i, where i = [1; 10];
 – Boundary condition: µ(x, y) ≡ 0;
 – With a heat source: f(x, y) = –exp(–10((x – 0.5)2 +
(y – 0.5)2));

 – Accuracy of the calculations: ε = 10–7;
 – Device: CPU or GPU.

The second experiment is very similar to the first one.
However, now a heat source function is added. This incre-
ases the number of calculations per step. Also, the accura-
cy of the calculations is lower so that the calculations run
longer and the comparison can also be run more precisely.

We see in Table 5 and Figure 7 that the CPU is faster
than the GPU only for N < 300. The higher amount of ac-
tions means that calculation time is longer for both CPU
and GPU. For example, when N = 100 the calculations
of the second experiment run ~1.5 times longer on both
devices compared to the first experiment.

The proportion of CPU/GPU calculation duration
of the first and second experiments is very similar. For
example, if N = 1000 then the calculations on NVIDIA
GTX 1060 are 6.3 times faster than on Intel i7-7700 even
if the calculations ran 8.5 times longer compared to the
first experiment (Figure 8).

Table 5. Second experiment. GTX1060 GPU and Intel i7-7700
CPU for N = [100; 1000]

N CPU, s GPU, s

100 3.8 7.2
200 16.5 20.9
300 42.5 39.6
400 81.1 75.5
500 181.6 121.0
600 765.7 187.5
700 1185.3 248.5
800 1598.2 297.7
900 2077.8 362.9

1000 2584.5 407.4

0

2000

4000

6000

8000

10000

12000

1000 2000 3000 4000 5000

T
im

e,
 s

N, square matrix side size

First experiment, from 10002 to 50002 elements

CPU GPU

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

5000 6000 7000 8000 9000 10000

T
im

e,
 s

N, square matrix side size

First experiment, from 50002 to 100002 elements

CPU GPU

Figure 5. GPU and CPU solving times for the first experiment
with N = [1000; 5000]

Figure 6. GPU and CPU solving times for the first experiment
with N = [5000; 10000]

0

10

20

30

40

50

60

70

80

90

100 200 300 400

T
im

e,
 s

N, square matrix side size

Second experiment, from 1002 to 4002 elements

CPU GPU

Figure 7. GPU and CPU solving times for the second
experiment with N = [100; 400]

Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 2020, 12, Article ID: mla.2020.13500

5

4. Results comparison

The results of these experiments are similar to (Bohacek
et al., 2019) – while solving small matrices CPU was 2
times faster than GPU. In the paper they also mention that
by using commercial packages like ANSYS FLUENT 14.5
or OpenFOAM for small matrices the calculations can be
performed from 40 to 50 times faster than by using simple
CPU code. Since these packages support parallelism, they
are also great for bigger grids. We have compared GPU
and CPU calculation speed without using the specialized
packages and achieved an average increase of 10 times in
calculation speed for the same code with different amount
of data and different processing units.

Conclusions

The more data has to be processed, the more efficient GPU
calculations will be compared to CPU. After increasing the
size of the grid, the calculations on NVIDIA GTX 1060
ran up to 11.7 times faster than on Intel i7-7700. For more
accurate results, more actions have to be performed with
data like uploading it to GPU memory before the calcu-
lations and moving the results back after the calculations.
While using a heat source function GPU calculations be-
came more efficient than CPU when the number of matrix
elements reached 3002 contrary to 4002 without the heat
source. With a small amount of data, CPU calculations
might be a better option because CPU usually consists of
several cores and support parallelism.

References
Amador, G., & Gomes, A. (2012). Linear solvers for stable flu-

ids: GPU vs CPU. https://www.it.ubi.pt/17epcg/Actas/arti-
gos/17epcg_submission_39.pdf

Bohacek, J., Kharicha, A., Ludwig, A., Wu, M., Holzmann, T.,
& Karimi-Sibaki, E. (2019). A GPU solver for symmetric
positive-definite matrices vs. traditional codes. Computers &
Mathematics with Applications, 78(9), 2933–2943.
https://doi.org/10.1016/j.camwa.2019.02.034

Crow, F. (1977). Shadow algorithms for computer graphics. ACM
SIGGRAPH Computer Graphics, 11(2), 242–248.
https://doi.org/10.1145/965141.563901

Fambrini, F., Iano, Y., Caetano, D. G., Rodriguez, A. A. D.,
Moya, C., Carrara, E., Rangel, A., Cabello, F. C., Zubem, J. V.,
del val Cura, L. M., Destro Filho, J. B., Campos, J. R., &
Saito, J. H. (2018). GPU Cuda JSEG Segmentation Algorithm
associated with Deep Learning Classifier for Electrical Net-
work Images Identification. Procedia Computer Science, 126,
557–565. https://doi.org/10.1016/j.procs.2018.07.290

Filonenko, A., Hernández, D. C., & Jo, K.-H. (2018). Fast smoke
detection for video surveillance using CUDA. IEEE Transac-
tions on Industrial Informatics, 14(2), 725–733.
https://doi.org/10.1109/TII.2017.2757457

Jacobi, C. G. (2009). Über ein leichtes Verfahren, die in der
Theorie der Säkularstörungen vorkommenden Gleichungen
numerisch aufzulösen. Crelle’s Journal, 1846(30), 51–94.
https://doi.org/10.1515/crll.1846.30.51

Kuckuk, S., & Köstler, H. (2018). Whole program generation of
massively parallel shallow water equation solvers. In 2018
IEEE International Conference on Cluster Computing (CLUS-
TER) (pp. 78–87). IEEE.
https://doi.org/10.1109/CLUSTER.2018.00020

Lu, Y., Ramachandra, A. C., Pham, M., Tu, Y.-C., & Cheng, F.
(2019). CuDDI: A CUDA-based application for extracting
drug-drug interaction related substance terms from PubMed
literature. Molecules, 24(6), Article 1081.
https://doi.org/10.3390/molecules24061081

Margaris, A., Souravlas, S., & Roumeliotis, M. (2014). Parallel
implementations of the Jacobi linear algebraic systems solve
[Conference presentation]. Balkan Conference of Informat-
ics (BCI2007), Sofia, Bulgaria.

Warrena, C., Giannopoulos, A., Gray, A., Giannakis, I., Patter-
son, A., Wetter, L., & Hamrah, A. (2019). A CUDA-based
GPU engine for gprMax: Open source FDTD electromagnetic
simulation software. Computer Physics Communications, 237,
208–218. https://doi.org/10.1016/j.cpc.2018.11.007

Williams, L. (1978). Casting curved shadows on curved surfaces.
ACM SIGGRAPH Computer Graphics, 12(3), 270–274.
https://doi.org/10.1145/965139.807402

GPU IR CPU EFEKTYVUMO PALYGINIMAS
SPRENDŽIANT ŠILUMOS LAIDUMO UŽDAVINIUS

J. Semenenko, A. Kolesau, V. Starikovičius, A. Mackūnas,
D. Šešok

Santrauka

Šiame straipsnyje apžvelgtas GPU taikymas įvairiems inžine-
riniams uždaviniams spręsti, palyginti skaičiavimai naudojant
CPU ir GPU, aprašytas šilumos laidumo uždavinys. Įgyvendintas
Jakobio metodas naudojant „Python“, „TensorFlow GPU“ biblio-
teką ir NVIDIA CUDA technologijas. Atlikti skaitiniai eksperi-
mentai naudojant šešis CPU ir keturis GPU įtaisus. Greičiausias
nagrinėtas GPU įvykdė skaičiavimus 19 kartų greičiau negu
lėčiausias CPU. Naudojant GPU, vidutiniškai skaičiavimai buvo
atliekami nuo 9 iki 11 kartų greičiau nei su CPU. Didelis santy-
kinis GPU pagreitėjimas vyko, kai lygiagrečiai buvo apdorojama
bent 4002 realiųjų skaičių.

Reikšminiai žodžiai: CUDA, GPU, Jakobio metodas, lygiagretieji
skaičiavimai, šilumos laidumo uždavinys.

0

500

1000

1500

2000

2500

3000

500 600 700 800 900 1000

T
im

e,
 s

N, square matrix side size

Second experiment, from 5002 to 10002 elements

CPU GPU

Figure 8. GPU and CPU solving times for the second
experiment with N = [500; 1000]

https://www.it.ubi.pt/17epcg/Actas/artigos/17epcg_submission_39.pdf
https://www.it.ubi.pt/17epcg/Actas/artigos/17epcg_submission_39.pdf
https://doi.org/10.1016/j.camwa.2019.02.034
https://doi.org/10.1145/965141.563901
https://doi.org/10.1016/j.procs.2018.07.290
https://doi.org/10.1109/TII.2017.2757457
https://doi.org/10.1515/crll.1846.30.51
https://doi.org/10.1109/CLUSTER.2018.00020
https://doi.org/10.3390/molecules24061081
https://doi.org/10.1016/j.cpc.2018.11.007
https://doi.org/10.1145/965139.807402

