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Abstract. Overview of GPU usage while solving different engineering problems, comparison between CPU and GPU 
computations and overview of the heat conduction problem are provided in this paper. The Jacobi iterative algorithm was 
implemented by using Python, TensorFlow GPU library and NVIDIA CUDA technology. Numerical experiments were 
conducted with 6 CPUs and 4 GPUs. The fastest used GPU completed the calculations 19 times faster than the slowest 
CPU. On average, GPU was from 9 to 11 times faster than CPU. Significant relative speed-up in GPU calculations starts 
when the matrix contains at least 4002 floating-point numbers.
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Introduction

The first generation of Graphics Processing Units (GPUs) 
was created at the end of the 20th century to fulfil the 
demands of computer games. Starting from shadowing 
algorithms, like Shadow Mapping (Williams, 1978) and 
Shadow Volume (Crow, 1977), devices and coding pos-
sibilities were becoming more and more sophisticated to 
give birth for the second generation of GPUs with shaders, 
small programs, consisting of 20 lines of GPU assembler 
code. Loops, branching, etc., made their way to the GPU 
programming with the understanding that GPU can not 
only be used for game graphics but is also a powerful cal-
culation tool that allows reducing the execution time of 
computationally intensive applications.

General-Purpose computing on Graphics Processing 
Units (GPGPU) is now supported by many platforms. 
GPU manufacturers, NVIDIA, and AMD provide neces-
sary functions and libraries to enable GPU calculations. 
These calculations can be performed on GPU only if it’s 
possible to split a problem into smaller parts which can be 
solved concurrently. Also, it is important to mention that 
on average CPUs are usually more efficient than GPUs 
when data size isn’t big enough to effectively use all GPU 
cores. The primary task of this paper is to compare GPU 

and CPU calculations efficiency while solving heat con-
duction problems with different amount of data.

1. Prior and related works

GPUs are widely used in Machine Learning because they 
allow teaching the models concurrently.

Kuckuk and Köstler (2018) used GPU to model shal-
low water equation which allowed to calculate large, ti-
me-consuming systems via Piz Daint supercomputer. Fi-
lonenko et al. (2018) applied GPU to detect fumes from a 
real-time camera. Lu et al. (2019) used GPU to serve the 
medical Drug-Drug Interaction (DDI) system, which col-
lects information from 150,000 publication-wide PubMed 
database. Warrena et al. (2019) enhanced Finite-Differen-
ce Time-Domain (FDTD) electromagnetic modelling. 
Fambrini et al. (2018) used GPU calculations for the JSEG 
algorithm optimization.

Bohacek et al. (2019) used CUDA to solve the inverse 
heat conduction problem. They suggested 3 solutions and 
made a comparison with classical OpenFOAM (FDIC) 
and ANSYS Fluent (AMG). GPU solution appeared to be 
the best one and increases the calculations speed up to 
15 times.
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2. Heat conduction problem

The heat conduction problem arises when a body isn’t 
equally heated. The heat equation allows us to find the 
temperature at each point of the observed body at the spe-
cified point in time. This problem has 3 types based on the 
dimensions of the body:

 – One-dimensional, where only x coordinate of a uni-
form rod and time are used: T = f(x, t);

 – Two-dimensional, where the heated object is pla-
nar and x and y coordinates are used accordingly: 
T = f(x, y, t) (Figure 1);

 – Three-dimensional, where space bodies are heated: 
T = f(x, y, z, t).

The heat conduction problem has 2 more types:
 – Stationary – temperature does not depend on time 
(when the thermal field does not evolve over time). 
The main purpose of those problems is to find the 
temperature at each point of the body;

 – Non-stationary – temperature is not constant over 
time. The task is to determine how temperature is 
changing for each point of the body.

In this paper, the stationary two-dimensional problem 
is solved.

2.1. Heat equation

The following equation was named after Poisson and is wi-
dely used in Physics to calculate different potential fields, 
for example, electric, pressure, etc.

2 2
2 2 ( , )u u

x y
f x y∂ ∂

∂ ∂
+ =  ( , ) (0,1) (0,1),x y ∈ ×  (1)

( , ) ( , )u x y x y= μ   ( , ) ,x y ∈γ  (2)

where u(x, y) is the temperature at the point (x, y), γ marks 
a boundary, μ(x, y) is the temperature at the boundary 
point (x, y), f(x, y) defines a heat source.

The equation is solved by the finite-difference method. 
To use approximation by finite differences, a uniform dis-
crete grid for this problem has been chosen:

{( , ) : , , 0 , }h i j i jw x y x ih y jh i j N= = = ≤ ≤ ,

where h = 1/N is a grid step.

A discrete solution Uij = U(xi, yj) needs to be found. 
The temperature at the boundary grid points is calculated 
by the (2) equation. In order to calculate the temperature 
at the inner points, the (1) differential equation at each 
point is replaced by the algebraic equation. It is achieved 
by approximating the derivatives with finite differences 
which are calculated by using three-point stencil method 
in vertical and horizontal directions (Figure 2).

(i, j + 1)

(i, j – 1)

(i – 1, j) (i + 1, j)

Figure 2. Discrete grid and scheme stencil

Thus, the system of linear equations is the following:

1, , 1, , 1 , , 1
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1 , 1i j N≤ ≤ − . (3)

The system is made up of (N – 1)2 equations.

2.2. Jacobi method

Eventually, to solve the heat conduction problem there is 
a need to solve the system of linear equations. This can 
be done in many ways, but the Jacobi method has been 
selected for this paper.

Jacobi method is an iterative algorithm for determi-
ning the solutions of a diagonally dominant system of li-
near equations. Each element is calculated approximately 
by using this equation:

2
, 1, 1, , 1 ,

1 ( )
4i j i j i j i j i jU U U U h f− + −= + + − ,

1 , 1i j N≤ ≤ − . (4)

The process is iterated until it converges.
Jacobi method converges slower than, for example, 

Krylov or Gauss-Seidel (Amador & Gomes, 2012). On the 
other hand, a big advantage of this algorithm is its suitabi-
lity for concurrent calculations (Margaris et al., 2014) and 
thus is an effective option for GPU calculations. Created 
by Jacobi (2009), the algorithm started to be used only a 
hundred years later when computers were invented.

3. Experiments

The code has been written in Python, using Numpy and 
TensorFlow GPU libraries. Mainly, NVIDIA GPUs were 
used. To run TensorFlow GPU on NVIDIA, Compute 
Capability of processing unit must be 3.0 or higher, CUDA 
and cuDNN (NVIDIA CUDA Deep Neural Network) 
have to be installed.

One of the TensorFlow GPU advantages is that code is 
suitable not only for NVIDIA but also for the AMD devi-
ces. If the TensorFlow ROCm library is installed instead of 

Figure 1. Two-dimensional example of the heat conduction 
problem. Here, the height and the colour define the 

temperature at that point: high and red means hot, low 
and green means cold. Notice, how the displayed object is 
“melting” from the state a) to the state c) – the heated area 

is cooling and passing the heat to the nearby area  
(the images are taken from https://en.wikipedia.org/wiki/

Heat_equation#/media/File:Heat_eqn.gif)

 a) b) c)

https://en.wikipedia.org/wiki/Heat_equation#/media/File:Heat_eqn.gif
https://en.wikipedia.org/wiki/Heat_equation#/media/File:Heat_eqn.gif
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TensorFlow GPU, the same code can be run without ma-
king any changes. Same with CPU and GPU – the selected 
device is passed to the function as a parameter and no 
code changes are needed.

Two experiments were conducted: a heat conduction 
problem with and without the heat source.

3.1. Equipment

GPUs used to conduct the experiments:
1. AMD Radeon™ RX VEGA 56;
2. NVIDIA GeForce GTX 1060;
3. NVIDIA GeForce GTX 860M;
4. NVIDIA Tesla M40.
CPUs used to conduct the experiments:
1. Intel® Core™ i7-3630QM;
2. Intel® Core™ i7-4720HQ;
3. Intel® Core™ i7-6700K;
4. Intel® Core™ i7-7700;
5. Intel® Core™ i7-7820HQ.
The source code used in the experiments can be found 

at https://github.com/kolesov93/tf_jacobi/tree/master.
In order to get the most from a vectorized computati-

on both on CPU and GPU, the matrix form of the com-
putation was chosen. The form of a single equation (4) 
can be reformulated in the matrix form if we “extract” 4 
submatrices from u (L: without a left column, R: without 
a right column, T: without a top row, B: without a bottom 
row). Then the equation becomes

21 ( )
4

u L R T B f h′ = + + + − ⋅

with appropriate padding. See build_iteration method in 
the source code for implementation details.

Note that TensorFlow doesn’t recompute f · h2 each 
iteration due to the constant propagation technique.

3.2. First experiment: heat conduction problem 
without a heat source

First experiment parameters:
1.  N, where N2 is a grid size. N  = 100i, where i  = 

[1 .. 10], later N = 1000j, where j = [1 .. 10];
2. Boundary condition: µ(x, y) ≡ 1;
3. Without a heat source: f(x, y) ≡ 0;
4. Accuracy of the calculations: ε = 2·10–5;
5. Device: CPU or GPU.
We see in Table  1 and Figure 3 that if N < 400, the 

CPU solves this problem faster than the GPU as there is 
no need for the CPU to transfer data and the calculati-
ons are faster up to 2 times but it is just several seconds. 
The bigger the N, the faster the GPU solves this problem 
compared to the CPU. Maximum GPU speed up for N = 
[100; 1000] is up to 6.4 times. Figure 4 shows the CPU and 
GPU calculation speed comparison when N is between 
500 and 1000.

Experiment with N  = 1000 for the first experiment 
was conducted with several different devices. Out of the-
se, even the slowest NVIDIA GTX 860M GPU solves the 

problem 1.3 times faster than the fastest Intel i7-6700K 
CPU. The fastest GPU solves the problem 19.6 times faster 
than the slowest CPU. On average, GPU devices solve this 
problem 5.9 times faster than CPU devices. Tables 2 and 3 
show average calculation time for CPU and GPU devices 
when N = 1000.

Table 1. First experiment. NVIDIA GeForce GTX 1060 GPU 
and Intel i7-7700 CPU

N CPU, s GPU, s
100 2.6 4.5
200 9.2 11.9
300 18.7 20.7
400 19.7 17.6
500 23.4 20.6
600 105.7 24.9
700 147.9 29.0
800 186.2 35.3
900 237.7 40.2

1000 302.6 46.8
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Figure 3. GPU and CPU solving times for the  
first experiment with N = [100; 500]
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Figure 4. GPU and CPU solving times for the  
first experiment with N = [500; 1000]

Table 3. First experiment calculation time comparison with 
different GPU devices when N = 1000

GPU NVIDIA 
Tesla M40

NVIDIA 
GTX 1060

AMD RX 
VEGA 56

NVIDIA 
GTX 860M

Time, s 42.00 46.82 79.12 85.00

https://github.com/kolesov93/tf_jacobi/tree/master
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If the grid size is further increased to N = 5000, the 
problem is solved in ~3 hours with the CPU and in ~16 
minutes with the GPU. Thus, the GPU is 11 times faster 
than the CPU with this grid size (Table 4 and Figure 5).

Maximum calculations speed increase for [1000; 
10000] range is 11.7 times. With N = 10000 CPU needed 
~12h and GPU ~1h to solve the problem (Figure 6).

NVIDIA GTX 1060 belongs to gaming series. The cal-
culation would be faster with a specialized unit from Tesla 
or Quadro series, for example, Tesla M40.

Table 4. First experiment. NVIDIA GTX 1060 GPU and Intel 
i7-7700 CPU for N = [1000; 10000]

N CPU, s GPU, s

1000 302.6 46.8
2000 1507.1 166.5
3000 4039.6 356.3
4000 7215.7 617.8
5000 11157.3 957.0
6000 15920.6 1384.1
7000 21837.9 1867.9
8000 28295.8 2445.0
9000 35861.9 3091.2

10000 44406.1 4297.4

3.3. Second experiment: heat conduction problem 
with a heat source

Second experiment parameters:
 – N, where N2 is a grid size. N = 100i, where i = [1; 10];
 – Boundary condition: µ(x, y) ≡ 0;
 – With a heat source: f(x, y)  = –exp(–10((x – 0.5)2 +  
(y – 0.5)2));

 – Accuracy of the calculations: ε = 10–7;
 – Device: CPU or GPU.

The second experiment is very similar to the first one. 
However, now a heat source function is added. This incre-
ases the number of calculations per step. Also, the accura-
cy of the calculations is lower so that the calculations run 
longer and the comparison can also be run more precisely.

We see in Table 5 and Figure 7 that the CPU is faster 
than the GPU only for N < 300. The higher amount of ac-
tions means that calculation time is longer for both CPU 
and GPU. For example, when N  = 100 the calculations 
of the second experiment run ~1.5 times longer on both 
devices compared to the first experiment.

The proportion of CPU/GPU calculation duration 
of the first and second experiments is very similar. For 
example, if N  = 1000 then the calculations on NVIDIA 
GTX 1060 are 6.3 times faster than on Intel i7-7700 even 
if the calculations ran 8.5 times longer compared to the 
first experiment (Figure 8).

Table 5. Second experiment. GTX1060 GPU and Intel i7-7700 
CPU for N = [100; 1000]

N CPU, s GPU, s

100 3.8 7.2
200 16.5 20.9
300 42.5 39.6
400 81.1 75.5
500 181.6 121.0
600 765.7 187.5
700 1185.3 248.5
800 1598.2 297.7
900 2077.8 362.9

1000 2584.5 407.4

0

2000

4000

6000

8000

10000

12000

1000 2000 3000 4000 5000

T
im

e,
 s

N, square matrix side size

First experiment, from 10002 to 50002 elements

CPU GPU

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

5000 6000 7000 8000 9000 10000

T
im

e,
 s

N, square matrix side size

First experiment, from 50002 to 100002 elements

CPU GPU

Figure 5. GPU and CPU solving times for the first experiment 
with N = [1000; 5000]

Figure 6. GPU and CPU solving times for the first experiment 
with N = [5000; 10000]
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4. Results comparison

The results of these experiments are similar to (Bohacek 
et  al., 2019) – while solving small matrices CPU was 2 
times faster than GPU. In the paper they also mention that 
by using commercial packages like ANSYS FLUENT 14.5 
or OpenFOAM for small matrices the calculations can be 
performed from 40 to 50 times faster than by using simple 
CPU code. Since these packages support parallelism, they 
are also great for bigger grids. We have compared GPU 
and CPU calculation speed without using the specialized 
packages and achieved an average increase of 10 times in 
calculation speed for the same code with different amount 
of data and different processing units.

Conclusions

The more data has to be processed, the more efficient GPU 
calculations will be compared to CPU. After increasing the 
size of the grid, the calculations on NVIDIA GTX 1060 
ran up to 11.7 times faster than on Intel i7-7700. For more 
accurate results, more actions have to be performed with 
data like uploading it to GPU memory before the calcu-
lations and moving the results back after the calculations. 
While using a heat source function GPU calculations be-
came more efficient than CPU when the number of matrix 
elements reached 3002 contrary to 4002 without the heat 
source. With a small amount of data, CPU calculations 
might be a better option because CPU usually consists of 
several cores and support parallelism.
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GPU IR CPU EFEKTYVUMO PALYGINIMAS 
SPRENDŽIANT ŠILUMOS LAIDUMO UŽDAVINIUS

J. Semenenko, A. Kolesau, V. Starikovičius, A. Mackūnas, 
D. Šešok

Santrauka

Šiame straipsnyje apžvelgtas GPU taikymas įvairiems inžine-
riniams uždaviniams spręsti, palyginti skaičiavimai naudojant 
CPU ir GPU, aprašytas šilumos laidumo uždavinys. Įgyvendintas 
Jakobio metodas naudojant „Python“, „TensorFlow GPU“ biblio-
teką ir NVIDIA CUDA technologijas. Atlikti skaitiniai eksperi-
mentai naudojant šešis CPU ir keturis GPU įtaisus. Greičiausias 
nagrinėtas GPU įvykdė skaičiavimus 19 kartų greičiau negu 
lėčiausias CPU. Naudojant GPU, vidutiniškai skaičiavimai buvo 
atliekami nuo 9 iki 11 kartų greičiau nei su CPU. Didelis santy-
kinis GPU pagreitėjimas vyko, kai lygiagrečiai buvo apdorojama 
bent 4002 realiųjų skaičių.

Reikšminiai žodžiai: CUDA, GPU, Jakobio metodas, lygiagretieji 
skaičiavimai, šilumos laidumo uždavinys.
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Figure 8. GPU and CPU solving times for the second 
experiment with N = [500; 1000]
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