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Abstract. For the development and evaluation of a sound source localization and separation methods, a concise audio 
dataset with complete geometrical information about the room, the positions of the sound sources, and the array of mi-
crophones is needed. Computer simulation of such audio and geometrical data often relies on simplifications and are suf-
ficiently accurate only for a specific set of conditions. It is generally desired to evaluate algorithms on real-world data. For a 
three-dimensional sound source localization or direction of arrival estimation, a non-coplanar microphone array is need-
ed. Simplest and most general type of non-coplanar array is a tetrahedral array. There is a lack of openly accessible real-
world audio datasets obtained using such arrays. We present an audio dataset for the evaluation of sound source localiza-
tion algorithms, which involve tetrahedral microphone arrays. The dataset is complete with the geometrical information of 
the room, the positions of the sound sources and the microphone array. Array audio data was captured for two tetrahedral 
microphone arrays with different distances between microphones and one or two active sound sources. The dataset is suit-
able for speech recognition and direction-of-arrival estimation, as the signals used for sound sources were speech signals.

Keywords: audio dataset, sound source localization, room acoustics, tetrahedral microphone array, speech recognition, 
source separation.

Introduction

Sound source localization (SSL) and separation are some 
of the key elements in developing novel, speech-based hu-
man-machine interaction (HMI) systems. Information on 
sound source position in space or the direction-of-arrival 
(DoA) might be used to enhance audio and speech signals 
in such ambient intelligence systems, allowing for better 
source separation and thus higher quality of operation 
(Brutti et al., 2008). The development of methods and al-
gorithms for sound source localization requires rigor test-
ing on realistic data.

Most SSL algorithms rely on the usage of an array of 
microphones, signals from which are further processed 
to obtain an estimate of the direction of arrival (DoA) 
of the sound source, or the position of the source of the 
sound relative to the microphone array. The main classes 
of sound source DoA estimation are: a) time difference 
of arrival (TDoA) based methods; b) beamforming-based 
methods; and c) subspace transformation based methods 
(Lollmann et al., 2018).
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It can be shown (Guentchev, 1997) that the minimum 
number of detectors required to obtain unambiguously a 
solution in three-dimensional space is four and that it is 
unique. Several authors researched into the localization 
of sound sources using tetrahedral microphone arrays 
(Alameda-Pineda & Horaud, 2014; Ozeki & Hamada, 
2006). Nevertheless, authors did not release the audio data 
used for development and evaluation of their methods as 
an openly accessible dataset.

Recently, several learning-based sound source locali-
zation methods were proposed (Adavanne et  al., 2017) 
(Takeda & Komatani, 2017; Chakrabarty & Habets, 2019). 
For learning-based SSL methods, a huge amount of train-
ing audio samples is needed. It is nearly impossible to 
produce such a large real-world audio dataset. Thus for 
such methods, a synthetic or semi-synthetic audio dataset 
is most often created (simulated). Nevertheless, it is desir-
able to evaluate the performance of such methods on real-
world data. A concordance between the simulation and 
the real-world data is expected. Training audio and geo-
metrical data can be simulated in a virtual environment, 
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which is modeled after a real-world counterpart. To 
achieve this, it is necessary to know exact parameters of 
the real-world environment, such as the dimensions and 
the acoustic properties of the room, the relative positions 
of the sound sources, and the microphones and the walls 
of the room. To be usable for the estimation of a three-
dimensional sound source position or two-dimensional 
DoA (azimuth and elevation) estimation, the positions of 
the sound source in the dataset must not be coplanar and 
must exhibit at least some degree of variance in all three 
axes. For evaluation of SSL methods aimed at speech-
based HMI systems, it is desirable that the signals of the 
sound sources in the dataset are human speech signals. 
While there are several audio datasets aimed at the SSL 
problems, they are all lacking some information or fea-
tures described earlier: either the room dimensions or 
the position of the reference point relative to the room 
walls is unknown, or the sound sources are positioned on 
the same plane, or the signal of the sound sources is not 
speech. Thus, we present a simple dataset that satisfies all 
of the demands mentioned before: audio recordings are 
produced on a tetrahedral microphone array, using speech 
signals, with one or more than one simultaneously active 
sound source and with known dimensions of the room 
and the positions of the microphones and the sound 
sources relative to the walls of the room.

1. Previous work

There are several audio datasets presented earlier (Le Roux 
et al., 2015), focused on the sound source localization and 
separation tasks. The LOCATA dataset, presented as a part 
of IEEE-AASP Challenge on Acoustic Source Localization 
and Tracking, consists of audio recordings of one or two 
moving and up to four static sound sources, captured with 
a multitude of microphone arrays, with number of micro-
phone per array ranging from 2 (binaural system using 
a dummy head) to 32 (Eigenmike EM32 spherical array). 
The shortcoming of the LOCATA dataset is that neither 
the room dimensions nor the distance of the origin of the 
coordinate system to a corner of the room is presented, 
which imposes a limitation of usage of the LOCATA data-
set for evaluation of learning-based SSL methods, such 
as presented by He et  al. (2018, 2019) or Chakrabarty 
and Habets (2019), where the model is trained on semi-
synthetic data, as it impossible to accurately simulate the 
environment matching the real-world. Also, the moving 
sound sources were the human subjects, walking in front 
of the microphone array and talking. Thus there is limited 
variance of the height of the sound sources relative to the 
origin of the coordinate system.

The Sound Source Localization for Robots (SSLR) Data-
set is a collection of real robot audio recordings for the 
development and evaluation of sound source localization 
methods, recorded using Softbank robot Pepper, including 
robot ego-noise and overlapping multiple speech sources 
(We et al., 2018). The origin of the coordinate system for 
this dataset is the center of the microphone array, but no in-

formation is given about the room in which the dataset was 
collected nor the positions of the microphone array within 
those rooms. Moreover, the sound sources remain station-
ary, while the robot head is panning to sides. Thus the 
microphone-room spatial relationship is constantly chang-
ing, which is not the case in many ambient intelligence and 
surveillance systems, where the array is stationary for the 
duration of operation. Therefore, this dataset may not be 
well suited for evaluation of performance of static arrays.

Drone Egonoise and localization (DREGON) dataset 
is aimed at evaluating SSL using microphone arrays em-
bedded in an unmanned aerial vehicle (UAV). The dataset 
contains both clean and noisy in-flight audio recordings 
continuously annotated with the 3D position of the target 
sound source using an accurate motion capture system 
(Strauss et al., 2018). The dataset includes the description 
of the room geometry and its reverberation time. Also, the 
speech signals were used for the static sound source. The 
downside of this dataset is that the microphone array is 
mounted on the UAV and is not stationary.

Collectively, none of the mentioned datasets feature 
a tetrahedral microphone array. We present a dataset for 
the evaluation of the performance of sound source locali-
zation algorithms that is captured by a static tetrahedral 
microphone array (two sets of experiments with different 
array geometries). We have used one or two static, simul-
taneously active sound sources with human speech sig-
nals. Our presented dataset includes thorough and explicit 
measurements of the room and the positions of the micro-
phones and the sound sources with the origin of the co-
ordinate system coinciding with one corner of the room.

2. Methods and materials

In this section, we present the methods for the dataset acqui-
sition. For all audio recordings, a Tascam US20×20 USB au-
dio interface was used. All recordings were performed with 
a sampling rate sf  = 44.1 kHz and quantization resolution 
Q  = 16 bit. All spatial measurements were made manually 
using a measuring tape with a precision of ±0.0005 m. The 
dataset consists of audio files of the microphone array, au-
dio files of the sound sources, the room impulse response 
(RIR) measurement data, and the information about the 
positions of the sound sources, the microphones, and the 
geometry of the room. The array audio data was recorded 
for two array geometries. For each geometry, there were 
10 cases of one active speech sound source and 10 cases 
for two active sound sources. As a result, a dataset of 40 
different microphone and sound source combinations was 
produced, along with three RIR measurements, each using 
different combinations of source and microphone positions. 
The format and acquisition methods of each of these ele-
ments are discussed in the next section.

We also present the results of computer simulation us-
ing the image-source model for RIR generation, presented in 
(Allen & Berkley, 1976), of the same parameters as the real-
world data to determine the level of discrepancies between 
the results of simulation and real-world RIR measurements.
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2.1. Room properties

The dataset was acquired in a cuboid-shaped room in 
LinkMenų fabrikas, Vilnius Gediminas Technical Universi-
ty. The dimensions of the room were 5.400×5.860×2.640 m. 
The origin of the coordinate system of the dataset coincid-
ed with a corner of the room. Three of four of the walls 
of the room were made of painted masonry, while the 
fourth wall was a plaster wall. The volume of the room was 

3 89.869 mV =  and the total surface area of the room was 
2145.048 mS = .

The furniture of the room consisted of three plywood 
tables, three chairs, several desktop computers, and com-
puter monitors, which were not taken into account to not 
over-complicate the process of dataset acquisition.

The absorption coefficients of each of the wall were not 
directly measured but rather calculated from the measure-
ment of the 60T  reverberation time value using Sabine’s 
equation (Sabine & Egan, 1994):

1

60
20

24 ln10 0.1611 ,VT V
c Sa Sa

= ≈   (1)

Here 20c  is the speed of sound at 20 °C and a is the 
average absorption coefficient of the surfaces of the room. 
Reordering (1) gives

60
0.1611 .

ST
Va =   (2)

The reverberation time can be calculated using 
Schroeder’s method of backward integration of the RIR 
(Schroeder, 1965).

Schroeder’s frequency cF  is calculated using an equa-
tion provided by Skålevik (2011):

0.5
602000c

T
F

V
 

≈  
 

.  (3)

We have measured the impulse response of the room 
at three different combinations of the signal source, and 
the measurement microphone positions (microphone 
positions RIR,iM , source positions RIR,iS  and Euclidean 
distances between them RIR,( , ) iM S∆  are presented in 
Table 1 and in Figure 1).

For the RIR measurements, a Mackie Thump12 pow-
ered loudspeaker was used as a sound source (axis of the 
loudspeaker directed to the capsule of the microphone). 
The measurement microphone was Sonarworks XREF20. 
RIR was captured using a MATLAB® tool Room Impulse 

Measurer. Provided by the tool are the two most widely 
used IR measurement techniques: Maximum-Length-Se-
quence (MLS) and Swept Sine. MLS technique is based on 
the excitation of the acoustical space by a periodic pseu-
do-random signal. The impulse response is obtained by 
calculating a circular cross-correlation between the meas-
ured output of the system and the excitation signal (Stan 
et al., 2002). The Swept Sine measurement technique uses 
an exponential time-growing frequency sweep as and the 
excitation signal. The output of the system is recorded, and 
deconvolution is used to recover the impulse-response 
from the swept sine tone (Farina, 2007). We have meas-
ured the impulse response using both techniques in all 
three source-microphone position combinations.

2.2. Microphone arrays

We have obtained the audio recordings using two tetrahe-
dral microphone arrays with different distances between 
the microphones (baseline length, B): ARRAY30 with 
B = 0.3 m and ARRAY60 with B = 0.6 m. This approach 
was chosen to allow the evaluation of the influence of the 
baseline length of the microphone array on the perfor-
mance of the sound source localization algorithms. Maxi-
mum TDoA 

maxAT∆ , observable using the array of base-
line length B is

max
20

A
BT

c
∆ = . (4)

For ARRAY30,
max

4
30 8 2 10.8AT −×∆ = s. At fs = 44100 Hz,  

this corresponds to 38 samples. For ARRAY60, the 

max
3

60 1 6 10.7AT −×∆ =  s or 77 samples.
The positions of the microphones of both arrays are 

presented in Table 2 and Figure 2. The coordinates of the 
center of the array are calculated as the arithmetic mean 
of the coordinates of all microphones in each dimension.

Each tetrahedral array consists of four identical con-
denser microphones (RØDE M2). Since the directivity 
pattern of the RØDE M2 microphone is cardioid shaped, 
we have positioned the microphones in such a way that 
the acoustic axes of the microphones were oriented up-
wards, so that the directivity of the microphones would be 
close to omnidirectional in a horizontal plane. The posi-
tion reference point of each microphone coincided with 
the center of its membrane.

Table 1. Positions of the sound source and the microphone for 
the measurements of the RIR

RIR,iS RIR,iM

i x, m y, m z, m x, m y, m z, m RIR,( , ) iM S∆ , 
m

1 4.160 3.740 1.030 1.395 0.730 1.520 4.116

2 4.490 2.430 0.295 3.825 1.145 1.490 1.877

3 4.980 1.400 1.030 4.765 3.275 0.340 2.009

Figure 1. Positions of the RIR measurement microphones and 
sound sources within the room
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2.3. Sound sources

We have recorded the real-world audio data with each of 
the previously described array with one or two simultane-
ously active sound sources.

The sound sources were represented by two small loud-
speakers: battery-powered JBL GO loudspeaker (Source 1, 
SJ), mounted on a tripod to allow for a convenient posi-
tioning; and Yamaha MSP3 amplified two-way compact 
monitor loudspeaker (Source 2, SY), placed on a portable 
pedestal or a table.

The position of the sound source is determined by 
a reference point. For both sound sources the reference 
points were located in the center of the front grids of the 
speakers.

The speech signals that were reproduced through the 
speakers were obtained from the AMI Corpus (Carletta 
et al., 2006), headset microphone mix (file ES2019a.Mix-
Headset.wav). To allow for the two simultaneously active 
sound sources to reproduce different signals, we have se-
lected two excerpts from the file, each with a duration of 
60 s. The first excerpt (E1) began at the 70-th second of 
the source audio file, and the second excerpt (E2) began 
at the 310-th second of the file.

Ten positions for Source 1 were randomly selected 
from a uniform distribution in the entire volume of the 

room. While all three coordinates were randomly chosen 
for the tripod-mounted Source 1, Source 2 could only be 
placed on a fixed height pedestal or the table. Thus its z 
coordinate z2 is limited to two values: 0.85 m and 0.865 m 
above ground; x and y coordinates are the same for both 
source positions. The coordinates of the Source 1 (x, y, z1) 
and Source 1 (x, y, z2) of the selected positions are pre-
sented in Table 3. As can be seen from the Table 3, the av-
erage of coordinates of all source positions are very close 
to the geometric center of the room and differs from it no 
more than 8.25% (for x coordinate). The positions of the 
sources and the centers of both arrays are also presented 
in Figure 3.

By converting the Cartesian coordinates of the posi-
tions of the sound sources to polar coordinates, with the 
centers of the microphone arrays at the origin of the polar 
coordinate system, DoAs of sound sources were obtained 
(presented in Figure 4). DoA with azimuth 0θ =  and 
elevation 0ϕ =  corresponds to the positive x axis of the 
Cartesian coordinate system.

Table 2. Positions of microphones of ARRAY30 and ARRAY60

Array Mic No. x, m y, m z, m

ARRAY30 1 1.45 1.14 1.42

2 1.425 0.84 1.42

3 1.58 0.975 1.63

4 1.295 1.025 1.63

Center 1.4375 0.995 1.525

ARRAY60 1 1.49 1.325 1.36

2 1.385 0.715 1.34

3 1.72 0.975 1.78

4 1.12 1.055 1.78

Center 1.42875 1.0175 1.565

Figure 2. The positions of the ARRAY30 and ARRAY60 
microphones; dashed lines denote the edges of the tetrahedrons

Table 3. Selected positions for sound source placement in  
the room

Position No. x, m y, m z1, m z2, m

1 4 4.85 1.3 0.85
2 4.2 2.7 1.665 0.85
3 1.81 5.55 1.57 0.85
4 3.02 3.38 0.57 0.85
5 0.43 3.7 2.42 0.865
6 1.06 2.14 0.94 0.85
7 0.43 1.04 1.72 0.865
8 2.71 2.15 1.665 0.85
9 3.47 0.38 0.84 0.85
10 1.33 5.08 2.38 0.865
Standard deviation 1.423 1.734 0.613 0.007
Average 2.246 3.097 1.507 0.8545
Room center 2.69 2.925 1.42 1.42

Figure 3. Positions of the sources (SJi and SYi where i = 1, 2,…, 
10 denotes the positions of Source 1 (JBL GO) and Source 2 

(Yamaha MSP3) respectively, as presented in Table 3) and the 
centers of ARRAY30 (MAC301) and ARRAY60 (MAC601) 

within the room
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For the single active sound source case, only Source 1 
was used, and it was placed at all ten positions (coordina-
tes of which are expressed as (x, y, z1)). For the two acti-
ve sound source case, ten positions of the Source 2 were 
selected from the Table 3 sequentially, while the positions 
of the Source 1 were selected from the Table 3 and ran-
domly permuted, resulting in 10 combinations presented 
in Table 4. The speech signal excerpts were assigned to the 
sound sources in an alternating manner.

Table 4. Positions of sound sources in case of two 
simultaneously active sound sources and sources’ 

corresponding signals

Source 2 
position

Source 1 
position

Source 2 
signal

Source 1 
signal

1 2 E2 E1
2 6 E1 E2
3 7 E2 E1
4 3 E1 E2
5 10 E2 E1
6 1 E1 E2
7 5 E2 E1
8 9 E1 E2
9 4 E2 E1

10 8 E1 E2

3. Results

To obtain the average absorption coefficient of the room a, 
a value of the 60T  reverberation time is needed. This value 
was calculated from the impulse response of the room. 
The reverberation time 60T  was calculated for each of the 
obtained RIR using Schroeder’s backward integration me-
thod (Schroeder, 1965). The results are presented in Figure 
5. The average 60T  value was 60T = 552 ms, with standard 
deviation of 33.6 ms.

Figure 4. DoAs for source positions presented in Table 3, 
relative to the center of the ARRAY30

Time (ms)

dB

Integrated Impulse Decay Curve, MLS, position 1

T
6 0  (ms) = 576

Time (ms)

dB

Integrated Impulse Decay Curve, SweptSine, position 1

T
6 0  (ms) = 526

Time (ms)

dB

Integrated Impulse Decay Curve, MLS, position 2

T
6 0  (ms) = 607

Time (ms)

dB

Integrated Impulse Decay Curve, SweptSine, position 2

T
6 0  (ms) = 533

Time (ms)

dB

Integrated Impulse Decay Curve, MLS, position 3

T
6 0  (ms) = 520

Time (ms)

dB

Integrated Impulse Decay Curve, SweptSine, position 3

T
6 0  (ms) = 551

Figure 5. Results of the 60T estimation using Schroeder’s backward impulse response integration (for all 
3 RIR measurement source-microphone position combinations, using both MLS and Swept Sine RIR 

acquisition techniques)
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The absorption coefficient was calculated using (2) 
with 60 0.552T = s:

0,1611 0,206.
0.552
Va

S
==

⋅
  (5)

Schroeder’s frequency was calculated using (3) and the 
measured room volume and 60T :

0.50. 15522000
89.

56.76 Hz
869cF  = = 

 
 (6)

The measurements of RIRs were compared to the com-
puter simulation of a virtual room with the same dimen-
sions and the placement of the IR measurement sound 
source and microphone, using Python programming lan-
guage and pyroomacoustics package, which uses image-so-
urce method for impulse response calculation (Scheibler 
et al., 2017). For the simulation, the absorption coefficient 
a, calculated in (5) was used, while the maximum order of 
reflection was 10. By performing the Fast Fourier Trans-
form (FFT) of the RIRs, transfer functions of the room 
were obtained (magnitude spectra of the transfer functi-
ons presented in Figure 6).

As can be observed from the magnitude spectra of the 
transfer functions in all RIR measurement positions, the 
simulation is relatively accurate only in the approximate 
frequency range from 60 Hz to 500 Hz. This range starts at 
a frequency that is more than twice lower than Schroeder’s 
frequency of the room and does not encompass the widely 
used telephone band (ITU-T, Rec. P.342, 2009). Thus, the 
auralization results using simulated RIRs might be inac-
curate and unsuitable for reliable evaluation of the perfor-
mance of sound source localization algorithms using spe-
ech signals. For all three measurement positions, the am-
plitude of the simulated transfer function is significantly 
higher in the low-frequency range than in measured RIRs. 
This can be addressed to a) unsuitability of the image sour-
ce for RIR simulation in low frequency range (wave-based 
phenomena, such as diffraction and interference, are not 
properly recreated (Siltanen et al., 2010)) and b) inaccura-
cy of the real-world RIR measurements, as it relies on the 
linearity of the transfer functions of the transducers (me-
asurement sound source and microphone, which are not 
linear. The diffraction effect is stronger at low frequencies 
where the wavelength is longer than or comparable to the 
dimensions of the reflecting objects (Siltanen et al., 2010), 
that is, lower than Schroeder’s frequency. The frequency 

response of Thump12 loudspeaker presents a steep ro-
ll-off in the sound pressure level below 70 Hz and above 
6 kHz (Loud Technologies Inc., 2017), so it is impossible 
to obtain fully accurate RIR using neither Swept Sine nor 
MLS method using such loudspeaker. Considering these 
findings, it is advisable to evaluate SSL algorithms not 
only synthetic or semi-synthetic audio data but also on 
real-world audio data as the simulated audio signals might 
not accurately reflect the real-world situation.

Our dataset is openly available online at https://github.
com/Sakavicius/linkmenu-dataset.

Conclusions

A dataset of four different scenarios (two tetrahedral mi-
crophone arrays with different baseline lengths, one and 
two active sound sources for each type of array) was cre-
ated, with ten different source positions (in case of two 
active sound sources – 10 two source position combina-
tions) for each scenario. Positions of sound sources were 
distributed evenly in the room, with average of coordina-
tes of all sources differing from the geometric center of the 
room no more than 8.25% (for x coordinate). A set of six 
room impulse responses was measured using three diffe-
rent combinations of source-microphone positions, using 
two IR acquisition techniques: MLS and Swept Sine. The 
reverberation time 60T  was estimated from the RIR using 
Schroeder’s method, and the average reverberation time 
60T  was determined to be 0.552 s. The average surface 

absorption coefficient was derived from the reverberation 
time and the geometry of the room and was determined to 
be a = 0.206. The Schroeder’s frequency of the room was 
calculated to be 156.76 Hz.

A computer simulation of a virtual room with the 
same geometry and acoustical parameters as the re-
al-world room was performed. From the comparison of 
results, it was determined that the magnitude spectra of 
real-world and simulated RIRs differ considerably both in 
low and high-frequency ranges, and the simulation is re-
latively accurate only in the approximate frequency range 
from 60 Hz to 500 Hz.

Thus, if a sound source localization method or algori-
thm is being developed, its evaluation of real-world audio 
is crucial as the simulated audio signals might not accu-
rately reflect the real-world situation.

 a) b) c)

Figure 6. Magnitude spectra of the transfer functions obtained from the RIR measurements (using Sine Sweep and MLS methods 
and computer simulation) at positions 1 (a), 2 (b) and 3 (c) (positions of sources and microphones presented in Table 1)

https://github.com/Sakavicius/linkmenu-dataset
https://github.com/Sakavicius/linkmenu-dataset
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DUOMENŲ RINKINYS GARSO ŠALTINIO 
LOKALIZAVIMO, TAIKANT TETRAEDRINES 
MIKROFONŲ GARDELES, METODŲ 
CHARAKTERISTIKOMS TIRTI

S. Sakavičius

Santrauka

Garso šaltinio lokalizavimo ir išskyrimo algoritmams kurti ir 
charakteristikoms tirti reikalingas nuosekliai sudarytas garso 
duomenų rinkinys, papildytas informacija apie akustines patalpos 
savybes, garso šaltinių ir mikrofonų gardelės padėtis. Dažnai tokie 
garso ir geometriniai duomenys gaunami atliekant kompiuterinę 
emuliaciją, tačiau dauguma emuliacijos metodų grindžiami supa-
prastinimais ir yra tikslūs tik tam tikromis sąlygomis. Todėl garso 
šaltinio lokalizavimo ir išskyrimo algoritmų veikimą išsamiai 
įvertinti galima tik taikant realius garso duomenis. Siekiant 
nustatyti garso šaltinio padėtį ar sklidimo kryptį erdvėje, reika-
linga mikrofonų gardelė, kurios elementai yra nekomplanarūs. 
Paprasčiausias ir bendriausias nekomplanarios gardelės tipas yra 
tetraedrinė gardelė. Šiuo metu nėra laisvai prieinamo garso ir 
geometrinių duomenų rinkinio, surinkto naudojant tokio tipo 
mikrofonų gardeles. Šiame straipsnyje pristatomas duomenų 
rinkinys, skirtas garso šaltinio lokalizavimo ir išskyrimo al-
goritmams tirti naudojant tetraedrines mikrofonų gardeles. 
Duomenų rinkinį sudaro garso duomenys ir juos atitinkanti 
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geometrinė informacija: patalpos matmenys, garso šaltinių ir 
mikrofonų gardelės padėtys patalpos atžvilgiu. Garso duomenys 
buvo surinkti naudojant dvi tetraedrines mikrofonų gardeles su 
skirtingais atstumais tarp mikrofonų, esant vienam arba dviem 
vienu metu aktyviems garso šaltiniams. Garso šaltiniais buvo 
atkuriamas žmogaus kalbos signalas, todėl pristatomas duomenų 
rinkinys yra tinkamas kalbos atpažinimo ir sklidimo krypties 
nustatymo algoritmams tirti.

Reikšminiai žodžiai: garso duomenų rinkinys, garso šaltinio 
lokalizavimas, patalpos akustika, tetraedrinė mikrofonų gardelė, 
kalbos atpažinimas, garso šaltinio išskyrimas.


