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priority PAHs contaminants (Bojes & Pope, 2007; Wang 
et al., 2007), naphthalene (C10H8) is deemed the sim-
plest partly because of its low molecular weight (Yan & 
Lo, 2013). At room temperature, naphthalene is a white 
crystalline solid with a strong tar-like odour (Defra & 
Environment Agency, 2003). It has been extensively used 
in the study of PAH elimination/reduction in soil (Liang 
& Guo, 2010; Oluwatuyi & Ojuri, 2017). 

In Nigeria, the rate at which these two contaminants 
are found in the soil is gradually becoming alarming. Lead 
mainly through lead batteries and other anthropogenic 
activities, naphthalene through mothballs (also known as 
camphor) and other hydrocarbon sources. The concen-
trations of heavy metals like lead on Nigerian highways 
need to be curtailed before they start affecting the hu-
man health and environment (Ojuri, Taiwo, & Oluwatuyi, 
2016). Research on the hydrocarbon contaminated site of 
Baruwa community in Lagos State, Nigeria showed that 
more than 200 wells were contaminated with floating 
petroleum product (including naphthalene). Groundwa-
ter was about 25 m below ground surface in the wells of 
between 0.75 m and 2.00 m in diameter. Remediation us-
ing free hydrocarbon recovery, in-situ chemical oxidation 
and bioremediation started in 2014 with a pilot scheme 
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Abstract. This article presents an investigation on the influence of Ordinary Portland Cement (OPC) as a binder in the 
stabilization treatment of lateritic soil contaminated with lead or naphthalene. To evaluate the performance of the binder, 
the contaminated soils were tested for mechanical strength and environmental performance before and after the stabiliza-
tion treatment. Results showed that the strength as inferred from the unconfined compressive strength (UCS) and cohesion 
values increased with the addition of the binder. Cement stabilization of the lead contaminated samples also prompted a 
reduction in the release of lead below the admissible limit during the leaching test. Cement stabilization of the naphthalene 
contaminated samples, on the other hand, could not contain the release of naphthalene below the regulatory level during 
the leaching test. The batch equilibrium adsorption test (BEAT) showed that cement stabilization increased the adsorption 
capacity of the soil for the contaminants.

Keywords: batch adsorption, cement, compressive strength, leaching, soil contamination, stabilization.
 

Introduction

There is growing concern that Nigerian soils are being 
unabatedly degraded with diverse known and emerg-
ing organic and/or inorganic contaminants/chemicals of 
concern (COCs) from poor environmental management 
of mining activities, industrial development and weak or 
non-existent legal framework. Inorganics (heavy metals 
e.g. lead) and certain types of organics (e.g. naphthalene) 
are extremely insistent in soils typically causing austere 
insalubrity to people and receptors (F. Wang, H. Wang, 
Jin, & Al-Tabbaa, 2015). Due to its fixed and non-break-
able structure, lead present possible risks because of its 
bioavailability (Ragnvaldsson, Berglind, Tysklind, & Lef-
fler, 2007). Most soils especially fine-grained soils easily 
absorb lead onto themselves (Ojuri, Akinwumi, & Olu-
watuyi, 2017), this attribute heightens with an increase 
in the soil’s organic content, CEC (cation exchange ca-
pacity) and pH (Zhang et al., 2015). On the other hand, 
polycyclic aromatic hydrocarbons (PAHs) are a group of 
organic compounds that consist of two or more fused 
benzene ring structures in various arrangements (Envi-
ronment Agency, 2003). From the United States Envi-
ronmental Protection Agency [USEPA] (2009) list of 16 
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area (100×100 m), 10 existing wells were within the pi-
lot scheme area (Ojuri, Ola, Fadugba, & Uduebor, 2014; 
Uduebor & Ola, 2016).  

Geo-environmental engineers have a huge responsibility 
during the early stages of the construction process, particu-
larly “where potentially adverse impacts are highest” (Holt, 
Jefferson, Braithwaite, & Chapman, 2010). Contaminated 
soils in their untreated state usually lack strength and firm-
ness, making them unfit for construction purposes and a 
potential source of danger to the environment. When such 
contaminated soil is encountered, the Engineer has the op-
tions of leaving the site for a suitable one, replacing the soil 
with an appropriate one or improving the properties of the 
soil through stabilization. Stabilization is different from 
other forms of remediation treatments in that instead of 
destroying the contaminant, their movement in the soil is 
limited through the chemical reaction between the soil and 
binder thereby minimizing their discharge to the environ-
ment (Siebielec & Chaney, 2012). Lime (Mckinley, Thomas, 
Williams, & Reid, 2001; Wang, Abriak, Zentar, & Xu, 2012) 
and cement (Du, Jiang, Liu, Jin, Singh, & Puppala, 2013; 
Akinwumi, Booth, Diwa, & Mills, 2016) are the most com-
mon forms of binder used in stabilization treatment. They 
could be used alone or used along with other pozzolans 
like rice husk ash (Yin, Mahmud, & Shaaban, 2006; Olu-
watuyi & Ojuri, 2017), fly ash (Kogbara, Al-Tabbaa, Yi, & 
Stegemann, 2013; Wang, Abriak, & Zentar, 2013; Falciglia, 
Al-Tabbaa, & Vagliasindi, 2014), pulverized fuel ash (Tang, 
Yan, Lo, & Liu, 2015), milled eggshell (Oluwatuyi et al., 
2018), sawdust ash (Ojuri & Oluwatuyi, 2018) etc.

This scientific article examines the outcome of using 
cement as a binder on the mechanical strength and en-
vironmental performance of lateritic soils contaminated 
with lead and naphthalene. The strength of cement sta-
bilized lead and naphthalene contaminated lateritic soils 
was compared to that of lime-rice husk ash stabilized (a 
previous study). The suitability of the cement stabilized 
lead and naphthalene contaminated lateritic soil as a pos-
sible construction material is also determined.

1. Materials and methods

1.1. Sample collection, preparation and treatment

The lateritic soil used in this work was sampled from the 
same geographical area as those used by Ojuri and Olu-
watuyi (2014). The sampling location was within Latitude 
7° 10ꞌN and 7° 20ꞌN and Longitude 5° 07ꞌE and 5° 17ꞌE 
inside the campus of Federal University of Technology, 
Akure (FUTA), Nigeria. A 10 kg bulk relatively undis-
turbed sample of soil was collected at a trial pit depth of 
about 1.0 m and transferred to the laboratory for further 
treatment. Treatment of the soil samples which include 
pulverization and homogenization, artificial contamina-
tion with lead and naphthalene and subsequent binder 
addition was all done in a similar procedure and quantity 
as those of Oluwatuyi and Ojuri (2017).

1.2. Testing protocol

Basic geotechnical tests which include particle size dis-
tribution, specific gravity, natural moisture content, and 
Atterberg limits were conducted on the uncontaminated 
soil sample. Strength tests which include unconfined com-
pressive strength (UCS) and direct shear (DS) tests were 
conducted on the relatively undisturbed samples of the 
soil, 2000 ppm lead and 3% naphthalene contaminated 
soil (which are the maximum quantity for each contami-
nant) and cement stabilized contaminated soil. The basic 
geotechnical tests and strength tests were conducted in 
accordance to the steps configured in British Standards 
Institution, BSI (1990). The chemical (elemental) com-
position of the soil and cement was determined using 
S1 TITAN Handheld X-ray Fluorescence Spectrometer, 
produced by Bruker Corporation. Environmental perfor-
mance tests which include leaching and batch equilibrium 
adsorption tests were performed on the contaminated soil 
and cement stabilized soil samples.

The procedures for the leaching were the same as the 
one used by Oluwatuyi and Ojuri (2017), the exception 
was that all soil samples were prepared at natural pH only 
and tumbled at different contact times of 30, 60, and 90 
days. The contact time is the period of contact between 
the contaminated soil and the liquid (termed “leachant”). 
The contaminated soil and the liquid are mechanically 
mixed during this period. At the completion of this pe-
riod, mass (contaminant) transfer from the contaminat-
ed soil to the liquid is measured by filtering the liquid 
(termed “leachate”) from the liquid-contaminated soil 
mix and determining its contaminant concentration. The 
contact time depict a significant factor that affects the dis-
charge of contaminants during leaching test. It may affect 
the amount of leached contaminant, except equilibrium 
terms have been fixed (Galvín, Ayuso, Jiménez, & Agrela, 
2012). The inorganic contaminant content was analyzed 
using the iCE 3400 AAS atomic absorption spectropho-
tometer produced by Thermo Fisher Scientific. The naph-
thalene contaminant content in the leachate was analyzed 
using the gas chromatography and electrical conductivity 
meter (indirect approach). Batch equilibrium adsorption 
tests (BEATs) were also performed as described in Olu-
watuyi and Ojuri (2017). 

2. Results and discussion

2.1. Material characterization and soil geotechnical 
properties

The percentage composition of chemical oxides in the soil 
and cement samples used in this study is presented in Fig-
ure 1. A ternary plot of the oxides of silicon (SiO2), iron 
(Fe2O3) and aluminium (Al2O3) existent in the soil sample 
is presented in Figure 2. The degree of laterization in the 
soil sample, calculated from the ratio of silica to sesqui-
oxides (SiO2 / (Fe2O3 + Al2O3)) was 0.02, an indication 
the soil sample was laterite. The natural soil sample was 
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plotted in the strong laterization profile (Figure 2), accord-
ing to the classification of weathering products.

The summary of the basic geotechnical tests conduct-
ed on the natural uncontaminated soil and the (lead and 
naphthalene) contaminated soil is presented in Table  1. 
The table shows that the Atterberg limit values all re-
duced with the addition of the contaminants to the soil. 
The natural soil sample was classified as clay of high plas-
ticity (CH) while the lead and naphthalene contaminated 
samples were both classified as clayey sand (SC) accord-
ing to the USCS classification. The percentage of particles 
passing through a 75 µm sieve (sieve No. 200) was ap-
proximately 52%, 40% and 36% for the natural soil, lead 
and naphthalene contaminated samples respectively. There 
was a noticeable change in the grain size distribution of 
the natural soil compared to the contaminated soil (Table 
1). The change (decrease) in the percentage gravel was due 
to the pulverization of the soil sample before artificial con-
tamination. On the other hand, change (decrease) in the 
percentage fines (silt and clay) may be due to the bonding 
of the fine sizes with each other to form pseudo-sand sizes 
and with other sand sizes to form larger sand or clog sizes. 
The natural moisture content of soil sample was 25.5%. 
After contamination, samples were rehydrated by adding 
deionized water to contaminated samples to yield a target 
water content of approximately 25% before the binder ad-
dition.

2.2. Strength of cement stabilized contaminated soil

Figure 3 showed that the UCS values increased as the ce-
ment content used in stabilizing the contaminated soil 
increased. The UCS values of the lead and naphthalene 
contaminated soil were increased by 562 kN/m2 (122·2%) 
and 795 kN/m2 (159%) respectively after stabilization with 
10% cement. These UCS values were higher than those 

Figure 1. Chemical composition of soil and cement
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Figure 2. Ternary plot of natural soil sample

Table 1. Geotechnical properties of the uncontaminated and 
contaminated soil samples

Engineering & 
Physical Properties

Natural 
soil

2000 ppm 
of lead 
conta-

mina ted 
soil

3% (by dry 
weight of the 
soil) naph-

thalene conta-
minated soil

Physical

pH 6.6 5.9 6.4

Specific gravity 2.72 2.71 2.72

Liquid limit (%) 52.3 37.6 32.8

Plastic limit (%) 24.5 20.2 19.5

Plasticity index (%) 27.8 17.4 13.3

Linear shrinkage (%) 11.5 10.4 10.1

Bulk density (g/m3) 1.64 1.69 1.70

Organic matter  
(g/kg) 6.2 5.6 5.3

Strength

UCS (kN/m2) 223 460 500

Cohesion (kN/m2) 90 170 120

Soil Composition summary

% Gravel (2–60 mm) 12.04 9.68 9.03

% Sand  
(0.06–2.00 mm) 36.16 50.45 54.62

% Silt  
(0.002–0.060 mm) 23.39 19.52 18.46

% Clay (<0.002 mm) 28.41 20.35 17.89

Soil Classification

AASHTO 
Classification A-7-6 A-6 A-6

USCS Classification CH (clay 
with high 
plasticity)

SC 
(clayey 
sand)

SC (clayey 
sand)
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of Crane, Cassidy, and Srivastava (2014) who used a 5% 
cement content and those of the previous study by Ojuri 
and Oluwatuyi (2014). Normally the contaminants used 
are known to cause deleterious effects on the UCS of the 
soil (Trussell & Spence, 1994). Contamination of the soil 
with lead and naphthalene (which were in granular form) 
increased the density and inter-particle cohesion of the 
soil leading to a rise in the UCS value of the soil. Contami-
nation of high plastic clay soil with organic compounds 
or electrolyte solutions having a high salt concentration is 
expected to produce an improvement of mechanical be-
haviour and not a detriment. 

The UCS samples though not cured had values that 
surpassed the regulatory waste disposal limit of 340 kN/m2 

in the United Kingdom (Sollars & Perry, 1989). The values 
were also greater than the UCS design values of 345 kN/m2 
commonly required for in-situ stabilization (USEPA, 2009; 
Interstate Technology and Regulatory Council [ITRC], 
2011), 350 kN/m2 applied in United Kingdom (Wheeler, 
1995), and 440 kN/m2 used in Canada (Stegemann & 
Cote, 1996). The cohesion values also had the same trend 
as the UCS values. Figure 4 displays the cohesion (forces 
that cement particles of soil) and internal friction angle 
(shear strength of soil due to friction) values acquired 
from the DS test conducted on the lead and naphthalene 
stabilized contaminated soil with cement content. The co-
hesion values of the lead and naphthalene contaminated 
soil were increased by 55 kN/m2 (32.4%) and 15 kN/m2 
(12.5%) respectively after stabilization with 10% cement.

2.3. Leaching properties of cement stabilized 
contaminated soil

The main goal of stabilization treatment is to decrease drift-
ing of the contaminant at a proportion of no consequential 
adverse effects to human and environment. Leaching test 
is a way of evaluating this goal, the stabilization treatment 
must be designed so that environmental (water & soil) 
quality is unaffected by contaminant concentration that 
surpasses an admissible limit (ITRC, 2011). The contami-
nant concentration in groundwater at a specific period must 
remain below the established standard (Antemir, Hills, Car-
ey, Magnié, & Polettini, 2010). Ameliorating the strength of 
the contaminated soil is not enough, there is a need to also 
evaluate the environmental performance of the stabilized 
contaminated soil. Leaching is an environmental perfor-
mance test and one of the two predominant criteria (the 
other is UCS) used in assessing the effectiveness of stabili-
zation treatment in the United States (USEPA, 2000). The 
results of the leaching procedure conducted on the lead and Figure 3. Variation of UCS with binder content
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naphthalene contaminated soil at different contact times are 
presented in Figures 5 and 6 respectively. The contact time 
or leaching period is the period of contact between the soil 
sample and the liquid leachant (water) during the leaching 
test. The figures showed that both contact time and cement 
content had an effect on the leaching properties of the lead 
contaminated soil. The concentration of lead and naphtha-
lene decreased as cement content increased and also as the 
contact time lengthened. After 90 days of contact time, no 
lead was detected in the leachate. The results for lead con-
taminated soils were in the same range as those reported by 
Du et al. (2014) who used a lesser contact time. The results 
for naphthalene contaminated soils were in the same range 
as those reported by Hebatpuria, Arafat, Bishop, and Pinto 
(1999).

The decrease in the contaminant concentration can be 
attributed to the cement stabilization treatment which so-
lidifies the soil matrix ultimately decreasing the mobility, 
solubility and toxicity of the contaminants. The decrease 
in concentration with increase in contact time could also 
be attributed to the contact time acting as a curing pe-
riod for the contaminated samples treated with cement, 
these result in samples with more stable linkages leading 
to more decrease in the mobility of the contaminants. In 
this study, the lead concentration in the leachates from the 
cement stabilized lead contaminated soil were all well be-
low 5 mg/l, which is the standard admissible limit for lead 
in the soil (USEPA, 1998). For the naphthalene contami-
nated soils, the naphthalene concentration in the leach-
ates from cement stabilized naphthalene contaminated soil 
were all above 0.2 μg/l, which is the minimum reporting 
level for most volatile organic compounds including naph-
thalene in groundwater (Squillace, Moran, Lapham, Price, 
& Clawges, 1999).

2.4. Adsorption properties of cement stabilized 
contaminated soil

From the batch adsorption test, the results of the equilib-
rium concentration of lead and naphthalene contaminant 
in soil samples at varied cement content are presented in 
Figures 7 and 8 respectively. All the adsorption isotherms 
showed a positive linear drift for lead ions and naphtha-
lene. The noticeable drifts connote that for lead ions, ad-
sorption was more efficient at greater leachate concentra-
tions and that a little more of lead ions was absorbed out 
of the solution as the cement content was increased. For 
naphthalene, the drifts imply more of naphthalene were 
absorbed out of the solution as the cement content was 

Figure 6. Leachate naphthalene concentration
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Figure 8. Adsorption isotherms for naphthalene
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increased. The unusual shapes of the adsorption isotherms 
found in Figures 7 and 8 may be due pore-filling, com-
plexation or binding anomalies (Park & Knaebel, 1992).

The values of the partition coefficient (Kp) and retar-
dation factor (Rd) for each of the contaminants in the soil 
samples were presented in Table 2. The retardation factor 
for the lead in the sample not stabilized was the lowest fol-
lowed by the 5% and 10% cement stabilized contaminated 
sample. This means that lead had the highest mobility 
(associated to the lowest adsorption) in the contaminated 
sample not stabilized. The mobility of lead subsequently 
decreased as the cement content in the sample was in-
creased. The values of the retardation factor for lead in 
the soil samples were in the same range as those obtained 
by De Matos, Fontes, Da Costa, and Martinez (2001). The 
retardation factor for naphthalene in the soil samples was 
higher than those obtained by Kan and Tomson (1990) 
which implies a higher adsorption capacity of soil sam-
ples for naphthalene. Although unlike the lead contami-
nant the 5% cement stabilized contaminated sample had 
the lowest retardation factor for naphthalene followed by 
contaminated sample not stabilized and 10% cement stabi-
lized contaminated sample. This might be due to binding 
anomalies from the 5% cement content on the naphtha-
lene contaminated soil.

Conclusions

The scientific article examined the effect of cement as a 
stabilizing binder on the strength, leaching and adsorption 
properties of lead and naphthalene contaminated soils. 
The following conclusions were drawn.

The contamination of soil with lead and naphthalene 
(both in granular form) reduced the plasticity and in 
turn increase its strength. Liquid limit reduced from 52.3 
for natural soil to 37.6 and 32.8 for lead and naphtha-
lene contaminated samples, respectively. The UCS value 
of natural soil at 223 kN/m2 increased to 460 and 500 
kN/m2 for lead and naphthalene contaminated samples, 
respectively. 

Treatment of the contaminated soil with Portland ce-
ment shows further improvement in the strength (me-
chanical properties of the soil) with both the UCS and co-
hesion increasing with an increase in the cement content. 
The UCS values of the lead and naphthalene contaminated 
soil were 460 and 500 kN/m2, by increasing the cement 
content from 0 to 10%, UCS values of stabilized samples 
increased to 1022 kN/m2 and 1295 kN/m2 for lead and 
naphthalene contaminated samples, respectively.

The leaching test on the samples showed that the ce-
ment stabilization was effective for the lead contaminated 
samples as their leachability was reduced beneath the 
standard admissible limit (5 mg/l) for lead in soil. The lead 
concentration in leachate after 30 days of contact time was 
1 mg/l, by increasing the cement content from 0 to 10%, 
it reduced to 0.1 mg/l.

The leachability for naphthalene contaminated soil also 
decreased with cement stabilization but it was not below 
the minimum reporting level (0.2 μg/l) for naphthalene 
in the soil’s groundwater. The naphthalene concentration 
in leachate after 30 days of contact time was 0.69 mg/l, by 
increasing the cement content from 0 to 10%, it reduced 
to 0.54 mg/l.

The retardation factors from the batch equilibrium ad-
sorption test also showed that cement stabilized soil had 
a good adsorption capacity for both lead and naphthalene 
contaminants. For lead, by increasing the cement content 
from 0 to 10%, the retardation factors increased from 1.86 
to 25.50. For naphthalene, by increasing the cement con-
tent from 0 to 10%, the retardation factors increased from 
16.23 to 30.35.

Finally, Portland cement is recommended for improv-
ing the mechanical strength and environmental suitability 
of lead contaminated soils.
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