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Abstract. Extreme precipitation episodes are very common in Mediterranean area and can lead to serious and catastrophic
environmental hazards. They have special incidence during autumn months, September, October and November (SON)
with important impacts on society, leading frequently to significant economic losses and mortality. These events have
special impact in mountainous areas where steep slopes enhance the effects of extreme precipitation. In mountainous areas
rain gauge stations are sparse and normally in lower amount. Due to these reasons it is very important to map with higher
accuracy the distribution of extreme precipitation. Also, in mountainous environments precipitation patterns can change in
small distances that make the prediction more difficult, but also more important. A better prediction of areas with higher
values of extreme precipitation will contribute to a better land use planning and avoid the effects of flash floods, land-
slides and soil erosion recognized as environmental problems. The aim of this paper is testing several well-known interpo-
lation methods, Inverse Distance Weight (IDW) with weighs of 1, 2, 3, 4 and 5, Local Polynomial (LP) with order 1 and
2, Radial Basis Methods (RBS), particularly Spline With Tension (SPT) and Thin Plate Spline (TPS), and Kriging tech-
niques, Ordinary Kriging (OK) and Ordinary CoKriging (COK) in order to identify the less-biased method to interpolate
extreme precipitation calculated from the 95" percentile (P95) of SON precipitation in a mountainous area located in Por-
tugal.

The results show that extreme precipitation increases with the altitude and there are important differences between stations
located at higher and lower altitudes. This relation is observed in the omni-directional semi-variograms calculated where
we identified two major P95 areas coincident with higher elevations. The first one occurred at 12.19 km and the second at
23.57 km. The higher values of P95 are identified at Southeast and Northeast. In contrast, the lower P95 values are identi-
fied at Northwest due to lower altitudes and in the Northeast corner as a consequence of rain shadow effect. Prediction
with precision of precipitation patterns in mountainous areas is difficult due to lack of data and the complex effect of to-
pography in rainfall, however, it is of major importance in order to identify vulnerable areas. The findings observed in this
study are a fundamental contribution to landscape planning and environmental management in areas with higher occur-
rence and vulnerability to extreme precipitation.

Keywords: extreme precipitation, environmental hazards, Mediterranean area, September, October, November (SON),
mountainous areas, interpolation methods, landscape planning and environmental management.

van et al. 2008; among others). In Europe autumn, winter
and spring precipitation depends mainly of the North
Atlantic Oscillation (NAO) dynamic. NAO is a large
scale atmospheric circulation and is characterized by the
pressure difference between two active centers of the
atmospheric pressure, the Icelandic low located at North
and the Subtropical high located at South. NAO positive

1. Introduction

Mediterranean climate is located in the transitional zone
between the humid western and central European domain
and the arid North African desert belt. It is characterized
by alternating circulation regimes connected to dry and
wet seasons throughout the year (Diinkeloh and Jacobeit

2003). One of the main peculiarities of this type of cli-
mate is the spatial and temporal irregularity of the precip-
itation, as several studies pointed out (Tildes Gomes
1998; Trigo and DaCamara 2000; Brunetti et al. 2001;
Santos et al. 2005; Fragoso and Tildes Gomes 2008; Pa-

index is characterized by lower than normal surface pres-
sure over the Icelandic region and higher than normal
surface over tropical Atlantic together yield a larger than
normal meridional pressure, generating a stronger than
normal surface westerlies across the north Europe. Posi-
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tive NAO index brings wetter conditions in North Europe
and drier to Southern Europe and in the Negative NAO
index, occurs the opposite (Hurrell 1995; Wang and
Schimel 2003). Nevertheless, the majority of the studies
mentioned that this atmospheric pattern influences espe-
cially winter rainfall (Tildes Gomes 1998; Esteban-Parra
et al. 1998; Rodrigo et al. 2000; Rodriguez-Puebla et al.
2001; Muifioz-Diaz and Rodrigo 2003; among others).

The Iberian Peninsula autumn precipitation is related
with southwest circulation and is branded by a strong and
unstable phenomena show up over both land and sea.
Normally, this precipitation occurs between September to
November and is characterized by intense rainfalls creat-
ed by different physical and dynamical processes as
storm track changes, low level of advection of warm,
moist air or topographic configurations, can play an im-
portant role (Font 2000). These heavy precipitations have
important and coercive impacts in the society, leading
frequently to significant economic losses and mortality as
mentioned in several studies. Hence, these events can
induce important and coercive environmental hazards
(Fragoso and Tildes Gomes 2008; Morata et al. 2008;
Valero et al. 2009). Moreover, some studies revealed that
autumn extreme rainfall is increasing in Portugal since
the last half of the 20" century (Pereira et al. 2008).

Mountain areas have important implications in rain-
fall behaviour, because affect the development of cloud
systems and can increase the precipitation from pre-
existing precipitating systems, enhancing the rainfall
differences between uplands and lowlands and between
slopes with different exposure to moist flows (Valero et
al. 2004). In addition, in these areas with steep slopes
(especially with non forested land use) and small drain-
age basins, heavy rainfall can triggered rapid an unex-
pected flash flood events, landslides, debris flow, and soil
erosion (Johnson and Warburton 2002; Weingartner et al.
2003; Arattano and Franzi 2004; Zézere et al. 2005;
Romero et al. 2006; Gonzalez-Hidalgo et al. 2007; Surda
et al. 2007; Okonski 2007; among others).

Since heavy precipitation events have important im-
pacts in mountain areas is of major importance know with
accuracy their spatial distribution in order to predict the
impacts of these events and identify higher vulnerability
areas. This prediction can be studied throughout testing
the precision of interpolation methods and identify the
less biased. Find the best method interpolate precipitation
patterns in one of the biggest problems faced by meteor-
ologists, hydrologists and climatologists. Precipitation is
intermittent and spatially discontinuous variable, fre-
quently with zero accumulations. Hence the interpolation
of precipitation is more difficult than other variables
(Dirks et al. 1998). Moreover in mountains environments
is a special challenge because data are sparse, frequently
restricted to lower elevations whereas spatial variation in
precipitation can be significant (Hofierka et al. 2002).
Several works have studied the validity of interpolate
methods in predict rainfall, however they are focused in
total, seasonal, mean, monthly or daily precipitation
(Goodale et al. 1998; Dirks et al. 1998; Hofierka et al.
2002; Goovaerts 2000; Vicente-Serrano et al. 2003;

Subyani 2004; Diodato and Ceccarelli 2005; Fernandez
and Bravo 2007; Haiden and Pistonick 2009; among oth-
ers). The extreme rainfall events are the ones that have
important impacts in society and cause large economic
losses, especially in mountain areas. However, there are
few studies about spatial distribution of extreme rainfall
events and their pattern (Kieffer Weisse and Bois 2001).
In the Mediterranean environment great amounts of pre-
cipitation can occur in a short period of time, generating
rapid and unexpected flash floods as reported elsewhere
(Bechtold and Bazile 2001; Ferraris et al. 2002; Llasat et
al. 2003; Romero et al. 2006; Barrera et al. 2006; among
others). Hence, is of major importance identify the ex-
treme rainfall patterns in mountain areas in order to pre-
dict and identify the most vulnerable areas to heavy
precipitation occurrence. This has special interest in areas
with lack of spatial and temporal resolution of data and in
order to contribute to hazard prediction is fundamental
make spatial estimations accurate as possible (Vaisis and
Janusevicius 2008).

The aim of this research is modelling and assess the
accuracy of some well known interpolation methods in
predict the extreme rainfall during the months of Septem-
ber, October and November (SON) calculated from
monthly data between the period of 1970-2006 in a
mountain area located in Portugal.

2. Materials and Methods
2.1. Study area, data and statistical analysis

The study area is situated in the interior North of Portugal
(Fig. 1) and cover about 7569 km?. The geological sub-
tract is mainly composed by granite and schist rocks from
Paleozoic. The topography varies between 100 and
1991 m of altitude that is cut by a dense and complex
fluvial network towards to Atlantic Ocean. The climate
according to Kdppen classification is Csb (warm temper-
ate moist forest climate, with wet winters, dry summers,
and the warmest month above 22 °C on average). Annual
mean temperature is 12.6 °C and total annual precipita-
tion is 2300 mm and is concentrated between autumn and
spring.

The database used in this study was collected in the
Natural Water Resources Institute (INAG) in Portugal.
The INAG network collects the data from rain gauges at
9 a.m. and the series are organized according to 24 h time
units (from 9 a.m until 9 a.m of the next day). Overall we
selected a total of 29 stations with the best temporal and
spatial resolution across the studied area (Fig. 1). After
collect data, quality control and data homogenization
were carried out according the methods described in
Wijngard et al. (2003). Then in order to identify the value
of SON extreme precipitation we calculate the 95™ per-
centile (P95) of each series from the three months. This
threshold was also applied in other works (Karl and
Knight 1998; Haylock and Nicholls 2000; Carvalho et al.
2004; among others).

Some descriptive statistics of P95 and altitude were
performed, Mean(m), Standard Deviation (SD), Coeffi-
cient of Variation (CV%), Minimum (min), Maximum
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Fig. 1. Study area and stations in analysis
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(max), 1% Quartil (Q1), Median (M), 3™ Quartil (Q3),
Skewness (Sk) and Kurtosis (Kur). After identify the P95
for each station and prior to modelling data, we submit
data to normal distribution test through to Shapiro wilk
test (SW) (Shapiro and Wilk 1964) considered normal at
a p>0.05. All statistical analysis were performed with
STATISTICA 6.0 (Statsoft Inc).

2.2. Interpolation methods

Interpolation is the process of using known data values to
predict unknown values (Yilmaz 2007). Currently is a
topic of interest in earth sciences, geography and engi-
neering because measurements can be time consuming,
expensive and laborious in several environmental scienc-
es (Erdogan 2009). In this study we tested some well
known interpolation methods in order to predict with
better accuracy the distribution of P95, namely, Inverse
Distance Weighting (IDW), Local Polynomial (LP),
Spline With Tension (SPT), Thin Plate Spline (TPS),
Ordinary Kriging (OK) and Ordinary CoKriging (COK).

2.2.1. Deterministic methods
2.2.1.1. Inverse Distance Weighting (IDW)

IDW is an exact interpolator and one of the most simple
and popular interpolation technique. This method as-
sumes that every measured sample point has a local influ-
ence that reduces with the distance. To estimate an
unknown value, this method will use the closest known
values. Those measured points closest to the estimation
point will have more influence in the predicted value
(Apaydin et al. 2004; Babak and Deutsch 2009). The
factor that can affect the IDW accuracy is the power fac-

tor (Isaak and Srivastva 1989). In this study we compared
estimates of IDW technique applying different weights, 1,
2, 3, 4 and 5. The general function of IDW (Burrough and
McDonell 2009) is:

N
Z(Sp) = 2 MZ(s), @

i=1
where Z(Sg) is the predicted value for location (Sp), N
is the number of measured points surrounding the predic-
tion. A; are the weights allocated to each measured point
and Z(s;) is the observed value at the location (s;). The

weights are a function of the inverse distance and are
calculated according the formula:

dig?

N b '
2. dio
i=1

The power parameter (p) in this method of interpola-
tion is the significance of the surrounding points upon the
interpolated value. When the distance (d) augment be-
tween measured and prediction points, the weight that the
measured point has no the prediction reduce (Burrough
and McDonell 2009).

A= 2

2.2.1.2. Local Polynomial (LP)

LP is moderate quick deterministic and inexact interpola-
tor. Is combination between of global polynomial meth-
ods and the moving average procedure. Using the
identified data this method is fit using weighted least
squares and the grid node value is set equal to this value
(YYilmaz 2007; Luo et al. 2008). The LP can be of one,
two or three orders. In this study we tested the first and
second order defined by the formula:

Order 1
F(X,Y)=a+bX+cY. (3)

Order 2
F(X,Y)=a+bX+cY +dXY +eX*+fV. 4)

2.2.1.3. Radial Basis Functions (RBF)

Radial basis functions (RBF) are moderately quick de-
terministic interpolators that are exact. This method pro-
vides prediction surfaces that are comparable to the exact
form of kriging and especially efficient in the absence of
grid data (Buhmann 2000). RBF methods include SPT,
TPS, multiquadratic, inverse multiquadratic, and com-
pletely regularized spline. They are based on the assump-
tion that the interpolation function should pass or pass
close to the data points and at the same time be as smooth
as possible (Talmi and Gilat 1977). In this study we used
SPT and TPS methods. In the first the tension manages
the flexibility of the surface according to the character of
the modelled phenomenon. The method creates a less
smooth surface with values more closely constrained by
the sample data amplitude. Here we considered the ten-
sion of 0.1. In SPT, the parameter defines the weight of
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tension. Higher the weight, coarser the output surface.
The spline function uses the following formula for the
surface interpolation:

N
S(xy)=T(x, y)+_z_7»jR(fj), ()
j=i

where: J=1, 2, ... N, N is the number of points, Aj are

coefficients found by the solution of a system of linear

equations r; is the distance from the point (x,y) to the Jo

point. T(x,y) and R(r) are defined differently, depending
on the selected option. In the case of SPT:

T(x,y)=al
and

R(r) = —%[In(r—z“’)+c+ Ko("¢)} ©)

21

where ¢2 is the parameter entered at the command line,

r, the distance between the point and the sample. Kj is the
modified Bessel function and ¢ is a constant equal to
0.57721 (Franke 1982). Details about Bessel function are
mentioned in Smith et al. (2009). TPS is a method that
ensures a smooth surface, together with continuous first
derivate surfaces. It works by fitting a surface a surface at
each sample point, so the surface can be can be smother
than if data were fitted exactly (Tait et al. 2006). The
definition of this method is given by a linear combination
(Luo et al. 2008) and is calculated according the formula:

Zp = Wid(r;), ()

where z, is the estimated value for the surface at grid
point p, ¢(r;) is the RBF selected, with (r;) being the
radial distance from point p to the 1% data point. The
weight w; is estimated from the data points (Smith et al.
2009). In the present case | selected TPS (¢) as RBF,
hence:

o= c?r? In(cr), (8)

where ¢ is the smoothing factor and r is the vector (Smith
et al. 2009). In the present study | considered a smooth-
ing factor of 0.5.

2.2.2. Geostatistical Methods

Geostatistical techniques are extensively described in
literature (Isaak and Srivastva 1989; Goovaerts 1999;
Webster and Oliver 2007; among others). This method is
a moderately quick interpolator that takes into account
both the distance and the degree of variation between
known data points (Chaplot et al. 2006; Kumar et al.
2007; Luo et al. 2008). One of the many advantages of
kriging is the estimation of a spatial correlation between
the measured points given by the:

1 N

v(h) =-os

N . 2
Ny & PE-Ze0+f @

where N(h) is the number of data pairs within a given
class of distance and direction. The semi-variance can be
a function of distance and direction, and so can identify
the variable spatial dependence in a certain direction
(anisotropy) (Luo et al. 2008). Normally to describe a
reliable estimation of a semi-variogram are needed at
least 150 data, and larger are needed to observe some
anisotropy (Webster and Oliver 2007). Hence in this
study the computed variograms are omni-directional (as-
suming that the variability is identical in all directions)
due the lack of data. Others studies have also calculated
semi-variograms with similar amounts of datasets
(Goovaerts 2000; Diodato and Ceccarelli 2005; Jalali
2007; Vaikasas 2010). There is several types of kriging,
OK, simple kriging and universal kriging. In this study
we selected the OK because the direction trend of the
variable was unknown. Kumar et al. (2007) pointed out
that in this situation OK is the best kriging method. OK is
a univariate method and one of the most widespread pro-
cedure in GIS packages. As other kriging methods, use
point or block computations, resulting in smoothed sur-
face and inexact interpolation. Assumes a constant but
unknown average and estimates the average value as a
constant on searching of neighbourhood (Goovaerts
1999; Kumar et al. 2007; Smith et al. 2009). OK is calcu-
lated according the formula:

) n(h)
Z u=> ki(U)Z(Ui)J{l— ZM(U)}“, (10)

i=1

where Z"(u) is the OK estimate at a spatial location u,

n(h) is the number of data applied at the known locations
given a neighbourhood. Z(u;) are the n measured points

(u;) , situated close to u calculated from the spatial covar-

iance matrix based on the spatial continuity (Kumar et al.
2007).

Since rainfall can be strongly influenced by the ele-
vation we used other type of kriging that can use infor-
mation from several variable types. In order to make a
relation between precipitation and altitude we applied the
COK. This method is based in the relation of two or more
variables to help to make the prediction more accurate
and is especially useful when both variables are related.
The main variable of interest (Z;) and both autocorrela-
tion for Z; and cross correlations between Z;, Z,.... are
used to make better predictions. In this study we classi-
fied as main variable the P95 and altitude as second vari-
able. The formula of COK is given by:

n(u) n(u")
Zock =(S0) = 2. Aia(si)+ D) Mjza(sy),  (11)
i=1 i=1

where z1 is the data of the main variable, in this case the
precipitation selected in the (Sp) neighborhood observa-

tion (s;), z, is the data of the second variable (altitude)
selected in the (Sp) neighborhood observations (s;) , A
and A ; are the weights associated with the distance (Di-
odato and Ceccarelli 2005).
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2.2.3. Assessment criteria for interpolation techniques

The assessment criterion is based on the errors produced
by each model (Observed — Predicted). They provide
important information, especially when using and com-
paring different methods (Smith et al. 2009). There are
several validation methods. Here we used the cross vali-
dation procedure that compares measured precipitation
values with the predicted ones. Cross validation is
achieved by taking each observation in turn out of the
sample and estimating from the remaining values. This
method is an excellent alternative to solving the incon-
venience of redundant data collection (Webster and Oli-
ver 2007). The produced errors in each interpolation
technique allowed us to calculate mean error (ME) and
root mean square error (RMSE), indices used extensively
in the literature to evaluate the accuracy of the interpola-
tion methods (McGrath et al. 2004; Hooker and Nathanail
2006; Luo et al. 2008; Bourennane et al. 2006; Pereira
and Ubeda 2010). ME and RMSE are calculated accord-
ing the formulas:

ME = -3 204)-204)}, (12
i=1
1N 9
RMSE = WZ{z(xi)—z(xi)} , (13)
i=1

where z(x;) is the observed value, Z(x;) the predicted

value and N the number of samples. Ideally ME should
be 0 if the interpolation is unbiased. The RMSE was used
to compare the performance of the different methods by
seeing how close predicted values match the measured
values. The method with smaller RMSE is the best pre-
dictor (Robinson and Metternicht 2006; Luo et al. 2008).
The RMSE is an indicator of the sensitivity to outliers,
identify the magnitude of extreme errors and it is low
when there is a central tendency and extreme errors are
small (Ashraf et al. 1997; Nalder and Wein 1998). The
Relative improvement (R1%) of the best method com-
pared with the others is calculated according the formula:

(RMSEBest — RIVISECurrent)
RMSEge

RI (%) = x100,  (14)

where RMSEgqg is the minimum value of RMSE and
RMSEqrent is the current model.

In addition, to observe the difference between means
of observed and predicted values we applied paired t-tests
for dependent samples, significant at a p<0.05. All inter-
polation tests were performed in SURFER 8.0 (Golden
software) and ArcGis 9.3 (ESRI software) for windows.

3. Results and Discussion
3.1. Descriptive parameters

Table 1 summarizes basic statistics of the two variables in
study. The mean altitude of sample points is 476.13 m
and P95 is 264.06 mm during SON and presents a higher
CV%, especially in altitude due great differences between
observation points.

The places with higher elevation are located in the
Northeast corner of the studied area and the lower in
Northwest part (Fig. 2a). Fig. 2b shows the symbol map
of P95. Clear spatial patterns can be identified, showing
higher values of P95 in some points located at Northeast.
In opposition, lower values were identified in the North-
west part of the studied area. The higher P95 values were
located at the higher altitude points.

Table 1. Descriptive statistics for P95 and altitude respective Ln
transformations

P95 (Ln) Altitude (Ln)

(mm) P95 (m) Altitude
m 264.06 5.50 476.13 5.95
SD 109.55 0.37 353.04 0.64
CV(%) 41.77 6.72 74.14 10.75
min 123.4 4.81 116 4.75
Q1 196 5.27 253 5.53
M 238.7 5.47 426 6.05
Q3 306.5 5.72 572 6.34
max 608.48 6.41 1560 7.35
Sk 1.593 0.28 1.989 0.26
Kur 3.432 0.47 4.33 —0.08

This positive and significant relationship can be ob-
served in the Fig. 2b. Several studies also founded posi-
tive relations between precipitation and altitude (Daly et
al. 1994; Hutchinson 1998; Hay et al. 1998; Diodato and
Ceccarelli 2005; Fernandez and Bravo 2007). The histo-
grams of altitude and P95 are strongly skewed, the Kur is
very sharp caused by the fact that the majority of points
are located in lower elevation. Both distributions did not
respect the normality test (Fig. 2d and f). This data distri-
bution is due the existence of extreme values. The pres-
ence of outliers lead to biased conclusions in statistical
and geostatistical analysis. In order to avoid these prob-
lems | transformed P95 data Log-normally (Ln) and test-
ed again their normality. Ln transformation resulted in
smaller Sk and Kur in both variables (Table 1, Fig. 2e and
g). With this transformation, data followed the Gaussian
distribution and was used to modelling spatial distribu-
tion of Ln(P95) and (Ln)Altitude in COK.

3.2. Spatial structure

The semi-variogram gives the spatial structure of the
variable and the statistical correlation of the closest
points. As distance increases the probability of the sam-
ples being correlated is smaller.

The omni-directional semi-variograms for (Ln)P95
and (Ln)Altitude are showed in the Fig. 3a and b. Semi-
variance increases with the distance, confirming that two
observed (Ln)P95 close to each other are more similar
and their square difference is smaller. Among all tested
theoretical models, the semi-variograms has been fitted
with the wave (hole effect). This model is reflects the
existence of cyclic phenomena (Jones and Ma 2000;
Goovaerts 2000). This fact was already expected, because
of the topographic variability and their influence on P95,
even in small scale. However, here, this behaviour is
consequence of the existence of two major elevation
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points that induce an important increase of (Ln)P95 (see
Fig. 2a). Two main areas with higher (Ln)P95 can be iden-
tified in the semi-variogram exposed in the Fig. 3a. The
first is located between 0.14° and 0.27° (12.19 km and
23.57 km, respectively) and the second between 0.54° and
0.70° (47.05km and 60.99 km). The Fig.3b shows the
semi-variogram of the (Ln)Altitude and can be observed a
very similar shape to (Ln)P95 semi-variogram, despite of

the first area is not so evident. The cross-covariance cloud
gives us the spatial covariation between (Ln)P95 and
(Ln)Altitude (Fig. 3c) and is defined as half the expectation
of the product of the increment of two variables. Measures
the how a value of an attribute x; at one location is related
to the value of another attribute z; a vector h further apart.
Normally, as the distance increases the relation between
the two different points weakens. The nugget effect in both
variables is small, 0.0300 for (Ln)P95 and 0.157 for
(Ln)Altitude, respectively. This means that sampling densi-
ty is adequate to reveal the spatial structures (Table 2). The
spatial correlation of the both variables is quite similar.
The first goes until 27.03km and the second until
31.39 km. The Nug/Sill ratio can be regarded as a criterion
to classify spatial dependence of variables. If the ratio is
smaller than 25%, the variable presents a strong spatial
dependence, between 25% and 75%, the variable shows a
moderate spatial dependence and higher than 75% has a
weak spatial dependence (Liu et al. 2004). In this work,
Nug/Sill ratios were 11% and 28% for (Ln)P95 and
(Ln)Altitude respectively. This suggest that (Ln)P95 has a
strong spatial dependence and (Ln)Altitude moderate.
Normally, lower spatial dependences are related with in-
trinsic factors (topography and geomorphology) and weak
spatial dependences to extrinsic factors (human factors)
(Lu et al. 2007). Hence, in this study the lower Nug/Sill
ratio, especially of (Ln)P95, shown that spatial variability
is related with natural factors. This higher spatial depend-
ency of (Ln)P95 is due the great influence of topography in
precipitation patterns.

Table 2. Parameters for onmidirectional semi-variograms

. Nugget . Nug/Sill
Variable effect Sill Range ratio
(Ln)P95 0.300 2.72 0.31°(27.03 km) 0.11
(Ln)Altitude  0.157  0.55 0.36°(31.39 km) 0.28

3.3. Interpolation methods accuracy

The ME and RMSE calculated from the residuals ob-
tained from each model are presented in the Table 3.
Considering all the methods, the ME in general was
closed to 0 and ranged between —0.048 and 0.040, and
suggested that in all distributions the predictions were
unbiased. The RMSE varied between 0.2955 and 0.3848.
On average, with exception of LP1 and LP2, all models
sub-estimate original values (observed>predicted).

Table 3. Summary statistics of the interpolation methods accuracy. In bold the less biased method

Method Min Max ME RMSE RI1(%) Obs vs Est
IDW 1 -0.790 0.746 0.02212 0.3587 21.38 0.746089
IDW 2 -0.657 0.683 0.03576 0.3379 14.34 0.577785
IDW 3 -0.565 0.624 0.04085 0.3318 12.28 0.516901
IDW 4 -0.520 0.603 0.04084 0.3355 13.53 0.521682
IDW 5 -0.515 0.676 0.03935 0.3435 16.24 0.546626
LP1 -0.569 0.455 —0.04864 0.3144 6.39 0.414257
LP2 -0.512 0.781 -0.008169 0.3746 26.76 0.908943
SPT -0.507 0.533 0.02029 0.2955 - 0.718449
TPS -0.649 0.795 0.003259 0.3511 18.81 0.961178
OK -0.912 0.690 0.01101 0.3848 30.22 0.880687
OCK —0.659 0.634 0.004846 0.3347 13.26 0.939481
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Fig. 4. Scaterplots of the observed against estimated values in the studied interpolation methods. a) IDW1, b) IDW2, c) IDW3,
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From all tested models the most accurate to interpo-
late (Ln)P95 was the SPT with the lower RMSE. These
results agree with other studies that also identified this
method as a good interpolator of precipitation distribution
(Hofierka et al. 2002; Stuart and Jarvis 2004). IDW was
estimated with the powers of one two, tree, four and five
and they presented different results.

From all the best predictor was IDW3. In relation to
LP methods, the most precise was LP1. OK was the most
biased of all methods with an error of 30.22%. Beside the
error reduction with the incorporation of secondary in-
formation with COK, the prediction was still more biased
than SPT. In any case the mean of observed values were
different from estimated values, however, in RBF,

kriging and LP2 methods they are more similar than in
the others (Table 3).

The correlations between observed and estimated val-
ues by each model are exposed in the Fig. 4. The coeffi-
cient of correlation was in the range of —0.12 and 0.61. The
higher correlation was identified in SPT method and the
lower in OK, precisely the best and worst interpolators of
(Ln)P95 in the selected area. The residuals produced in
each model are exposed in the Fig.5. All distributions
respected the gaussian distribution and hence the majority
of the errors are close to 0. However in the case of LP2
model (Fig. 4g), beside the SW test result showed a
p>0.05, it is clear that the high percentage of the errors are
not concentric to 0 value. This dispersion can be also ob-
served in the scaterplot of the Fig. 4g.
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The interpolated map with the best predictor (SPT)
is shown in the Fig. 6. The areas where (Ln)P95 in SON
is higher are located at Northeast and Southwest and as
expected are in higher mountain areas. In opposition, the
areas with lower (Ln)P95 in SON are situated in North-
west and in the Northeast corner of the analysed area.
After the interpolation it is clearly observable a trend
from Southwest to Northeast area related with altitude
increase. In the Northwest area the lower occurrence of
higher values is due lower topography.

In the Northeast corner the reduced values of
(Ln)P95 can be justified by the “shelter effect” or “rain
shadow effect” of mountain as observed in other studies

16 - 16 -
SW=0.947 SW=0.846
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(Kieffer Weisse and Bois 2001; Diodato and Ceccarelli
2005; Gilles et al. 2006; Minder et al. 2008; among oth-
ers). In mountain environments the amount of precipita-
tion can vary from a place to another significantly even in
small distances. There are two effects on precipitation
caused by mountains. The first, the orographic effect
(already mentioned above) occurs on the windward side
of the mountain. The amount of precipitation increases
importantly with the altitude on the windward side of the
mountain. The second is the “shelter effect” or “rain
shadow effect” that happens no the leeward side of the
mountain.
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Fig. 5. Histogram of the errors resilting from: a) IDW1; b) IDW2; c) IDW3; d) IDW4; e) IDWS5; f) LP1; g) LP2; h) SPT; i) TPS;
j) OK; k) COK. SW(Shapiro-wilk test). Normal distribution considered at a p
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In this side the precipitation is reduced significantly
because the major quantity of rainfall occurred in the
windward side of the mountain and the air masses arrive
dry to the leeward side of the mountain. This foehn effect
causes a very high variability in precipitation patterns in
mountain areas.

In Portugal, SON precipitation is related with
southwest fluxes and after moist masses pass all moun-
tain range is normal that they arrive to the leeward side of
the mountain (in this case located at Northeast) dry. This
mechanism can explain the rapid reduction of (Ln)P95.
The map produced with the less biased method suggested
that precipitation patterns are related with small scale
variability imposed by orography in local circulations.

The knowledge of the extreme precipitation spatial
pattern in mountainous areas is of major importance in
order to contribute to a sustainable and correct land use
planning. These events are related with flashfloods, espe-
cially coercive in mountainous areas with steep slopes,
triggering soil erosion and landsides that produce im-
portant economic losses. It is important to refer that study
area during summer time is frequently affected by wild-
fires that reduce vegetation cover and expose soil to rain-
fall erosion. Since these major precipitation events occur
immediately after fire season (June-August), the unpro-
tected soil is vulnerable to erosion and the loss of nutri-
ents can be higher.

4. Conclusions

Estimation with precision precipitation patterns in moun-
tain areas is complex due the lack of available observa-
tion points and the small scale variation induced by
orography. However, is of major importance predicted
with accuracy, precipitation distribution, especially ex-
treme precipitation that is responsible for flash floods,
landslides and soil erosion. In Portugal, these events oc-
curred especially in autumn months, therefore, is of main
interest know the spatial variability in this period in high-
er hazard areas and hence anticipate the potential occur-

rence of environmental problems produced by extreme
precipitation.

Due special importance of extreme precipitation in
mountainous areas is fundamental to predict with less
error as possible. Based on this study some important
conclusions are observed:

1. P95 is strongly dependent of orography and
great differences are identified between stations located at
higher and lower altitudes.

2. The relation between altitude and precipitation is
observed in the omni-directional variograms produced
where it is evident the effects of mountains located at
12.19 km and 23.57 km, especially the second one, on
extreme precipitation increase. The lower Nug/Sill ratio
and consequent spatial dependency shows that variability
of P95 is mainly due topographical variations

3. From the 11 models tested in this work, the less
biased was SPT and OK the less accurate. Even with the
introduction of altitude as secondary information in COK
technique, the error was still higher than SPT. This means
that kriging methods are not always the better interpola-
tion techniques as defended in several publications. The
precision of the algorithms is also evaluated in the rela-
tion between the observed and predicted values. The
higher correlation is observed in SPT and the lower in
OK which confirms that the first method estimates with
better accuracy in relation to all others.

4. The areas with higher P95 precipitation are ob-
served in Southwest and Northeast, revealing also a in-
crease trend between these areas. The lower P95 values
are registered in Northwest corner due lower altitude and
in the Northeast corner as consequence of rain shadow
effect.

5. The results obtained from this study are a valua-
ble contribution to land use planning and prediction of
areas with more incidence of extreme precipitation during
SON. With accurate information about spatial distribution
of extreme precipitation, environmental problems caused
by flash floods, landslides or soil erosion can be avoided.
Although special attention should be paid to the higher
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amounts of P95 occurred in higher altitude areas that can
induce important flash floods in lowland areas, especially
in places located near torrents or fluvial courses. The
information obtained in this study is important to develop
a sustainable landscape planning and environmental man-
agement.
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GAUSIU KRITULIU PASISKIRSTYMO POVEIKIO PAVOJINGOSE KALNU VIETOVESE
MODELIAVIMAS. PAGALBA PLANUOJANT KRASTOVAIZDJA PLINKOS VALDYMA

P. Pereira, M. Oliva, E. Baltraaité
Santrauka

Gauss krituliai , ypa¢ bidingi VidurZemio jiros regionui , gali kelti rimty pavojy aplinkai, lemti katastrofas. Krituliy
poveikio zona ypaciSsipleda rudens laikotarpiu, t. y. rugsgo, spalio ir lapkrito (RSL) mdesiais , neretai patiriama
dideliy ekonominiy nuostoliy Zista ar kitaip nukenda zmon&. S tats kalnyslaitai sustiprina  gausiy krituliy poveikj
Kalnuotose vietovée krituliy kiekio stebgimo stody nedaug , jos toli viena nuo kitos, todé labai aktualu turéi
zemédapi us, tiksliai nusakandus gausiykrituliypasiskirstyma Kalnuotose vietovée krituliypobidis skirtingu ats tumu
gali biti skirtingas, krituliykiekpumatyti sunkiau, taau  tai itin svarbu. Tiksliau numatant vietoves, kur iskrinta daugiau
krituliy galima tikslingiau planuoti zemévarka , iSvengti staigiy potvyniy nuosliauzyir dirvoZzemio erozijos . Tyrimo
tikslas buvo patikrinti kelis gerai Zinomus interpoliacijos metodus — Inverse Distance Weight (IDW) su 1-5 svertinénis
verténis , Local Polynomial (LP), Radial Basis (RBS), ypa¢ Spline With Tension (SPT), Thin Plate Spline (TPS), — bei
Kriging technikas ir Ordinary Kriging (OK) bei Ordinary CoKriging (COK) metodus, siekiant parinkti tiksliausig kuris
leisty interp oliuoti gausius (95 %) kritulius RSL mdesiais kalnuotoje Portugalijos teritorijoje. Nustatyta, kad krituliy
kiekis didga didgant altitudei . ReikSmingi krituliyskirtumai nustatyti stotyse, esandose skirtinguose auksguose virs
jiros lygio. Sis santykis pastebéas visomis kryptimis apskaiduotose pusin & e variogramose. Jose issiskiria dvi teritorijos,
kuriy P95 vert& didZiausios , ir akivaizdi sgaja su didelén is altitudénis . Pirmoji teritorija 12,19 km, o antroji 23,57 km
aukstyje. Didziausios P95 vertés pietrydyir Siaurg ryty kryptimis, maziausios — Siaurg vakary kryptimi, kur altitudé
mazos, ir Siaur8 ryty teritorijos kampe dé¢ lietaus ,,Ses¢ io* efekto. Tiksliai numatyti krituliypobi@ | kalnuotose teritori-
jose apsunkina duomenytrikumas ir sudéinga topografijostaka krituliams . Rezultatai ypac¢parank® planuojant ir val-
dant dazniems ir gausiems krituliams jautrias teritorijas.

ReikSminiai ZodZiai: gaus® krituliai, pavojus aplinkai, Vidurzemio regionas, rugsgis, spalis, lapkritis (RSL), kalnuotos
vietovs, interpoliacijos metodai, krastovaizdzio planavimas ir aplinkos valdymas.
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MO/IEJIMPOBAHUE BJIMSIHUS PACTIPE/EJIEHUS] OBUJIBHBIX OCAJIKOB B OITACHBIX T'OPHBIX
MECTHOCTSIX. HOMOIIb B INIAHUPOBAHUM JIAHAIIA®TA U YIIPABJIEHUU OKPYKAIOLLEI
CPEJION

I1. Ilepeiipa, M. OsuBa, J. BaaTpenaiite
Pesrome

OOMIBHEIE 0CaJIKH, 0COOCHHO XapakTepHble IIsi CpeIn3eMHOMOPCKOTO PEerHOHa, MOTYT OBITh ONTACHBIMH JUISI OKPY)Kalo-
mieit cpensl. 30Ha BIMSHUS OCaIKOB OCOOCHHO YBEJIIMUMBACTCS B OCCHHHUN IEPHOJ — CEHTAOpE, OKTAOpe u Hosi0pe. Ocanku
3a4aCTYIO BBI3BIBAIOT OOJIBIINE SKOHOMUYECKHE YOBITKH, THOHYT MM CTPAJaroT JIIOH. BiusHUe OOMIBHBIX 0CaJKOB yCH-
JIMBAIOT KPYThIC TOPHBIC CKIOHBI. B TOPHBIX MECTHOCTSX CTAHIUI HAOMIOICHHUS 32 KOJUYECTBOM OCaJKOB HEMHOI'O U pac-
MOJIOKCHBl OHM JAJIeKO0 APYr OT Jpyra, II09TOMY HEOOXOIWMBI KapThl, Ha KOTOPHIX ObLIO OBl TOYHO yKa3aHO
pacrpeziesicHie OOMIBHBIX OCaIKOB. XapakTep OCaJKOB B TOPHBIX MECTHOCTSX B 3aBUCHMOCTH OT YIAIICHHOCTH MOXET
3HAYUTEJILHO Pa3IM4aThCA, IPEIBUACTH KOJMYECTBO OCAIKOB YPE3BBIYAMHO CIOXKHO, OJJHAKO 3TO )KH3HEHHO HEOOXOIMMO.
3Hasi MECTHOCTH, Ha KOTOPBIX 0XkKHAAeTCsi GOoJblee KOJMYECTBO 0CAIKOB, MOYKHO TOYHEE IIIAHUPOBATh 3eMJICYCTPONCTBO,
n30exaTh BHE3AIHBIX HABOAHEHHMIH, OMOI3HEH U 3po3uu noyB. Llenbio nccnenoBaHus ObUIO MPOBEPHTh HECKOIBKO XOPO-
II0 M3BECTHBIX MeTo0B MHTepnoysimuu — Inverse Distance Weight (IDW) ¢ 1-5 3nauenusmu Becomocreii, Local
Polynomial (LP), Radial Basis (RBS), oco6erno Spline With Tension (SPT), Thin Plate Spline (TPS), a takxke TexXHHKY
Kriging, meroast Ordinary Kriging (OK) u Ordinary CoKriging (COK) ¢ uenbto BbISBHTh HAHGOJICE TOYHBIH, C TOMOLIBIO
KOTOPOTO MOXHO ObLTO ObI MHTEpIOaHpoBaTh 00miIbHBIC (95%) OCeHHHE 0CaJKu B TOPHBIX MeCTHOCTsX IlopTyranuw.
YCTaHOBIIEHO, YTO KOJIWYECTBO OCAIKOB YBEJIMYUBACTCS C YBEIWYEHHEM aMIUTHTYIbl. 3HAYNUTENbHAs pa3HHIA B KOJIHYe-
CTBE OCAJIKOB BBISBJICHA Ha CTAHIMX, HAXOMSIINXCS HA Pa3HOHM BBICOTE OT YPOBHS MOpPs. DTO COOTHOILICHUE 3aMEUEHO Ha
BCEX HAIPABICHUSX PACCYUTAHHBIX MOJTyBaprorpamMM. Ha HUX BBIICISIOTCS /IBE TEPPUTOPHH, HA KOTOPBIX 3HaueHUs P95
HauboJiee BENUKHM M OYCBH/HA CBA3b C OONIBLIIMMHU aMIUIUTynamu. IlepBas TeppuUTOpus HaxoAauTcsl Ha BbicoTe 12,19 kM,
Bropas — 23,57 kM. Haunbospiune 3nauerns: P95 oTMedeHbI B I0r0-BOCTOYHOM U CEBEPO-BOCTOYHOM, HAMMEHBIIIHE — CeBe-
pO-3aliaTHOM HANpPaBJICHHSX, IJI€ aMIUIUTY/bl MaJIbl, U B YIIIy CEBEPO-BOCTOYHON TEPPUTOPHHU H3-3a dhekTa «TeHn» 10-
k5. TouHee peBUAETh XapaKTep 0CaJKoB B TOPHBIX MECTHOCTSIX IPECTaBISIeTCs 3aTPYAHUTEIBHBIM H3-32 HEIOCTaTKa
JaHHBIX ¥ CJI0)KHOTO BIIMSIHUSI HAa OCAJIKH Tomorpaduu. Pe3ynbraTel HecaenoBaHus OKaKyTCs 0COOCHHO MOJIC3HBIMU TIPH
IUIAHUPOBAHUH U YIIPABICHHH TEPPUTOPHSIMH, [OJBEPracMBbIMU YaCTBIM M OOMIIBHBIM OCaJIKaM.

KuroueBble ci10Ba: 0OMIBHBIC OCAKH, OITACHOCTD IS OKpYXKaromei cpenpl, Cpean3eMHOMOPCKUN pEerHOH, OCEHHHH Tie-
pHOJI, TOpHAsi MECTHOCTB, METOBI HHTEPIIOJIILINHY, IUTaHUPOBaHKE JaHANIadTa U yIpaBJIeHHE OKpYsKarollei cpeton.
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