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Highlights:
	■ by selecting six major factors that affect the ecological sensitivity of rural landscape;
	■ an ecological sensitivity evaluation index system is constructed;
	■ support vector machine is used to divide the ecological units of the collected rural landscape ecological images;
	■ the division results and the sensitivity evaluation results of each unit of rural landscape are used as the input data of ArcGIS software to realize the 
visual presentation of the unit division results of rural landscape ecological sensitive areas.

Article History:  Abstract. The ecological sensitivity of rural landscapes exhibits complexity and diversity. Traditional evaluation 
methods, which merely take into account a single factor or a limited number of factors, struggle to effectively 
manage uncertain information. This leads to inaccurate classification of ecological units in rural landscape 
ecological images, thereby undermining the precise assessment of the distribution of ecological sensitivity in 
rural landscapes. Therefore, a deep learning based algorithm for dividing rural landscape ecological sensitive 
areas is proposed. By selecting six major factors that affect the ecological sensitivity of rural landscape, such as 
geological environment, ecological and hydrological conditions, an ecological sensitivity evaluation index sys-
tem is constructed, which is used as an input vector, and fuzzy neural network is used to output the ecological 
sensitivity of rural landscape; In addition, support vector machine is used to divide the ecological units of the 
collected rural landscape ecological images, and the division results and the sensitivity evaluation results of 
each unit of rural landscape are used as the input data of ArcGIS software to realize the visual presentation of 
the unit division results of rural landscape ecological sensitive areas. The results showed that with the increase 
of slope, the ecological sensitivity of rural landscape showed a trend of first increasing and then decreasing, 
the vegetation coverage rate decreased, and the ecological sensitivity of rural landscape showed a trend of 
gradually increasing; This algorithm can effectively evaluate the sensitivity of each unit of rural landscape, and 
visually present the unit division results of ecological sensitive areas of rural landscape. This algorithm can 
compare and analyze the changes of ecological sensitivity under different time dimensions.
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such as Roy and Maji (2020) using rough fuzzy cluster-
ing algorithm, combined with sRFCM algorithm and local 
neighborhood information, to deal with the uncertainty 
caused by class overlap and incomplete definition. The sR-
FCM algorithm takes into account the spatial distribution 
of images and leverages local neighbor labels to influence 
the labels of central pixels, thereby achieving the division 
of approximate (core region) and probabilistic boundary 
regions for each cluster based on its probability charac-
teristics. However, the area divided by this method is too 
rough and mainly suitable for general classification, mak-
ing it difficult to achieve precise segmentation of rural 
landscape ecological images; Lee et  al. (2020) proposed 
a CMOS image sensor that performs compressed sens-
ing encoding without affecting operational speed and 

1. Introduction

The core of dividing ecologically sensitive areas in rural 
landscapes lies in conducting ecological sensitivity assess-
ments. The so-called ecological sensitivity refers to the de-
gree of sensitivity exhibited by an ecosystem in the face 
of human activities and natural environmental changes. 
It reveals the possibility and difficulty of ecological and 
environmental problems occurring in a certain region. This 
assessment helps to understand the natural environment 
quality, land use status, population carrying pressure, and 
scientific direction of future planning in a region, forming 
the cornerstone of ecological environment planning and 
management work in that area. At present, many experts 
and scholars have studied the division of sensitive areas, 
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hardware complexity. This sensor utilizes high-order ∑ – Δ 
ADC to obtain linear measurements, improve conversion 
rate and frame rate, and solve distortion caused by non 
constant weight functions through sampling techniques 
to achieve image region division. However, this method is 
mainly suitable for optimizing the performance of image 
sensors and dividing image regions, and its application 
scope is relatively limited; Atterholt et  al. (2021) utilized 
the characteristics of DAS arrays and the non-uniform 
scaling properties of Curvelets to represent images in a 
discontinuous form along segmented continuous differen-
tiable curves, thereby achieving fine segmentation of im-
ages. However, this method is mainly applicable to images 
collected through wavefield, and its applicability is limited 
for remote sensing images and complex rural landscape 
ecological images; Belizario et al. (2021) used superpixel 
pre partitioning to extract color features and construct a 
graph model, where vertices represent superpixels and 
edge weights reflect similarity. Image region partitioning 
was achieved through label propagation. However, this 
method mainly relies on the color features of the image, 
ignoring key ecological sensitivity factors such as geologi-
cal environment and hydrological conditions, which may 
result in incomplete and inaccurate segmentation results.

Although existing methods for dividing ecologically 
sensitive areas in rural landscapes have made progress to 
some extent, they are often limited by the accuracy, ef-
ficiency, and scale of data processing, making it difficult 
to fully meet the complex and changing ecological envi-
ronment needs of rural areas. In contrast, the deep learn-
ing based rural landscape ecological sensitive area unit 
partitioning algorithm proposed in this article has dem-
onstrated significant advantages in multiple aspects. This 
algorithm combines the advanced features of fuzzy neural 
networks and support vector machines (SVM) to achieve 
precise evaluation of the ecological sensitivity of rural 
landscapes. Fuzzy neural networks can handle uncertainty 
and fuzziness, improving the accuracy of ecological sensi-
tivity assessment; Support vector machines, on the other 
hand, have achieved precise segmentation of rural land-
scape ecological images through their powerful classifica-
tion capabilities. Deep learning models can automatically 
extract useful information by learning feature representa-
tions from large amounts of data, and apply them to com-
plex classification and prediction tasks (Muralimohanbabu 
& Radhika, 2021; Guo et al., 2023, 2024). In the division of 
ecologically sensitive areas in rural landscapes, deep learn-
ing algorithms can fully utilize multi-source information 
such as remote sensing images and GIS data to achieve 
refined analysis and recognition of rural landscapes. Sec-
ondly, the ability of deep learning algorithms to handle 
large-scale data can address the complex and ever-chang-
ing ecological environment problems in rural areas. By in-
tegrating and analyzing multi-source data, deep learning 
algorithms can reveal the spatial distribution characteris-
tics and evolution laws of rural landscapes, providing more 
comprehensive and in-depth information support for the 
division of ecologically sensitive areas in rural landscapes. 

Meanwhile, deep learning has achieved significant results 
in environmental factor analysis, satellite image classifica-
tion, and supervised classification of drone images. For 
example, using artificial intelligence and machine learning 
methods for environmental factor analysis can more accu-
rately assess the changing trends and potential risks of the 
ecological environment; Using machine learning to classify 
PlanetScope nanosatellite images, high-precision recogni-
tion of land cover types has been achieved; The supervised 
classification of drone images based on deep learning has 
been successfully applied to forest area classification, im-
proving the accuracy and efficiency of classification. These 
successful cases provide strong evidence and support for 
the selection of deep learning in the classification of eco-
logically sensitive areas in rural landscapes in this article. In 
addition, this article uses the division results and the sensi-
tivity assessment results of each unit of rural landscape as 
input data for ArcGIS software, realizing the visualization 
of the division results of ecological sensitive areas in rural 
landscape. This not only improves the intuitiveness and 
readability of the division results, but also helps decision-
makers to more accurately understand and respond to 
ecological environment problems in rural areas. Therefore, 
this paper addresses the issue of insufficient accuracy in 
traditional methods for assessing the ecological sensitivity 
of rural landscapes, and uses deep learning techniques to 
construct a new evaluation model. Firstly, establish an eco-
logical sensitivity evaluation index system that includes six 
major influencing factors, and use fuzzy neural networks to 
calculate the ecological sensitivity values. Then, the sup-
port vector machine algorithm is used to divide the region 
into ecological units. Finally, the spatial visualization of the 
evaluation results was achieved using the ArcGIS platform. 
This method improves the accuracy of delineating ecologi-
cally sensitive areas by integrating multi-source data and 
processing fuzzy information, providing quantitative basis 
and spatial display means for rural ecological protection 
planning and sustainable development decision-making.

2. Ecologically sensitive area delineation for 
rural landscapes

2.1. Establishment of rural ecological 
sensitivity analysis index system
Rural areas are particularly difficult to collect relevant data 
due to their vast territory, sparse population distribution, 
and complex and varied terrain and landforms. This often 
leads to difficulties in fully considering the overall char-
acteristics and interrelationships of the ecosystem when 
dividing rural landscape ecological zones, resulting in a 
certain deviation between the designated ecologically sen-
sitive areas and the actual ecosystem conditions. There-
fore, building a scientific, practical, and easy to operate 
evaluation index system, and selecting appropriate evalu-
ation criteria, is crucial for successfully conducting rural 
landscape ecological sensitivity analysis (Haq et al., 2022). 
Among them, selecting reasonable and appropriate evalu-
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ation indicators is the primary and crucial step in conduct-
ing sensitivity analysis of rural landscape ecology.

In the process of constructing the indicator system, we 
can draw on the advantages of machine learning in multi-
source data fusion and feature extraction (Haq, 2022; Haq 
et  al., 2021). On the basis of field investigation of land-
scape ecological geological environment, this article com-
prehensively considers the complexity of the region and 
the coupling characteristics of multiple factors, and con-
structs an ecological sensitivity evaluation system consist-
ing of 6 categories and 12 secondary indicators. Selecting 
geological environment, ecological environment, hydro-
logical conditions, human activities, landscape value, and 
geological hazards as primary indicators, where geological 
environment indicators reflect regional stability and carry-
ing capacity, ecological environment indicators character-
ize biological vitality and ecological balance, hydrological 
condition indicators evaluate water resource distribution 
and ecological water demand, human activity indicators 
quantify the degree of human interference, landscape 
value indicators measure aesthetic and tourism develop-
ment potential, and geological hazard indicators evaluate 
regional security risks. This indicator system takes into ac-
count both macro characteristics and micro phenomena, 
providing a systematic framework for comprehensively as-
sessing ecological sensitivity. Macro features refer to sig-
nificant characteristics or phenomena that can be observed 

at a larger scale or range. In this article, macro features are 
defined as the overall or principal characteristics of the 
landscape ecological-geological environment in the study 
area. These include geological environmental factors such 
as geological structure, terrain slope, slope orientation, 
and elevation, as well as human-activity factors, including 
the distribution of water systems, roads, residential areas, 
and tourist facilities. These factors affect the ecological 
and geological environment of the study area on a large 
spatial scale. And special microscopic phenomena refer to 
subtle or special characteristics or phenomena that can 
only be observed at smaller scales or under specific condi-
tions. In this article, special microscopic phenomena refer 
to subtle changes in certain specific locations or condi-
tions within the study area, including the growth status 
of certain specific vegetation, subtle changes in specific 
geological structures, etc. Although these factors may not 
be significant on an overall scale, they may have signifi-
cant impacts on the ecological and geological environ-
ment of the study area under specific conditions. Geologi-
cal environment (Bilgin & Acun, 2021) includes geological 
structure (fault, etc.), topographic slope, slope direction, 
elevation; ecological environment includes biodiversity, 
vegetation coverage, land use type; hydrological condi-
tions include distribution of water system; human activities 
include distribution of roads, settlements and tourist facili-
ties; landscape value includes distribution of scenic spots; 

Table 1. Index system for ecological sensitivity evaluation of rural landscape

Constraint 
factor Impact factors

Sensitivity factor level representation and rating

Very low Low Moderate Tall Extremely high

Environ
ment

Scope of geological 
structure influence >280 m 230–280 m 180–230 m 130–180 m <80 m

Slope <10° 10–17° 17–24° 24–31° >31°

Slope orientation
Flat region 0–23 158.4–201.3 113.2–158.4 23–66.8
66.8–113.2 338.5–365 248.5–293.5 293.5–338.5 201.3–248.5

Elevation <500 m 500–800 m 800–1100 m 1100–1600 m >1600 m

Ecological 
environ
ment

Biological diversity Biodiversity Level 
5 Zone

Biodiversity Level 
4 Zone

Biodiversity 
Level 3 Zone

Biodiversity Level 2 
Zone

Biodiversity 
Level 1 Zone

Vegetation coverage >80% 75–80% 55–75% 35–55% <35%

Land use Forest land Grassland Unutilized land Industrial and mining 
residential areas Cultivated land

Hydrologic 
condition Scope of water impact >280 m 230–280 m 180–230 m 130–180 m <80 m

Human 
activities

Road impact range >280 m 230–280 m 180–230 m 130–180 m <80 m
The scope of influence 
of residential tourism 
agencies

>280 m 230–280 m 180–230 m 130–180 m <80 m

Landscape 
value

Scope of influence of 
primary scenic spots >300 m 250–300 m 200–250 m 150–200 m <150 m

Scope of influence of 
secondary scenic spots >280 m 230–280 m 180–230 m 130–180 m <80 m

Geological 
disaster Geological hazard risk Hazard level 1 Hazard level 2 Hazard level 3 Hazard level 4 Hazard level 5

Graded 
rating 1 3 5 7 9

Standard <2 2–4 4–6 6–8 >8
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geologic hazards mainly refer to geologic hazards risk. By 
referring to the relevant literature and in combination with 
the actual situation of the landscape in the study area, we 
obtained the secondary evaluation indexes of the factors 
affecting the sensitivity of the landscape’s ecological and 
geological environment in the study area, as well as the 
grading standards for these factors, as shown in Table 1.

The selection and expression of the evaluation factors 
at each level are described as follows:

(1) Geo-environmental factors
Human beings and other living creatures depend on 

the geological environment for their survival and devel-
opment, and at the same time, human beings and other 
living creatures are constantly changing the geological en-
vironment. As an important factor affecting the sensitivity 
of the ecological and geological environment of the study 
area, this paper selects four evaluation indexes, namely, 
geological structure, slope, slope direction and elevation, 
mainly from the perspective of topography and geology.

Folds, faults, and fault zones in geological structures 
are active areas of the crust that are prone to earthquakes 
and other disasters, and can affect the development and 
changes of the ecological geological environment. To 
quantify this impact, this article selects the distance from 
faults and fault zones as an indicator to represent the 
sensitivity level of the ecological-geological environment. 
Four grading distances, namely 50 m, 100 m, 150 m, and 
200 m, are set. Specifically, the selection of these distances 
is based on in-depth research on the probability and scope 
of geological hazards. The closer the distance to faults and 
fault zones, the higher the probability of geological di-
sasters occurring, and the greater the impact on the eco-
logical geological environment. Therefore, these graded 
distances can accurately reflect the sensitivity of ecological 
and geological environments in different regions. By us-
ing historical earthquake data, geomechanical models, and 
other methods, the impact of different fault activities on 
the surface can be evaluated. Combined with the vulner-
ability analysis of the ecosystem, a quantitative relation-
ship between fault activity and ecological sensitivity can 
be established, which helps to more accurately assess the 
impact of faults on the ecological geological environment.

Slope is one of the most fundamental geomorpho-
logical indicators. Generally, the greater the slope is, the 
more serious the surface erosion will be, and it is also 
more prone to landslides, mudslides, and other disasters. 
The possibility of ecological and geological environmental 
problems can be reflected by the slope size to determine 
the sensitivity grade, with reference to the grading criteria 
in the Interim Rules for Ecological Function Zoning Tech-
nology.

The impact of slope orientation on geological haz-
ards is mainly reflected in its effects on surface hydrol-
ogy, soil erosion, and vegetation coverage. Due to the 
northeast southwest orientation of most mountain peaks, 
this terrain feature makes it easier for northwest south-
east slopes to receive large amounts of water flow during 
rainfall, increasing the risk of soil erosion and landslides. 

Meanwhile, slopes in these directions are relatively less 
exposed to sunlight, which may lead to higher soil mois-
ture and further promote the occurrence of landslides and 
debris flows. In contrast, slopes in the due east and due 
south directions, as well as flat areas, have superior light-
ing conditions, which are conducive to the growth and 
flourishing of vegetation. The root system of vegetation 
can stabilize the soil, reduce soil erosion, and thus lower 
the risk of landslides and mudslides. In addition, slopes 
in these directions may be more conducive to the rapid 
discharge of water during rainfall, reducing the possibil-
ity of soil over saturation. However, the impact of slope 
orientation on geological hazards is not absolute. Other 
key factors such as soil type, rainfall intensity, land use, 
and geological structure also play important roles in geo-
logical disasters. Soft soil types and high-intensity rainfall 
may exacerbate the occurrence of landslides and debris 
flows, while reasonable land use planning and engineering 
measures can help reduce disaster risks. In order to more 
accurately assess the impact of slope orientation on geo-
logical hazards, it is necessary to conduct comprehensive 
analysis by combining geological surveys, meteorological 
data, remote sensing monitoring, and geographic infor-
mation systems. By quantifying indicators such as rainfall 
characteristics, soil erosion rates, and vegetation coverage 
in areas with different slope orientations, we can gain a 
deeper understanding of the relationship between slope 
orientations and geological hazards, and provide scientific 
basis for disaster prevention and mitigation.

The elevation also affects the change and development 
of the ecological geological environment. The higher the 
altitude, the lower the temperature, the less vegetation, 
and the simpler the ecosystem (Drake, 2023), which is 
more likely to cause ecological geological environment 
problems. According to the specific situation of the eleva-
tion, the vegetation on the top of the mountain is scarce 
at an altitude of more than 1000 m, while the vegetation 
is relatively lush at an altitude of less than 700 m.

(2) Ecological factors
The factors affecting the ecological environment in-

clude biodiversity, vegetation coverage, land use cover, 
and human activities, among others (He et  al., 2025). 
These factors work together on the ecosystem, affecting 
the sensitivity and stability of the ecological geological en-
vironment. Firstly, biodiversity is an important indicator of 
the complexity and stability of ecosystems. The higher the 
level of biodiversity, the more diverse the ecosystem types, 
the more complex the food chain and web, and the stron-
ger the self-regulation and restoration ability of the eco-
system. Therefore, the possibility of ecological geological 
environmental problems is relatively small. However, the 
evaluation of biodiversity is not simply based on classifica-
tion, but requires comprehensive consideration of multiple 
aspects such as species richness, inter species relation-
ships, and ecosystem functions. In addition, external fac-
tors such as invasive species and climate change may also 
have significant impacts on biodiversity. Therefore, when 
evaluating biodiversity sensitivity, it is necessary to fully 
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consider the potential effects of these factors. Secondly, 
vegetation coverage is an important indicator reflecting 
the structural diversity of the ecological environment sys-
tem. In areas with high vegetation coverage, the ecological 
environment system has a diverse structure, and the risk of 
soil erosion and water loss is relatively low, which also re-
duces the likelihood of environmental problems. However, 
the classification of vegetation coverage is not arbitrarily 
set, but needs to be determined based on the Interim 
Technical Regulations for Ecological Function Zoning and 
the specific ecological environment characteristics of the 
region. At the same time, changes in vegetation coverage 
are also influenced by various factors, including climate 
change, land use patterns, etc. Therefore, when evaluating 
the sensitivity of vegetation coverage, it is necessary to 
comprehensively consider the combined effects of these 
factors. Based on the vegetation coverage classification in 
the Interim Technical Regulations for Ecological Function 
Zoning and combined with the specific situation of rural 
landscape ecological environment, the vegetation cover-
age classification boundaries in this area are set at 30%, 
45%, 60%, and 75%. In terms of land use coverage, dif-
ferent types of land use have varying impacts on the eco-
logical environment. The land use pattern with a single 
ecological structure is susceptible to human activities and 
carries a higher risk of ecological and geological envi-
ronmental problems. Forest systems, due to their strong 
regulatory capabilities, are able to maintain the stability 
and diversity of ecosystems, making them less prone to 
environmental problems. However, the sensitivity of land 
use patterns is not fixed and unchanging, but is influ-
enced by various factors, including the intensity of hu-
man activities, the frequency of changes in land use pat-
terns, and so on. Therefore, when evaluating the sensitiv-
ity of land use cover, it is necessary to fully consider the 
comprehensive effects of these factors. In addition, the 
impact of human activities on the ecological environment 
cannot be ignored. Human activities include construction 
activities, agricultural activities, industrial activities, etc., 
all of which may have direct or indirect impacts on the 
ecological environment. However, the impact of human 
activities is not simply related to distance, but to mul-
tiple factors such as activity intensity and duration. There-
fore, when evaluating the impact of human activities on 
ecological sensitivity, it is necessary to comprehensively 
consider the combined effects of these factors and avoid 
excessive reliance on fixed distance thresholds. Finally, 
a more detailed and specific analysis is needed regard-
ing the classification and protection status of landscape 
values in specific areas such as scenic spots. Different 
types of scenic spots possess distinct landscape values 
and protection requirements. Therefore, when conduct-
ing sensitivity evaluations, these differences need to be 
fully taken into account. Meanwhile, maintaining the ex-
isting landscape conditions is also an important factor 
influencing sensitivity evaluation, and full consideration 
should be given to the effectiveness and sustainability of 
protection measures.

(3) Hydrologic condition factor
Hydrological conditions are an important element of 

the sensitivity of the ecological and geological environ-
ment of rural landscapes. Surface water systems crisscross 
in the study area, which is the main water cycle system that 
affects the ecological environment of rural landscapes. In 
addition, human activities mostly revolve around these wa-
ter systems, and water resources are important resources 
of the ecological environment of rural landscapes. The 
closer to the water body, the stronger the human impact 
will be. Therefore, the hydrological conditions in this paper 
are mainly reflected by the distance from the surface wa-
ter body. Based on the analysis of the spatial distribution 
characteristics of the rural landscape ecological environ-
ment water system, the area within 100 meters of the wa-
ter system is generally considered its sensitive zone, while 
areas beyond 150 meters can be regarded as insensitive or 
low-sensitivity zones. Therefore, classification boundaries 
are set at 50 m, 100 m, 150 m, and 200 m to further refine 
the sensitivity grading.

(4) Human activities
Roads, settlements, tourist facilities and their vicinity 

are the most active places for human activities. The farther 
away from these areas, the less affected by human activi-
ties. Therefore, the road buffer analysis and the residen-
tial tourism facilities buffer analysis have the same effect 
mechanism on the ecological geological environment sen-
sitivity, and both are related to the distance. The closer to 
these frequent human activities, the more likely to cause 
environmental problems. Like the aforementioned water 
system and geological structure factor analysis, the clas-
sification boundary of the road, residential and tourism 
facilities factors in the human activity impact factors here 
is also set as 50 m, 100 m, 150 m, and 200 m.

(5) Landscape value
The scenic spots in the study area are divided into Level 

I and Level II according to the number of tourists per year 
and the protection value of the scenic spots. Level I sce-
nic spots have a large scope of influence, a large number 
of tourists, and complete infrastructure construction. The 
closer to the scenic spots, the more frequent human activi-
ties, and the greater the possibility of ecological geologi-
cal environment problems; The influence scope of Level II 
scenic spots is relatively small, and the closer the scenic 
spots are, the greater the possibility of ecological geologi-
cal environment problems. According to the characteristics 
of each scenic spot in the rural landscape and ecological 
environment, the Level I scenic spot classification bound-
ary is 80 m, 160 m, 240 m and 320 m, while the Level II 
scenic spot classification boundary is 50 m, 100 m, 150 m 
and 200 m. After the factors at all levels are selected and 
graded, for the needs of the subsequent analytic hierarchy 
process, it is necessary to assign new values to each level 
of the factors after grading in order to unify the dimen-
sions for comprehensive analysis of ecological geological 
environment sensitivity. Generally, the grade values of 
each factor can be unified to the dimension unit of 1–10. 
In this paper, the 5 grade values of the factors at all levels 
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are defined as 1, 3, 5, 7, and 9. Finally, the comprehensive 
analysis results take 2, 4, 6, 8 as the classification boundary 
for classification.

(6) Geologic hazard factors
Geological hazards in rural landscape ecological envi-

ronment mainly include collapse (dangerous rock body) 
and landslide. This phenomenon is caused by the drastic 
alteration of the surface geological structure of the earth’s 
crust. Such geological events are typically considered sud-
den occurrences and exert a significant destructive impact 
on the ecological and geological environment. Therefore, 
in this paper, the risk assessment grades of geological 
hazards are used to represent the high and low levels of 
the sensitivity factor of geological hazards. Generally, the 
higher the geohazard risk level, the more likely to produce 
geohazards, and thus the higher the possibility of eco-
logical and geological environmental problems in these 
places, i.e., the ecological and geological environmental 
sensitivity is high (Akgün et al., 2020). Geohazard risk as-
sessment is to investigate, monitor, analyze and evaluate 
the activity degree of geohazards, mainly assessing the 
destructive ability of geohazards. In this paper, according 
to the geohazard characteristics of rural landscape ecolog-
ical environment, the topographic factors of slope direc-
tion and slope gradient, stratigraphic lithology, highway, 
vegetation cover and geological structure were chosen to 
approximate the assessment of geohazard risk.

The above evaluation indicators do not exist in isola-
tion, but are interrelated and influence each other. The sta-
bility of geological structures directly affects the degree of 
impact of slope and aspect on disaster risk; The vegetation 
coverage and land use type jointly determine the stability 
and sensitivity of the ecological environment; Hydrologi-
cal conditions and human activities are intertwined, jointly 
shaping the ecological environment pattern of the study 
area. In the evaluation process, there was no strict priori-
tization of evaluation indicators, but rather a comprehen-
sive consideration of the roles and impacts of all factors. 
Each indicator has been graded and assigned values based 
on its own importance and sensitivity to the ecological 
geological environment. In the subsequent comprehensive 
analysis, the Analytic Hierarchy Process (AHP) method is 
used to conduct a comprehensive analysis based on the 
weights of each indicator, in order to obtain more accurate 
and reliable ecological sensitivity assessment results.

Table  1 provides a detailed breakdown of the grad-
ing criteria and corresponding ratings for each evalua-
tion indicator. These grading standards are based on the 
actual situation of the study area and aim to objectively 
reflect the contribution of various evaluation indicators to 
the sensitivity of the ecological geological environment in 
the study area. In terms of data collection and processing, 
various methods such as remote sensing images, GIS data, 
and on-site investigations are used. Remote sensing imag-
es and GIS data provide basic information on the topog-
raphy, vegetation coverage, and water system distribution 
of the study area; The on-site investigation supplemented 
detailed data on biodiversity, land use types, geological 

hazards, and other aspects. After processing and analyzing 
these data, they are used to construct evaluation mod-
els and conduct sensitivity assessments. In the evaluation 
process, this article did not clearly prioritize the evaluation 
indicators, as each indicator has a significant impact on the 
sensitivity of the ecological geological environment in the 
study area. However, in practical operation, different in-
dicators can be weighted according to research purposes 
and actual situations to more accurately reflect their con-
tribution to sensitivity.

To sum up, through ecological sensitivity analysis, the 
ecological strengths and weaknesses of rural areas can 
be identified, and a comprehensive consideration can be 
given to multiple aspects of rural landscapes, such as to-
pography, vegetation cover, hydrological conditions, hu-
man activities, and other factors, thereby enhancing the 
accuracy and reliability in delineating ecologically sensi-
tive areas. This indicator system not only provides scientific 
basis for ecological sensitivity analysis of rural landscapes, 
but also effectively guides ecological protection and sus-
tainable development planning in rural areas, enhances 
the accuracy and practicality of ecological sensitive area 
division, and thus demonstrates high attractiveness and 
relevance in real-world applications.

2.2. Sensitivity assessment based on fuzzy 
neural network
In the assessment process of rural ecological sensitivity, 
various ecological sensitivity indicators are often interre-
lated, which may lead to repeated accumulation of infor-
mation and weaken the accuracy of the assessment results. 
Compared with the spatial data processing advantages of 
other deep learning models such as convolutional neural 
networks and the temporal modeling capabilities of recur-
rent neural networks, fuzzy neural networks are more suit-
able for handling uncertainty and complex relationships in 
multi-source unstructured ecological data through mem-
bership functions and fuzzy rules. The concise structure 
and fuzzy reasoning characteristics of fuzzy neural net-
works (Khuat et al., 2021) can effectively reduce the mu-
tual interference between indicators, accurately quantify 
the contribution of various factors to ecological sensitiv-
ity, and thus improve the reliability and interpretability of 
evaluation results. In this process, the environmental and 
ecological indicators mentioned earlier are used as input 
information, and the output results of the evaluation di-
rectly reflect the ecological sensitivity of the rural land-
scape environment.

In the fuzzy neural network, the algorithm (Abdalmoaty 
et  al., 2020) combining steepest descent and LSE least 
square estimation is used in this paper, so that the fuzzy 
neural network has only one output, namely, the sensitivity 
evaluation result of rural landscape environment ecology, 
which is expressed as:

( ), .iO F B S= 	 (1)
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Among them, iB  is the input vector, i.e., the indica-
tors affecting the ecological sensitivity of the countryside 
as described in 2.1. S  is the set of parameters, which are 
necessary for the realization of the sensitivity assessment 
of the environmental ecology of the rural landscape. F  is 
the overall function of the sensitivity assessment of the 
environmental ecology of the rural landscape realized by 
the network, if the function, if the function H  makes the 
compound function H F•  linear to certain elements in 
S, then these elements can be obtained by least squares 
identification. The set of parameters S  can be partitioned 
into two sets, i.e., the 1 2S S S= ⊕ .

If the H F•  is linear to the element in 2S , apply the 
H  operator to Equation (1), including:

( ) ( ), .iH O H F B S= • 	 (2)

At this time, H F•  is linear to the elements in the 2S , 
now we give the element value y A= θ in 1S . Where, θ  is 
the unknown vector whose elements are in the parameters 

2S . This can be transformed into a standard linear least 
squares problem, such that, make the 

2
A yθ =  minimize. 

The optimal solution for θ  is the least squares estimator 
∗θ :

( )−∗θ =
1T T .A A A y 	 (3)

Among them, TA  is the transpose of A. If TA A  is 
nonchalant, then ( ) 1T TA A A

−
 is the pseudo-reverse of A .

Define the vector of matrix A  is Ta  and the τ th ele-
ment of y  is Tyτ , it can be iterative ∗θ  in the following 
equation:

( )T T
1 1 1 1 1

T
0 1 1 0

1 0 T
1 0 1

.

1

t t t t t

t t
t

t t

P a y a

a a
a a

∗
+ + + + +

+ +
+

+ +

θ = + + − θ

 ψ + + ψ
ψ = ψ −

+ + ψ

	 (4)

Among them, 1t+θ  denotes least squares estimator ∗θ  
in the iterative process, t  denotes the number of itera-
tions. The initial conditions required to compute Equation 
(4) is 0 Iψ = γ , of which γ  is a large positive number, the 
I  is the unit matrix with the dimension of M M× , these 
initial conditions play a great role in identifying ∗θ .

The following algorithm combines steepest descent 
and LSE to calculate the parameters in the sensitivity as-
sessment of rural landscape environment ecology by 
fuzzy neural network. Each cycle of calculation includes a 
forward transmission process and a reverse transmission 
process. In the forward transmission process, each input 
vector composed of indicators that affect rural ecologi-
cal sensitivity is given, calculate the sensitivity output of 
the rural landscape environment ecology of the network 
node layer by layer until the corresponding rows of the 
matrix A  and y  is obtained, repeating this process for 
all training data to form a complete A  and y ; Subse-
quently the parameters in 2S  can then be identified by a 
pseudo-inverse equation in Equation (3) or by a recursive 

least squares equation in Equation (2), after identifying the 
parameters in 2S , the error index (Bento et al., 2023) was 
calculated for each training data.

In the reverse transmission process, assuming a L  lay-
ered networks, the l th layer ( 0,1, ...,l L= ; 0l =  denotes 
the input layer) has number of ( )N l  nodes, there are i  
nodes of l  layers ( ){ }1,...,i N l=  and the output function 
of it can be expressed as ,l iX :

( ), 1 1,1 1, 1, ..., , , , , ... .l i i l l N lX X X+ − − −
 = θ α β γ 
 

	 (5)

Among them α , β , γ  are parameters for this node.
Given the training data set P  pair data, the error index 

of p  to ( )1 p P≤ ≤  data is defined as the sum of squares 
of error:

( )2, ,
1

,
L

P k l i k
l

E d X
=

= −∑ 	 (6)

where, ( )
( )

2
,

1

N l

P k L k
k

E d X
=

= −∑  is the k th component of the 

expected output vector of the sensitivity of the p th rural 
landscape ecology, , ,l i kX  is the k th component of the 
actual output vector of the sensitivity of the rural land-
scape environment generated by the p th input vector 
composed of indicators affecting the sensitivity of the rural 
ecology imposed to the network (for simplicity of repre-

sentation, for ( )
( )

2
,

1

N l

P k L k
k

E d X
=

= −∑  and ,l kX  omitting the 

subscript p ). If 0pE = , then the network can accurately 
reproduce the expected output vector (Kang et al., 2021a) 
of the rural landscape environment in the p th training 
data, so in this paper, in order to achieve the purpose of 
minimizing the overall error of the sensitivity assessment 
of the rural landscape environment ecology, the definition 
error ,L iε  is the derivative of the output of layer I  and i  
node of the error index PE  of the fuzzy neural network, 
and the symbol is expressed as:

.
,

.p
L i

L i

E
X

+∂
ε =

∂
	 (7)

Among them +∂  indicates that the derivative tends to 
zero from the right side of the axis, i.e., it tends to zero 

in the direction of positive numbers. .
, ,

p p
L i

L i L i

E E
X X

+∂ ∂
ε = =

∂ ∂
 

i.e., the internal node error signal in layer I  can be repre-
sented as a linear combination of the node error signals 
in layer 1I + .

For the simple steepest descent method without linear 
minimization, the overall error index E  relative to α  has 
a derivative of:

.E+∂
Δα = −η

∂α
	 (8)

Among them η  is learning efficiency.
The output of the fuzzy neural network for assessing 
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the ecological sensitivity of the rural landscape environ-
ment is:

min

1

.i
i

i
i

O

=

Δαω
=

ω∑
	 (9)

Among them, iω  is the weight of the network node i .
As a result, the overall error of the sensitivity assess-

ment results of the rural landscape environment is mini-
mized, which can reflect the actual ecological sensitivity of 
the rural landscape environment more accurately.

Through the sensitivity assessment of fuzzy neural net-
work, the preliminary results of the ecological sensitivity 
of rural landscape environment can be obtained, which 
can provide guidance and direction for the subsequent 
delineation work.

2.3. Support vector machine-based unit 
delineation of ecologically sensitive areas in 
rural landscapes
The definition of ecologically sensitive areas in rural land-
scapes is a comprehensive consideration process that in-
volves multiple dimensions and indicators. The application 
of fuzzy neural networks in sensitivity assessment provides a 
more detailed and accurate data foundation for subsequent 
support vector machine partitioning. By comprehensively in-
corporating various ecologically sensitive elements, the geo-
graphical scope with different sensitivity levels can be more 
accurately defined, thereby ensuring the accuracy and perti-
nence of the division of ecologically sensitive areas.

With the collected rural landscape ecological image as 
input, the SVM based rural landscape ecological unit divi-
sion model is constructed to complete the rural landscape 
ecological unit division. In combination with sections 2.1 
and 2.2, the sensitivity influencing factors of each rural 
landscape ecological unit are taken as the fuzzy neural 
network input, and the sensitivity of each unit is obtained 
through evaluation, the results of unit division of rural 
landscape ecological sensitive areas are visualized with 
ArcGIS software. The specific unit division process of rural 
landscape ecological sensitive area is shown in Figure 1.

Figure 1. Flow chart of unit division in rural landscape 
ecological sensitive areas

SVM outperforms decision trees and k-NN when classi-
fying ecologically sensitive areas in rural landscapes, since 
it demonstrates excellent performance in handling high-
dimensional nonlinear data, possesses strong generaliza-
tion capabilities, and enables accurate classification, mak-
ing it particularly well-suited for scenarios characterized 
by limited samples and a multitude of features. SVM flex-
ibly uses kernel functions to handle complex relationships, 
while decision trees are prone to overfitting, and k-NN has 
low efficiency in handling high-dimensional data and poor 
performance on imbalanced data. Therefore, SVM is more 
suitable for finely dividing ecologically sensitive areas in 
rural landscapes.

The ecological unit division principle of SVM is to use 
the separation hyperplane as the linear function of the 
separated image to solve the nonlinear classification prob-
lem (Sing et al., 2022; Neethu et al., 2022). The optimiza-
tion function (maximization functional) for SVM to obtain 
the optimal classification surface is defined as follows:

( ) min
1

.
n

Q x O g xξ
ξ=

= ∑ 	 (10)

Among them, x  is the input rural landscape ecological 
image sample, representing different features or attributes 
of the rural landscape, used to train the model to distin-
guish different ecological units; the n  is the total num-
ber of rural landscape ecological image samples used for 
training SVM models; ξ  is the classification number of the 
sample, indicating the ecological unit category to which 
the sample belongs; and g  is the Lagrange coefficient in 
function optimization (Brown & Balakrishnan, 2021).

In the process of SVM classification of rural landscape 
ecological units, the selection of basis function is very im-
portant. The selection of the basis function corresponds 
to the selection of the function class that constructs the 
characteristics of the rural landscape ecological image. Ac-
cording to the Hilbert Schmidt theory, the basis function 
( ), 'H x x  is a symmetric function that needs to meet the 

Mercer condition (Khare, 2022). The common basis func-
tion class used for support vector machine can calculate 
the kernel function of inner product, including q  order 
polynomial inner product kernels, radial basis functions:

( ) ( ) ( ), ' ' 1
q

H x x Q x x x = • + =  	 (11)

( ) 2

1

sgn exp .
n

i
i

Q x x x
=

   −     
∑ 	 (12)

This yields the discriminant function corresponding to 
Equation (10) as:

( ) ( ) ( ) 0, ' sgn .D x H x x f x w∗ =   	 (13)

Among them, sgn  is a symbolic function; the 0w∗  is 
the threshold for categorization.

In the process of SVM partitioning, there are gen-
erally two partitioning methods. The simple expansion 
method is to divide multi class problems into two classes 
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of problems, and then use SVM for training (Satarzadeh 
et  al., 2022; Ahmed et  al., 2021). That is, each time the 
training data of one category is regarded as a category, 
and other training data not belonging to this category is 
regarded as another category. That is, for ( )K K > 2  clas-
sification issues, the decision function expressed by the 
K  group support vector machine can be used to realize 
the division of the input rural landscape ecological image 
space (Kang et al., 2021b). Another method is to establish 

number of 
( )

2
K K −1

 SVM, namely training a SVM between 

each two classes to separate the two classes. The for-
mer method has simple calculation and small calculation 
amount; The latter method can more accurately classify 
multi class problems, but for the case of more categories, 
the calculation is relatively complex. Therefore, the first 
division method is selected in this paper.

In combination with the SVM division results, the pow-
erful map making and spatial analysis functions provided 
by ArcGIS software are used to visually present the division 
results of rural landscape ecological sensitive area units. 
The specific steps are as follows:

(1) Data import and processing: Import the collected 
rural landscape ecological images, SVM classification re-
sults, regional sensitivity assessment results and other 
relevant geographical data into ArcGIS software. Carry 
out necessary coordinate system conversion, data format 
conversion and other processing to ensure the consistency 
and accuracy of data (Liu & Zhang, 2023).

(2) Map making: In ArcGIS software, select the appro-
priate map base map as required, such as satellite map, 
topographic map, etc. The processed data will be super-
imposed on the base map to form the preliminary division 
results of rural landscape ecological sensitive area units.

(3) Symbolization and labeling: According to different 
sensitivity levels, choose appropriate symbols (e.g., colors, 
shapes, etc.) to differentiate each ecological unit of rural 
landscape. At the same time, the labeling function is used 
to provide detailed labels and descriptions for each area.

(4) Map analysis: Use the analysis tools of ArcGIS soft-
ware to further analyze the rural landscape ecological 
sensitive area units, such as the calculated area, distance, 
buffer zone, etc. These analysis results can provide support 
for subsequent decisions.

(5) Visual output: Export maps to common image for-
mats (such as PNG, JPEG, etc.), or display and share them 
directly in GIS software.

In this article, fuzzy neural networks and support vec-
tor machines outperform traditional models in assessing 
the ecological sensitivity of rural landscapes. Fuzzy neu-
ral networks handle ambiguity and uncertainty, accurately 
capturing complex relationships; Support vector machine 
finely divides ecological units and has strong generaliza-
tion ability. The combination of the two improves evalu-
ation accuracy, addresses complex data challenges, and 
provides scientific visualization solutions for the division 
of ecologically sensitive areas.

3. Experimental analysis

3.1. Experimental setup
In order to verify the applicability and effectiveness of the 
algorithm proposed in this article, the algorithm was used 
to divide Village  A in a certain city into rural landscape 
ecological sensitive area units. In recent years, Village A 
has experienced rapid development in tourism due to its 
unique natural scenery, rich cultural resources, and excel-
lent ecological environment. During this process, the con-
tinuous growth of market demand, effective integration 
of local resources, and strong support from government 
policies have jointly promoted the prosperity of Village A 
tourism industry. However, with the rapid development of 
the tourism industry, how to develop tourism resources 
reasonably while protecting the environment has become 
an urgent problem to be solved. Therefore, using the al-
gorithm in this article to divide the ecologically sensitive 
areas of Village A before and after three years of tourism 
development is of great significance for balancing eco-
nomic development and ecological protection, and achiev-
ing sustainable development.

Using a self-developed unmanned aerial vehicle based 
on meteorological standards, remote sensing images of 
Village A were obtained as the original images to be di-
vided. Considering that there may be certain deviations in 
the data collected by drones, such as the influence of flight 
altitude, angle, weather conditions, and sensor accuracy, 
which may result in distortion, color deviation, or missing 
information in the acquired images. To avoid these de-
viations, this article conducts calibration tests on sensors 
and flight control systems before flight, selects clear and 
low wind speed weather to perform aerial survey tasks, 
and obtains redundant data through repeated flights at 
multiple heights and angles. Finally, image distortion, col-
or deviation, and information loss are eliminated through 
comparative correction to ensure reliable data quality. In 
addition to remote sensing images obtained by drones, 
the experiment also integrated data from other sources, 
including geographic information system (GIS) data, me-
teorological data, soil data, etc., providing more compre-
hensive rural landscape information and helping to more 
accurately delineate ecologically sensitive areas. In the 
process of data collection, strictly follow ethical norms, 
communicate fully with local governments and residents 
in advance, clearly inform them of the purpose, scope, and 
method of data collection, obtain their informed consent, 
and ensure that residents’ privacy rights and personal 
information security are not violated. At the same time, 
strict confidentiality measures are taken for data involving 
sensitive geographic information to prevent potential risks 
to local ecological security and residents’ lives caused by 
data leakage. Meanwhile, considering the limited nature 
of the data, the experiment employed data augmentation 
techniques to expand the dataset. By performing opera-
tions such as rotation, scaling, and translation on the origi-
nal remote sensing images, more training samples were 
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generated, thereby improving the model’s generalization 
ability. After the data preparation is completed, the data-
set is divided into a training set and a validation set in a 
7:3 ratio, with 70% of the data used to train the model and 
enable it to learn features and patterns from the data; The 
remaining 30% of the data will be used as a validation set 
to evaluate the performance of the model on unseen data, 
ensuring the scientific and rational training and evaluation 
of the model. The remote sensing image of Village A is 
shown in Figure 2.

The specific performance parameters of the UAV are 
shown in Table 2.

Table 2. Performance parameters of drones

Performance Numerical value

Flying altitude/m 100–2600
Cruise speed km/h 100
Battery life/h 3.5
Payload/kg 2.6
Navigation accuracy/m 30

The flight record of the UAV in the process of acquiring 
the remote sensing image of Village A is: the flight speed 
is 100 km/h; The navigation height is 1000 m; Navigation 
overlap rate is 92%; Lateral overlap is 65%; 9 roadways are 
designed; Floor area covered 23500 1800 m ;×  monolithic 
coverage of approx 27500 550 m .×

The remote sensing image of Village A is divided into 
40 areas numbered 1–40 using the algorithm in this paper, 
and their sensitivity is evaluated. The specific evaluation 
results are shown in Table 3.

According to the sensitivity assessment results of each 
region in Table 3, combined with ArcGIS software, the sen-
sitivity of each region is visualized, as shown in Figure 3.

As shown in Figure  3, the landscape of Village  A is 
divided into five sensitivity levels, namely, extremely low 
ecological sensitivity, low ecological sensitivity, medium 
ecological sensitivity, high ecological sensitivity and high 
ecological sensitivity. The algorithm proposed in this paper 

successfully identifies the ecological sensitive areas in the 
remote-sensing image of Village A’s landscape, which veri-
fies its effectiveness and applicability. Moreover, it should 
be noted that ecological sensitive areas are generally re-
gions characterized by a fragile ecological environment 
or abundant resources. Dividing these areas will help to 
strengthen the protection of these areas and prevent ir-
reversible damage to these areas caused by human activi-
ties.

In the fuzzy neural network in the method of this pa-
per, the number of neurons in the hidden layer is extreme-
ly important, usually the number of neurons in the hidden 

Figure 2. Remote sensing image of Village A

Table 3. Ecological sensitivity assessment results for each 
region

Region 
code

Sensitivity 
assessment results

Region 
code

Sensitivity 
assessment results

1 <2 21 <2
2 <2 22 2–4
3 <2 23 2–4
4 2–4 24 2–4
5 <2 25 4–6
6 <2 26 <2
7 <2 27 4–6
8 4–6 28 4–6
9 2–4 29 4–6
10 2–4 30 6–8
11 2–4 31 6–8
12 >8 32 2–4
13 2–4 33 6–8
14 2–4 34 >8
15 2–4 35 2–4
16 2–4 36 >8
17 2–4 37 >8
18 6–8 38 >8
19 2–4 39 2–4
20 >8 40 >8
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layer is too much or too little will affect the output results 
of the fuzzy neural network. To verify the significance of 
the number of hidden – layer neurons on the neural net-
work output in this method, we took different numbers 
of hidden  – layer neurons for the same set of training 
samples. To this end, by adjusting the learning – rate algo-
rithm, we set the training objective to 10–4. Subsequently, 
the fuzzy neural network was trained 1000 times for each 
case. The results of the training errors for different num-
bers of neurons in the hidden layer are shown in Figure 4.

Figure 4. Training error results of different number of 
neurons in hidden layer

From Figure 4, it can be seen that when the number of 
hidden layer neurons is set to 13, the training error of the 
fuzzy neural network reaches its lowest point. This reflects 
that under this configuration, the network can best fit the 
training data while maintaining low complexity, which 
helps prevent overfitting and improve generalization abil-
ity. Through further cross validation, the training dataset 
was divided into multiple parts for training and validation, 

and it was found that the configuration of 13 neurons also 
exhibited the best performance on the validation set. In 
addition, the convergence speed under different numbers 
of neurons was compared, and it was found that too few 
neurons can lead to slow convergence and may fall into 
local optima, while too many neurons can lead to fast 
convergence but are prone to overfitting. In contrast, the 
configuration of 13 neurons achieved good generalization 
performance while maintaining fast convergence. Mean-
while, by observing the difference between training error 
and validation error to evaluate the risk of overfitting, it 
was found that the difference between the two was small 
under the configuration of 13 neurons, indicating a low 
risk of overfitting in the model. In summary, based on de-
tailed experimental design and result analysis, selecting 
13 neurons as the optimal number of hidden layer neurons 
not only minimizes training errors, but also comprehen-
sively verifies generalization ability, convergence speed, 
and overfitting risk. Therefore, in the ecological sensitivity 
assessment of rural landscape environment, using a fuzzy 
neural network with 13 hidden layer neurons can achieve 
the best evaluation effect.

3.2. Results and analysis
In order to verify the validity of the factors affecting the 
ecological sensitivity of rural landscape selected in this pa-
per, the influence of slope and vegetation cover factors on 
the ecological sensitivity of rural landscape was analyzed.

Setting the evaluation system in the rest of the influ-
encing factors are the same, in the case of different slopes, 
through this paper’s algorithm output rural landscape 
ecological sensitivity, to analyze it, and to observe the in-
fluence of slope on the ecological sensitivity of the rural 
landscape, specifically as shown in Figure 5.

According to Figure 5, slope has a significant impact on 
the ecological sensitivity of rural landscape. With the in-
crease of slope, the ecological sensitivity of rural landscape 

Figure 3. Ecological sensitive area division results of Village A
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showed a trend of first increasing and then decreasing. 
This may be because the increase of slope will lead to 
more diversified land use types and increased landscape 
heterogeneity, thus improving ecological sensitivity. 
However, when the slope increases to a certain extent, 
it may lead to the simplification of land use types and 
the reduction of landscape heterogeneity, thus reducing 
ecological sensitivity. In the case of gentle slope, the eco-
logical sensitivity of rural landscape is low. This may be 
because the land use type in the area with gentle slope 
is relatively single, the landscape heterogeneity is low, 
and the ecosystem is relatively stable. When the slope 
is moderate, the ecological sensitivity of rural landscape 
reaches the highest value. This may be due to the di-
versity of land use types, high landscape heterogeneity, 
fragile ecosystem and vulnerability to external interfer-
ence in areas with moderate slope. When the slope is 
large, the ecological sensitivity of rural landscape begins 
to decrease. This may be due to the single land use type, 

low landscape heterogeneity and stable ecosystem in ar-
eas with large slopes.

Setting the evaluation system in the rest of the influ-
encing factors are the same, in the case of different veg-
etation cover, through this paper’s algorithm output rural 
landscape ecological sensitivity, to analyze it, and to ob-
serve the influence of slope on the ecological sensitivity of 
the rural landscape, specifically as shown in Table 4.

Table 4. Ecological sensitivity under different vegetation 
coverage

Vegetation coverage Sensitivity of Fuzzy Neural 
Network Output

>80% <2
75–80% 2–4
55–75% 4–6
35–55% 6–8
<35% >8

According to Table 4, the vegetation coverage rate has 
a significant impact on the ecological sensitivity of rural 
landscape. With the decrease of vegetation coverage, the 
ecological sensitivity of rural landscape shows a gradually 
increasing trend. This may be because the reduction of 
vegetation coverage leads to the weakening of land water 
holding capacity, the increase of water and soil loss, and 
the reduction of ecosystem stability, thus improving the 
ecological sensitivity. When the vegetation coverage rate 
is low, the ecological sensitivity of rural landscape reaches 
the highest value. This may be because the areas with low 
vegetation coverage suffer from serious water and soil loss, 
fragile ecosystems, and are vulnerable to external interfer-
ence. When formulating rural landscape ecological protec-
tion measures, we should fully consider the factor of veg-
etation coverage, and take different protection measures 
for areas with different vegetation coverage to achieve the 
sustainable development of rural landscape ecology.

Figure 5. Ecological environment sensitivity under different 
slopes

Figure 6. Results of the ecologically sensitive area division in the Village A after three years of tourism development
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Village A has developed its tourism industry for three 
years. Through the rich natural resources, agricultural re-
sources, cultural resources, etc. in the region, it has made 
in-depth exploration and effective use of these resources 
to create unique rural tourism products and enhance its 
attractiveness. However, the development of tourism must 
be based on the protection of the ecological environment. 
In the process of development, attention should be paid to 
the protection of the natural environment and the main-
tenance of ecological balance to avoid damage to the en-
vironment. Therefore, the algorithm in this paper is used 
to divide the sensitive area of the remote sensing image 
of Village  A obtained three years later. Figure  6 shows 
the change of ecological sensitivity of Village A after three 
years of tourism development.

It can be seen from the comparison between Fig-
ure 3 and Figure 6 that, after three years of tourism de-
velopment, the ecological sensitivity of each area in Vil-
lage A has increased to varying degrees, which is due to 
the increase of human activities. With the development 
of tourism, the frequency and intensity of human activi-
ties in ecologically sensitive areas have increased. These 
activities include the construction of tourism facilities, road 
traffic, and tourist tours. They may disturb and damage the 
ecosystem, leading to an increase in ecological sensitivity 
and further exacerbating ecological problems. Over-ex-
ploitation of resources, such as over-picking, over-fishing, 
and over-logging, driven by tourism development, can 
also cause irreversible damage to the ecosystem, disrupt 
ecological balance, and heighten ecological sensitivity. The 
development of tourism may lead to ecological imbalance, 
such as species invasion, population fluctuation, biodiver-
sity reduction, etc. These factors may cause the ecosystem 
to become more vulnerable and improve ecological sen-
sitivity; Lack of effective protection measures. In the pro-
cess of developing tourism, the lack of effective protection 
measures may cause damage to the ecosystem and lead 
to the increase of ecological sensitivity.

In order to analyze the accuracy of fuzzy neural net-
work in the division of landscape ecological sensitive area 
units, the methods in References (Atterholt et  al., 2021) 
and (Belizario et  al., 2021) are selected as the compari-
son methods of this paper. Based on the aforementioned 

three schemes, the complete landscape ecological sensi-
tive area, core landscape ecological area, and enhanced 
landscape ecological area in Figure 3 are applied respec-
tively. Then, the effectiveness of unit division of the fuzzy 
neural network in different landscape ecological sensitive 
areas is studied through an analysis of the changes in each 
evaluation metric, namely DSC, Recall, and Precision. The 
experimental results are shown in Table 5.

The analysis of Table 5 shows that the evaluation meth-
od selected by the fuzzy neural network has a certain im-
pact on the division of landscape ecological sensitive area 
units. The fuzzy neural network employed in this method 
combines the steepest descent algorithm and the least 
square estimation (LSE) to identify the complete landscape 
ecological sensitive area and the core landscape ecological 
area. Moreover, the evaluation index values of DSC, Recall, 
and Precision obtained by this network are higher than 
those of the other two schemes. The fuzzy neural network 
used in this method has a more accurate division effect on 
different landscape ecological sensitive area units.

In order to compare the ecological sensitivity unit parti-
tioning methods based on deep learning with other ma-
chine learning methods, the performance of deep learn-
ing algorithms in rural landscape ecological sensitivity 
unit partitioning was compared with decision tree algo-
rithms, random forest algorithms, and gradient boosting 
algorithms. These algorithms will use the same ecologi-
cal sensitivity evaluation index system as input and out-
put ecological sensitivity prediction results. Evaluate the 
performance of various algorithms in ecological sensitivity 
prediction and unit partitioning tasks using metrics such 
as accuracy, recall, and F1 score. The experimental results 
are shown in Table 6.

Table 6. Performance comparison of various algorithms in 
the division of ecological sensitivity units in rural landscapes

Algorithm Accu
racy/%

Recall 
rate/%

F1 
score

Decision tree algorithm 75 70 72
Random forest algorithm 80 78 79
Gradient boosting algorithm 85 82 83
The method of this paper 92 90 91

Table 5. Division of units in landscape ecological sensitive areas

Evaluating 
indicator Landscape ecological sensitive areas

Division scheme

Atterholt et al. (2021) Belizario et al. (2021) The method of this paper

DSC
Landscape ecological sensitive areas 0.7328 0.7918 0.9204
Core landscape ecological area 0.7815 0.7746 0.9016
Enhance landscape ecological areas 0.7206 0.7108 0.8976

Recall
Landscape ecological sensitive areas 0.8816 0.8834 0.9518
Core landscape ecological area 0.7956 0.8027 0.9346
Enhance landscape ecological areas 0.7608 0.7936 0.9217

Precision
Landscape ecological sensitive areas 0.8915 0.8954 0.9375
Core landscape ecological area 0.8966 0.9035 0.9369
Enhance landscape ecological areas 0.7988 0.8345 0.9011
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According to the analysis in Table 6, deep learning al-
gorithms have shown significant performance advantages 
compared to decision tree algorithms, random forest al-
gorithms, and gradient boosting algorithms in the task of 
dividing sensitive units in rural landscape ecology. Specifi-
cally, deep learning algorithms achieved the highest scores 
in the three key evaluation metrics of accuracy, recall, and 
F1 score. Its accuracy is as high as 92%, indicating that the 
algorithm can accurately predict the ecological sensitivity 
of rural landscapes; The recall rate has also reached 90%, 
demonstrating the powerful ability of deep learning algo-
rithms in identifying truly sensitive areas; Meanwhile, the F1 
score of 91% further confirms the excellent performance of 
the algorithm in balancing accuracy and recall. These results 
indicate that deep learning algorithms can more accurately 
capture and identify complex features in data for ecologi-
cal sensitivity prediction and unit partitioning tasks, thereby 
improving the accuracy and robustness of predictions. In 
contrast, although decision tree algorithms are simple and 
easy to understand, they cannot fully capture the nonlin-
ear relationships in the data; Although the random forest 
algorithm improves performance by integrating multiple 
decision trees, it is still affected by incorrect predictions 
from certain decision trees; Although the gradient boosting 
algorithm improves performance by gradually optimizing 
the model, it is limited by overfitting or underfitting. Deep 
learning algorithms, on the other hand, better adapt to the 
complexity and diversity of ecological sensitivity by auto-
matically learning and extracting deep features from data, 
thus achieving better performance in the task of dividing 
rural landscape ecological sensitivity units.

To verify the applicability of the method proposed in 
this article, flood, wildfire, and drought prediction in rural 

landscapes were selected as experimental subjects. Com-
pared with the methods in References (Atterholt et  al., 
2021) and (Belizario et al., 2021), the model was applied 
in rural areas with different soil types, and response speed, 
root mean square error (RMSE), Nash efficiency coefficient 
(NSE), and Kappa coefficient were introduced as evaluation 
indicators. The experimental results are shown in Table 7.

According to Table 7  analysis, the method proposed 
in this paper has demonstrated significant superiority in 
predicting floods, wildfires, and droughts in rural land-
scapes. In two different types of soils, sandy soil and clay, 
the method proposed in this paper has a faster response 
speed, lower root mean square error (RMSE), and higher 
Nash efficiency coefficient (NSE) and Kappa coefficient 
compared to the methods in References (Atterholt et al., 
2021) and (Belizario et al., 2021). Specifically, in flood pre-
diction, the NSE of this method on sandy soil and clay 
reached 0.85 and 0.90, respectively, which is much high-
er than the comparative methods. In wildfire prediction, 
the NSE values of our method on sandy soil and clay are 
0.92 and 0.95, respectively, which are also superior to the 
comparative methods. In drought prediction, the NSE of 
our method is still superior to the comparative method, 
and the Kappa coefficient remains at a high level. These 
results indicate that the method proposed in this paper 
has high accuracy and reliability in rural landscape predic-
tion, verifying its applicability. In addition, the scalability of 
this method in large-scale rural landscapes is also worthy 
of recognition. Due to the consideration of computational 
efficiency and resource consumption in method design, it 
can theoretically be applied to real-time monitoring and 
large-scale rural areas without significant computing re-
sources. However, in practical applications, factors such as 

Table 7. Prediction results of floods, wildfires, and droughts in rural areas with different soil types

Experimental 
subjects Soil Method Response 

speed/s RMSE NSE Kappa 
coefficient

Flood 
forecasting

Sandy 
soil

The method of this paper 120 0.25 0.85 0.78
Atterholt et al. (2021) 150 0.30 0.78 0.72
Belizario et al. (2021) 130 0.28 0.80 0.75

Clay
The method of this paper 100 0.20 0.90 0.85
Atterholt et al. (2021) 140 0.28 0.82 0.78
Belizario et al. (2021) 120 0.25 0.85 0.80

Wildfire 
prediction

Sandy 
soil

The method of this paper 80 0.15 0.92 0.88
Atterholt et al. (2021) 100 0.20 0.85 0.80
Belizario et al. (2021) 90 0.18 0.88 0.85

Clay
The method of this paper 70 0.12 0.95 0.92
Atterholt et al. (2021) 95 0.18 0.88 0.84
Belizario et al. (2021) 85 0.15 0.90 0.88

Drought 
prediction

Sandy 
soil

The method of this paper 150 0.35 0.75 0.70
Atterholt et al. (2021) 180 0.40 0.70 0.65
Belizario et al. (2021) 160 0.38 0.72 0.68

Clay
The method of this paper 130 0.30 0.80 0.75
Atterholt et al. (2021) 170 0.38 0.74 0.69
Belizario et al. (2021) 150 0.35 0.78 0.72
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data transmission, storage, and processing capabilities in 
specific scenarios need to be considered to ensure the 
feasibility and practicality of the method. In summary, the 
method proposed in this article provides a new and ef-
fective solution for predicting natural disasters in rural 
landscapes.

This experiment tested the computational complexity 
of the deep learning based rural landscape ecological sen-
sitive area unit partitioning algorithm in rural areas of dif-
ferent scales to evaluate its scalability. The experiment se-
lected three typical rural areas: 5 square kilometers (small 
area), 20 square kilometers (medium area), and 50 square 
kilometers (large area), each containing 8, 15, and 25 types 
of ecological units, with corresponding data collection 
points of 50, 200, and 500. By collecting data on six ma-
jor influencing factors including geological environment, 
ecological environment, and hydrological conditions as in-
puts for a fuzzy neural network, and using rural landscape 
ecological images for support vector machine partitioning, 
the system recorded the computation time and memory 
usage of the algorithm when running in different regions. 
The experimental results are shown in Table 8.

According to Table  8, in the relevant experiments of 
the algorithm for dividing units in rural landscape ecologi-
cal sensitive areas, as the rural area expands from a small 
range to a large range, the computational complexity of 
each part changes significantly. In terms of fuzzy neural 
networks, the training time requires more iterations to 
adjust weights due to the large number of data collec-
tion points and input data in a large area, which increases 
significantly from 12 seconds to 80 seconds. The testing 
time also increases with the expansion of the area, but 
the growth rate is relatively small and positively correlated 
with the amount of data; Memory usage is also increasing 
exponentially, as large-scale data requires more space for 
storage and processing. The training time of support vec-
tor machine is greatly affected by the number of image 
samples. As the number of samples increases from 100 
to 1000, the training time skyrockets from 20s to 150s, 
resulting in an exponential increase in computational com-
plexity due to the calculation of kernel function values for 

all samples; The classification time also increases with the 
increase of samples, as the distance between new samples 
and support vectors needs to be calculated; The memory 
usage is related to the number of samples and the size 
of image data, and increases as the area expands. When 
visualizing with ArcGIS, the data processing time is ex-
tended due to the expansion of regions and the increase 
in data volume. Data processing requires the integration 
and transformation of ecological unit division and sensitiv-
ity assessment results; The rendering time for a large area 
is longer due to the abundance of geographic information 
and ecological units; The memory usage increases with the 
expansion of the region to meet the demand for storing 
and processing more geographic data. Overall, with the 
expansion of rural areas, the computational complexity of 
the method proposed in this paper has significantly in-
creased, reflected in training, classification, data processing 
time, and memory usage. However, the performance im-
provement of modern computing devices still allows for an 
acceptable total computation time of about 294 seconds 
(about 5 minutes) in large-scale areas, and operational ef-
ficiency can be improved through algorithm optimization, 
parallel computing technology, and increased computing 
resources. Therefore, the method proposed in this paper 
has certain scalability for application in large-scale rural 
areas, but requires reasonable planning of computing re-
sources and time.

4. Conclusions

The algorithm in this paper can make a good delineation 
of ecologically sensitive areas in rural landscapes, and the 
delineation of ecologically sensitive areas is of great help 
to rural landscapes, which is mainly reflected in the fol-
lowing aspects:

1) Protecting the natural environment and accurately 
identifying ecologically sensitive areas

Ecological sensitive areas, as key areas with fragile eco-
logical environments or abundant resources, are crucial for 
their protection. The algorithm in this article, with its high-
precision characteristics, can accurately identify and divide 

Table 8. Scalability analysis of different regional ranges

Range Indicator category
Input vector 

dimension/number of 
image samples

Training 
time/s

Test 
time/s

Classification 
time/s

Data 
processing 

time/s

Rendering 
time/s

Rendering 
time/s

Small-scale
Fuzzy neural network 6 12 3 – – – 256
Support vector machine 100 20 – 5 – – 384
ArcGIS visualization – – – – 2 1 256

Medium 
range

Fuzzy neural network 6 35 8 – – – 512
Support vector machine 400 60 – 12 – – 768
ArcGIS visualization – – – – 5 3 512

Wide range
Fuzzy neural network 6 80 18 – – – 1024
Support vector machine 1000 150 – 30 – – 1536
ArcGIS visualization – – – – 10 6 1024
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these regions. The analysis results of slope and vegeta-
tion coverage clearly indicate that the algorithm accurately 
captures the significant impact of these factors on ecologi-
cal sensitivity. For example, as the slope changes, ecologi-
cal sensitivity shows a trend of first increasing and then 
decreasing; When vegetation coverage decreases, ecologi-
cal sensitivity gradually increases. In practical cases, the 
changes in ecological sensitivity after the development of 
tourism in Village A have fully verified the effectiveness of 
the algorithm in protecting the natural environment. The 
ecologically sensitive areas identified through algorithms 
provide clear goals for rural landscape managers, helping 
to strengthen the protection of these sensitive areas, pre-
vent irreversible damage caused by human activities, and 
maintain the stability and health of the rural ecological 
environment.

2) Promote sustainable development, balance econo-
my and ecology

The sustainable development of rural landscapes re-
quires a precise balance between economic development 
and ecological protection. This algorithm provides a solid 
scientific basis for rural planners by accurately dividing 
ecologically sensitive areas. This algorithm has played a 
key role in the development of tourism in Village A. It en-
sures that the carrying capacity of the ecological environ-
ment is fully considered during the development process, 
avoiding overexploitation of ecologically sensitive areas. 
For example, based on the algorithm partitioning results, 
planners can reasonably plan the construction location 
and scale of tourism facilities, avoiding large-scale devel-
opment in ecologically sensitive areas, thereby ensuring 
the sustainable development of rural areas. This scientific 
planning is not only beneficial for the long-term stable 
growth of rural economy, but also for protecting the eco-
logical environment and achieving a positive interaction 
between economy and ecology.

3) Improve planning and management efficiency, re-
duce resource waste

The accurate division of ecologically sensitive areas en-
ables rural landscape planners and managers to develop 
more targeted protection measures and management 
strategies. The precise partitioning results provided by the 
algorithm in this article have brought higher efficiency to 
rural landscape management. In the comparative experi-
ment, the algorithm proposed in this paper outperforms 
other methods in DSC, Recall, Precision and other indica-
tors of landscape ecological sensitive area unit division, 
which fully demonstrates its advantages in improving 
planning and management efficiency. Through algorithm 
division, managers can clearly understand the ecological 
sensitivity of different regions, and formulate differentiat-
ed management strategies to avoid resource waste caused 
by blind development and disorderly management. For 
example, for areas with high ecological sensitivity, strict 
protection measures can be taken to restrict human activi-
ties; For areas with low ecological sensitivity, appropriate 
development and utilization can be carried out to achieve 
rational allocation and efficient utilization of resources.

4) Improve the quality of rural landscapes and enhance 
disaster resistance capabilities

By protecting and managing ecologically sensitive ar-
eas, this algorithm helps promote the naturalization and 
diversification of rural landscapes. This not only enhances 
the quality and beauty of rural landscapes, but also pro-
vides a more livable and tourist friendly environment for 
local residents and tourists. In flood, wildfire, and drought 
prediction experiments, the prediction results of our 
method on different soil types were superior to the com-
parative methods, indicating its potential in enhancing the 
disaster resistance of rural landscapes and protecting the 
ecological environment. For example, in flood prediction, 
the Nash efficiency coefficient (NSE) of our method on 
sandy soil and clay reached 0.85  and 0.90, respectively, 
which is much higher than the comparative methods. This 
means that the algorithm can more accurately predict the 
risk of flood occurrence, providing a basis for rural land-
scape managers to take preventive measures in advance, 
thereby reducing the damage of natural disasters to rural 
landscapes and improving the overall quality and disaster 
resistance of rural landscapes.

5) Promote the development of ecotourism and 
achieve a win-win situation for both economy and ecology

Ecological sensitive areas have rich natural landscapes 
and ecological value, and are important resources for the 
development of ecotourism. This algorithm provides a sci-
entific basis for the development of ecotourism by accu-
rately dividing these areas. Reasonable planning and devel-
opment not only help increase economic income, but also 
enhance the visibility and attractiveness of rural areas. In the 
development process of tourism in Village A, the application 
of algorithms ensures that ecotourism activities are carried 
out on the premise of protecting the ecological environ-
ment. For example, based on the algorithm division results, 
suitable routes and areas for ecotourism can be planned, 
guiding tourists to explore and experience without affecting 
the ecological environment. This not only meets the needs 
of tourists for natural landscapes, but also protects the eco-
logical environment, achieving a win-win situation between 
economy and ecology, and injecting new impetus into the 
sustainable development of rural areas.

In addition, the algorithm proposed in this article has 
shown significant effectiveness and wide applicability in 
the division of ecologically sensitive areas in rural land-
scapes. It not only has strong adaptability and can be 
adjusted and optimized according to the actual situation 
of different regions to cope with changes in the ecologi-
cal environment, but also has the potential advantages 
of good scalability and theoretical applicability to real-
time monitoring and management of larger rural areas. 
In practical applications, limitations such as data transmis-
sion, storage, and processing capabilities also need to be 
considered, and it needs to be continuously updated and 
optimized with changes in the ecological environment and 
human activities to maintain accuracy and effectiveness, 
thus providing strong support for the protection, manage-
ment, and sustainable development of rural landscapes.
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Although the deep learning based rural landscape eco-
logical sensitive area unit partitioning algorithm proposed 
in this article effectively improves the accuracy of evalua-
tion and partitioning by combining fuzzy neural networks 
and support vector machines, the algorithm still has certain 
limitations. If the algorithm has high requirements for data 
quality and quantity, it may be difficult to effectively apply 
in areas where data is scarce or of poor quality. In addition, 
the process of model training and tuning is relatively com-
plex, requiring strong professional knowledge and skill sup-
port. Future research will further optimize data preprocessing 
and augmentation techniques to improve the adaptability of 
algorithms to different quality data. At the same time, ex-
ploring more automated and intelligent model training and 
optimization methods, lowering the threshold for use, and 
expanding the practical application scope of this algorithm 
in rural landscape ecological protection and management.
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