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Highlights:
■ enhance the accuracy of predicting the anti-carbonation performance (ACP) of concrete structures;
■ combine random forest (RF) regression and least squares support vector machine (LSSVM) for improved prediction accuracy;
■ utilize RF regression to identify the most significant factors affecting ACP, optimizing the input features for the LSSVM model;
■ validate the hybrid RF-LSSVM model against test data to demonstrate its robustness and reliability;
■ exhibit superior performance in predicting concrete carbonation resistance compared to traditional methods;
■ perform comprehensive error analysis to show the model’s effectiveness in minimizing prediction errors;
■ offer a reliable tool for assessing concrete durability, contributing to the longevity and safety of concrete structures;
■ address the limitations of existing empirical and mathematical models, offering a more precise evaluation method for ACP;
■ ensure the model can be widely applied in the construction industry for better maintenance and safety of concrete infrastructure;
■ enhance the methodology for evaluating concrete ACP, promoting advancements in construction material science and structural engineering.

Article History:  Abstract. Concrete carbonation is a critical factor influencing the durability and longevity of concrete struc-
tures, particularly in urban environments. Traditional methods for predicting the anti-carbonation performance 
(ACP) of concrete often lack precision and fail to account for complex interactions between influencing factors.
In this study, a novel hybrid model combining random forest (RF) regression with a least squares support vec-
tor machine (LSSVM) is proposed to enhance the accuracy of ACP predictions. The RF regression is utilized for 
feature selection, identifying the most significant factors affecting ACP and optimizing the input features for
the LSSVM model. Our hybrid model is validated against a comprehensive dataset, demonstrating superior 
performance in predicting concrete carbonation resistance compared to conventional methods. Quantitative 
results show that the RF-LSSVM model achieves a root mean square error (RMSE) of 5e–5 and a high coef-
ficient of determination (R-squared) of 0.999, indicating robust predictive capability and accuracy. The main
novelty of this work lies in the integration of RF and LSSVM to create a robust, accurate, and practical tool for 
assessing the durability of concrete structures.
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XRDA – X-ray diffraction; 
TGA – thermogravimetry; 
FTIR – Fourier transform infrared spectroscopy; 
cc – cement dosage; 
fasc – fly ash content; 
fagc – fine aggregate content; 
cagc – coarse aggregate content; 
wrc –  water reducing agent content;

Notations 

ACP – anti-carbonation performance; 
RF – random forest; 
LSSVM – least squares support vector machine; 
RMSE – root mean square error; 
RC – reinforced concrete; 
C-Carb – carbonation of concrete; 

http://creativecommons.org/licenses/by/4.0/
mailto:nitprincipal@nehrucolleges.com



Journal of Environmental Engineering and Landscape Management, 2025, 33(2), 226–241 227

wc – water content; 
RH – relative humidity; 
TEMP – temperature; 
C-CO2 – carbon dioxide concentration; 
csv – concrete specimen volume; 
Tcarb – carbonation time; 
CS – compressive strength; 
OOB – out-of-bag; 
OOBerr – OOB data error; 
RFE – recursive feature backward elimination; 
GKF – Gaussian kernel function; 
GA – genetic algorithm; 
SVM – support vector machine; 
ANN – artificial neural network; 
R2 – Goodness of fit.

1. Introduction

Concrete has been a foundational material in construction 
for decades due to its versatility, cost-effectiveness, and 
performance in various environments. Its widespread use 
stems from its ease of manufacturing, availability of raw 
materials, low maintenance requirements, and adaptability 
for different structural applications. However, RC structures 
are prone to durability issues, particularly when exposed 
to harsh environmental conditions (Kar et al., 2020). These 
conditions often lead to a cascade of chemical and physi-
cal reactions that undermine the concrete’s structural in-
tegrity over time (Yaseen et al., 2018; Zhang et al., 2022; 
Maryam et al., 2018).

1.1. The challenge of carbonation in concrete
One of the most significant durability challenges faced 
by concrete structures is carbonation. Carbonation refers 
to the gradual reduction in the alkalinity of the concrete 
due to the penetration of carbon dioxide (CO₂) from the 
atmosphere into the concrete matrix. When CO₂ reacts 
with calcium hydroxide (Ca(OH)₂) in the concrete, it forms 
calcium carbonate (CaCO₃). This reaction lowers the pH 
level of the concrete, compromising its alkaline environ-
ment, which is crucial for protecting the embedded steel 
reinforcements from corrosion. Once the concrete loses 
its protective alkaline properties, the steel reinforcements 
become vulnerable to corrosion, which can significantly 
reduce the lifespan of the structure (Li et al., 2022).

1.2. Protective measures against carbonation
To combat carbonation and its effects, several protective 
systems have been developed. Among these, surface coat-
ings are one of the most commonly employed methods. 
These coatings act as barriers to CO₂ ingress, helping to 
preserve the concrete’s alkalinity and, in turn, the durabil-
ity of the steel reinforcements. Evaluating the effectiveness 
of such protective systems typically involves accelerated 
carbonation tests. These tests expose concrete samples to 
elevated levels of CO₂ to simulate the long-term effects of 

carbonation in a relatively short period (Verapathran et al., 
2023; Heoa et al., 2016; Chaabene & Nehdi, 2020).

Despite the widespread use of protective systems and 
accelerated testing, a gap remains in the understanding 
of how these systems perform under real-world condi-
tions. Many of the empirical and mathematical models 
developed to predict carbonation progression are based 
on unprotected systems and do not adequately address 
the complexities involved when protective coatings are 
applied. This limitation underscores the need for new and 
improved methods for predicting the ACP of concrete 
structures, particularly those with protective coatings.

1.3. Factors affecting carbonation
Several factors influence the carbonation process in con-
crete, including the properties of the cement, the composi-
tion and strength of the concrete, environmental exposure 
conditions, and the presence of protective coatings. Ce-
ment properties, such as type and quality, directly impact 
the permeability of concrete to CO₂ and other aggressive 
agents. Concrete strength and composition, particularly 
the water-cement ratio, also play key roles in determin-
ing how resistant a structure will be to carbonation (Ju-
nyoung & Yootaek, 2014). Structures with higher strength 
concrete, for instance, tend to have lower porosity and are 
therefore less permeable to CO₂ ingress (Chou et al., 2020; 
Al-Musawi et al., 2020).

Given the complexity of these interacting factors, re-
searchers have sought to model and predict carbonation 
depth using mathematical and empirical approaches. 
However, solving the high-order differential equations in-
volved in these models, which must account for multiple 
variables, is a labor-intensive and time-consuming process. 
Additionally, many of these models require extensive ex-
perimental data, making them costly and impractical for 
widespread application (España et al., 2017; Avci et al., 
2021; Solhmirzaei et al., 2020).

To address these challenges, researchers are increas-
ingly turning to machine learning (ML) and artificial in-
telligence (AI) techniques for predicting concrete carbon-
ation. These approaches offer significant advantages over 
traditional empirical models by leveraging large datasets 
to uncover patterns and relationships between variables 
that may not be immediately apparent. ML algorithms can 
rapidly process historical data, enabling more efficient and 
accurate predictions of carbonation depth and concrete 
durability (Kamali et al., 2022; Barjouei et al., 2021; Ane-
mangely et al., 2019; Ly et al., 2020).

Among the various intelligent algorithms, RF regres-
sion and LSSVM have shown considerable potential in 
predicting ACP. RF regression is particularly useful for fea-
ture selection, identifying the most important factors in-
fluencing ACP. By reducing the dimensionality of the input 
dataset, RF can optimize the performance of subsequent 
models, such as LSSVM, which is then used for precise re-
gression analysis. The combination of RF and LSSVM pro-
vides a robust and accurate method for predicting ACP, 
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outperforming many traditional approaches (Mehrad et al., 
2020, 2022; Abad et al., 2022; Davoodi et al., 2023a, 2023b, 
2023c, 2023d, 2023e).

1.4. The proposed predictive model: 
integrating RF and LSSVM
The objective of this study is to develop a hybrid predictive 
model for concrete’s ACP by combining RF regression and 
LSSVM. The novelty of this approach lies in the synergy be-
tween the two models: RF regression is first employed to se-
lect the most relevant features, ensuring that only the most 
significant variables affecting ACP are considered. LSSVM is 
then applied to these optimized features to perform regres-
sion analysis and predict ACP with high accuracy.

This hybrid model will be trained and validated using a 
comprehensive dataset that encompasses a wide range of 
concrete properties, environmental conditions, and protec-
tive systems. By comparing the performance of the RF-LSS-
VM model to traditional methods, this study aims to dem-
onstrate the superiority of the hybrid approach in accurately 
predicting concrete carbonation resistance (Sheykhinasab 
et al., 2023; Jafarizadeh et al., 2023; Matinkia et al., 2022a, 
2022b; Talkhouncheh et al., 2023; Davoodi et al., 2024).

The proposed RF-LSSVM model represents a signifi-
cant advancement in the field of concrete durability pre-
diction. By leveraging the strengths of both RF and LSSVM, 
this approach offers a precise, efficient, and scalable so-
lution for predicting the ACP of concrete, particularly in 
protected systems. This innovation not only enhances our 
understanding of concrete carbonation but also provides a 
practical tool for improving the long-term performance of 
RC structures in various environmental conditions.

1.5. Research significance

 ■ Widespread Use of Concrete: Concrete’s extensive 
use in various types of structures highlights the im-
portance of ensuring its durability.

 ■ Durability Concerns: Unfavorable exposure condi-
tions can significantly reduce the durability of RC 
due to chemical and physical reactions.

 ■ Protection Systems: Surface coatings are among the 
most used systems for protecting concrete against 
carbonation.

 ■ Testing Methods: High concentration CO2 tests are 
commonly used to evaluate the performance of 
concrete protection systems, providing accelerated 
results.

 ■ Current Models: Several mathematical and empirical 
models exist to predict carbonation, but their appli-
cability to protected systems is limited.

 ■ Complexity of Calculations: Mathematical models of-
ten involve cumbersome calculations and high-order 
differential equations.

 ■ Microscopic Studies: Early C-Carb studies at the mi-
croscopic level require extensive experimental data, 
leading to increased research costs.

 ■ Data-Driven Prediction: Utilizing accumulated data 
and intelligent algorithms offers a more efficient ap-
proach to predicting early carbonation.

 ■ Novel Hybrid Model: The proposed hybrid model 
combining RF and LSSVM offers improved accuracy 
in predicting ACP.

 ■ Advancement in Research: This new approach ad-
dresses the deficiencies of existing models, contrib-
uting to advancements in construction material sci-
ence and structural engineering.

2. Literature review

Most carbonation prediction models found in the literature 
(Jumaa’h et al., 2019; Nafees et al., 2021; Zhao et al., 2020) 
assume a variation in C-Carb depth proportional to the 
square root of the exposure time. This coefficient depends 
on many different factors, which makes it very difficult to 
correctly model the evolution of the carbonation depth. In 
(Zhao et al., 2020) even considers that it is doubtful that 
it will ever be possible to determine a formula for predict-
ing the rate of carbonation with adequate accuracy, which 
takes into account all the parameters involved.

For the determination of the carbonation front, the 
most used method is through the sprinkling of an alco-
holic solution of phenolphthalein. This indicator only re-
veals the separation of two distinct pH zones. Lilac colored 
zones with pH > 9 and therefore called non-carbonated, 
and zones without color change, called carbonated. This 
technique is easy to apply and the results are obtained 
quickly. In (Chang & Chen, 2016) found, through readings 
with phenolphthalein, which corrosion could start between 
6 and 8 mm away from the carbonation front. However, 
this procedure is considered to provide a good estimate 
of carbonation depth and is undoubtedly the most widely 
used method.

According to a study carried out by Ibrahim et al. 
(2019), other more sophisticated methods such as XRDA, 
TGA and FTIR, when analyzing the microscopic structure 
of concrete in depth, present carbonation depth values 
higher than those measured with phenolphthalein. These 
methods require specialized equipment and personnel and 
are not very quick to apply, but allow the precise identifi-
cation of the degree and C-Carb depth.

Another way of predicting the progress of the car-
bonation front is to use tests in accelerated carbonation 
chambers. In these tests, the chambers are prepared with 
an atmosphere enriched in and the depth of carbonation 
is measured at regular time intervals. It is possible to com-
pare these results with results for the same concrete under 
real exposure conditions. Several authors have carried out 
studies in this respect (Khalaf et al., 2021; Sharafati et al., 
2020; Sim & Park, 2011), but there is still no law that al-
lows predicting the relationship between accelerated and 
real values, with based on concrete composition data and 
environmental characteristics. However, there are some 
clues that indicate that a direct extrapolation of the results 
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obtained in these tests to a natural exposure scenario can-
not be made by simply applying a scale factor associated 
with the concentration ratio (Nguyen-Sy et al., 2020).

Concrete protection systems against carbonation cur-
rently available on the market are surface film products 
(paints) and modified cementitious mortars. These prod-
ucts are characterized by having high coefficients of resis-
tance to penetration of. Some studies carried out on this 
subject (Vasanthalin & Kavitha, 2021; Penido et al., 2022; 
Zeng et al., 2022), reveal that these products may indeed 
have a beneficial effect against carbonation. Several math-
ematical and empirical models have been proposed in or-
der to predict the progress of carbonation (Gandomi et al., 
2014; Doddy et al., 2020). 

Machine learning was used to model mud loss rate in 
305 wells at Marun Oilfield, with data preprocessed using the 
Savitzky-Golay method (Jafarizadeh et al., 2023). The NSGA-II 
algorithm identified the most significant features, showing 
accuracy improvements plateauing beyond nine features.

Four ML algorithms predicted CO2 storage mass and 
nine reservoir variables (Talkhouncheh et al., 2024). The Ma-
halanobis distance technique excluded 520 and 439 outlier 
records, respectively, enhancing prediction reliability.

Predictive models for confined compressive strength 
were developed using mud-logging data from two wells 
in southwest Iran (Davoodi et al., 2024). Data were prepro-
cessed with the Tukey method to remove outliers, ensur-
ing high accuracy and generalizability. ML algorithms were 
applied and assessed using training and test data subsets.

3. Methodology

The methods employed in this study aim to predict the 
concrete carbonation depth (C-Carb depth) using a hybrid 
intelligent model combining RF and LSSVM. This approach 
addresses the challenges of multiple indices and noise in-
terference, with RF handling feature selection and LSSVM 
constructing the predictive model. Here’s a detailed de-
scription of the methods:

3.1. Influence factor index system and sample 
data acquisition
The study uses 14 influencing factors (variables) related to 
concrete carbonation, including:

 ■ Water-cement ratio (wcr);
 ■ Compressive strength (CS);
 ■ Cement content (cc);
 ■ Fine and coarse aggregate contents (fasc, fagc);
 ■ Water-reducing content (wrc);
 ■ Water content (wc);
 ■ Relative humidity (RH);
 ■ Temperature (TEMP);
 ■ Carbon dioxide concentration (C-CO2);
 ■ Carbonation time (Tcarb).

These factors are selected as input variables, while the 
output variable is the concrete carbonation depth. A data-
set of 96 samples is collected, where each sample includes 

the values of the input variables and the corresponding 
carbonation depth. The dataset is split into two sets: 76 
samples are used as the training set, and 20 samples as 
the test set.

3.2. Random forest (RF) regression model for 
feature selection
RF is used to identify the most important variables that 
influence concrete carbonation. The RF model divides the 
dataset into training and test sets and selects a subset 
of important features based on their contributions to re-
ducing residual errors and increasing node purity. The RF 
model parameters are set to:

 ■ mtry = 5 (number of variables sampled at each split);
 ■ ntree = 800 (number of trees in the forest).

The importance of each variable is visualized through 
metrics like the mean square error reduction (%IncMSE) 
and increase in node purity (IncNodePurity). Variables with 
higher importance, such as CS, Tcarb, RH, TEMP, C-CO2, 
and wc, are selected for further analysis. Pearson correla-
tion analysis is also conducted to evaluate the correlation 
between these variables and C-Carb depth.

3.3. Least squares support vector machine 
(LSSVM) modeling and evaluation
After feature selection, LSSVM is used to build the predic-
tive model. The selected variables from RF (e.g., Tcarb, CS, 
C-CO2, RH, TEMP, etc.) are input into the LSSVM model. 
The LSSVM differs from traditional SVM by transforming 
quadratic programming problems into linear equations, 
reducing computational complexity and improving pre-
diction accuracy.

The model is optimized using a GKF, which provides 
better performance and anti-interference capabilities. Pa-
rameter tuning is done using 10-fold cross-validation to 
find the best values for gamma and cost parameters, en-
suring the model generalizes well to unseen data.

3.4. Model evaluation and validation
The RF-LSSVM hybrid model is evaluated using metrics 
such as RMSE and R-squared (R²). These metrics assess 
how well the model predicts the C-Carb depth. The per-
formance of the RF-LSSVM model is compared to other 
models, including:

 ■ SVM without feature selection;
 ■ Artificial Neural Networks (ANNs).

The RF-LSSVM model achieves the lowest RMSE (in-
dicating the highest prediction accuracy) and the highest 
R-squared (indicating better fit) compared to the other 
models, demonstrating its superior performance.

3.5. Cross-validation and recursive feature 
elimination (RFE)
The study employs recursive feature elimination (RFE) to 
refine the model by systematically eliminating less impor-
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tant variables based on their impact on the prediction er-
ror. The optimal set of variables is determined through 
cross-validation, with the RF-LSSVM model ultimately in-
cluding the most critical factors influencing concrete car-
bonation.

3.6. Comparison with other machine learning 
approaches
The study benchmarks the performance of the RF-LSSVM 
model against SVM and ANN models. The RF-LSSVM 
model consistently outperforms the other methods, as 
shown through a comparative analysis of their RMSE and 
R-squared values. Additionally, the hybrid model is evalu-
ated for its ability to handle feature selection, reduce com-
putational complexity, and improve predictive performance.

By leveraging the strengths of both RF for feature 
selection and LSSVM for modeling, the proposed meth-
odology offers an effective tool for predicting concrete 
carbonation depth with high accuracy and reduced com-
putational cost.

In this study, a hybrid RF and LSSVM model is devel-
oped for predicting concrete carbonation depth (C-Carb 
depth). The combination of RF and LSSVM is chosen to 
leverage the strengths of both models–RF for feature se-
lection and LSSVM for efficient regression analysis. This 
methodology addresses key challenges such as dimen-
sionality reduction and computational complexity, leading 
to enhanced predictive accuracy and model stability.

The process begins with the selection of 14 influenc-
ing factors, including water-binder ratio (wcr), compressive 
strength (CS), carbon dioxide concentration (C-CO2), rela-
tive humidity (RH), temperature (TEMP), and others. A total 
of 96 monitored data sets are used for analysis, with 76 for 
training and 20 for testing. Feature selection is performed 
using RF, with variable importance evaluated through %In-
cMSE and IncNodePurity metrics. Critical variables like CS, 
Tcarb (carbonation time), RH, TEMP, and C-CO2 are identi-
fied as the most influential on C-Carb depth.

After feature selection, the LSSVM model is built us-
ing the selected variables, optimized through a 10-fold 
cross-validation approach. The performance is further en-
hanced by tuning key parameters, such as gamma and 
cost, using an optimization grid. The results demonstrate 
that the RF-LSSVM model achieves the lowest RMSE and 
the highest R-squared value, significantly outperforming 
both traditional SVM without feature selection and ANNs. 
The RF-LSSVM model provides a precise prediction with an 
RMSE of 5e-5 and an R² of 0.999, while the SVM and ANN 
models show higher RMSE values and lower accuracy.

The findings highlight that factors such as carbonation 
time (Tcarb), compressive strength (CS), carbon dioxide 
concentration (C-CO2), and RH have the strongest posi-
tive correlations with C-Carb depth. In contrast, variables 
like concrete specimen volume (csv) and water content 
exhibit negative correlations. These relationships are vali-
dated through Pearson correlation analysis and visualized 
for better interpretability.

Finally, the study concludes that the RF-LSSVM model 
not only enhances prediction accuracy but also reduces 
computational complexity, making it a superior method 
for predicting concrete carbonation depth compared to 
existing machine learning approaches. The model’s strong 
performance suggests its potential for practical applica-
tions in the construction industry for durability assess-
ments and material optimization.

4. Implementation of the proposed work

As depicted in Figure 1, the RF-LSSVM model predicts 
concrete ACP in this study. The first step involves con-
structing an index system for concrete ACP based on raw 
materials and mixing factors that influence it. Sample data 
for this index system is collected, and an original sample 
set is established. Each sample undergoes denoising pro-
cessing, after which the original sample set is divided into 
a training dataset and a testing dataset according to a 
specified ratio.

The concrete ACP index system comprises factors that 
affect ACP and evaluation criteria for ACP. Material factors 
include the water-binder ratio, CS, cement dosage (cc), fly 
ash content (fasc), fine aggregate content (fagc), coarse 
aggregate content (cagc), water reducing agent content 
(wrc), and water content (wc). Environmental factors con-
sist of relative humidity (RH), temperature (TEMP), and 
carbon dioxide concentration (C-CO2). Test factors include 
concrete specimen volume (csv), carbonation time (Tcarb), 
and CS. The evaluation index for ACP is the concrete car-
bonation (C-Carb) depth value.

The influencing factors and ACP evaluation index form 
the samples in both the training and testing datasets. In 
total, there are 14 factors monitored to observe the dis-
tribution of C-Carb depth under different conditions. The 

Figure 1. The flow chart of RF-LSSVM model prediction 
concrete ACP
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training dataset, which constitutes 80% of the total sample 
data, is randomly selected for constructing the RF regres-
sion model and selecting the index set. The remaining 20% 
forms the test dataset used to evaluate the final model’s 
predictive performance (Gandomi et al., 2014; Doddy et al., 
2020).

As shown in Figure 1, RF-LSSVM model predicting 
concrete ACP that the embodiment of the present work 
provides, may further constructs the index system of con-
crete ACP as a first step according to the raw material 
that influences concrete ACP and mix factor, and collects 
the sample data of the index system of this concrete ACP, 
sets up original sample set, concentrates original sample 
Denoising processing is performed on each sample, and 
the original sample set after denoising processing is di-
vided into a training data set and a testing data set ac-
cording to a specified ratio. The index system of the ACP 
of the concrete includes factors affecting the ACP of the 
concrete and evaluation indexes of the ACP of the con-
crete. The material factors include: water-binder ratio, CS, 
cement dosage (cc), fly ash content (fasc), fine aggregate 
content (fagc), coarse aggregate content (cagc), water re-
ducing agent content (wrc) and water content (wc), and 
the environmental factors include: relative humidity (RH), 
Temperature (TEMP) and carbon dioxide concentration (C-
CO2), the test factors include: concrete specimen volume 
(csv), carbonation time (Tcarb) and CS; the concrete car-
bonation (C-Carb) depth evaluation index is the C-Carb 
depth value. That is, based on the literature and engineer-
ing experience, select the main factors affecting the ACP 
of concrete, build an index system, collect corresponding 
sample data, and establish an original sample set. The 
above index system includes two parts: influencing fac-
tors and evaluation indexes of concrete ACP. Among them, 
the influencing factors include: influencing factors include 
material factors, environmental factors and test factors, 
including 14 factors in total, which are used to monitor 
the numerical distribution of C-Carb depth under differ-
ent conditions; material factors include: wcr, CS, cc, fasc, 
fagc, cagc, wrc and wc; environmental factors include: RH, 
TEMP, C-CO2; test factors include: csv, Tcarb and CS; the 
evaluation index of ACP is the C-Carb depth. Furthermore, 
each influencing factor of concrete ACP and concrete ACP 
evaluation index constitutes the samples in the training 
data set and the test data set, and the corresponding data 
is used as the sample data in the data set.

The ratio of the total number of samples in the training 
data set and the test data set is 2: 1~4: 1. 

In this case, 80% of the total sample data is randomly 
used as the training data set for the construction of the 
RF regression model to select the index set; the remain-
ing 20% is the test data set for the evaluation of the final 
model prediction performance (Mahmood & Mohammad, 
2019; Najafgholipour et al., 2017).

With described training number set as the input of 
RF regression model, to carry out importance evaluation 
to the influence factor that constitutes described index 
system, carry out feature selection to influence factor 

according to the result of this importance evaluation, se-
lect the set of influencing factors with the smallest error 
of the RF regression model is obtained, and this set of 
influencing factors is used as the optimal feature variable 
set. Specifically, a RF regression model is constructed ac-
cording to the number of features contained in the binary 
tree nodes in the RF regression model and the number of 
decision trees; the training data set is used as the input 
of the RF regression model, for each in the RF regression 
model A decision tree, using the OOB data corresponding 
to the decision tree to calculate its OOB data error OO-
Berr1; Randomly use a certain variable of all sample data 
in the OOB data corresponding to the decision tree as a 
feature X, and add noise to the feature X Interference, and 
then calculate the corresponding OOB data error OOBerr2 
of the decision tree again; build an importance calcula-
tion model, and evaluate the variable importance of the 
above-mentioned feature X according to the importance 
calculation model; output the variables of all variables 
in the training data set Importance evaluation, and then 
draw a visual drawing of the variable importance evalua-
tion, and arrange the variable importance evaluations of 
all variables in descending order, and perform a prelimi-
nary screening of the variable importance measurement 
according to the sorting results; for the variable set ob-
tained after the preliminary screening. Use the RFE meth-
od to remove the variable of the specified proportion 
from the variable set one by one, and get one variable 
each time, compare the OOB error rate corresponding to 
the remaining variables after removing the variable, and 
use the variable set with the smallest error rate as the 
optimal feature variable set, and determine the number 
of optimal features in the optimal feature variable set. 
Among them, when calculating the OOB data error, the 
OOB data error obtained in Bootsrap sampling is calcu-
lated. When evaluating the importance of variables with 
variables in descending order, the importance of each 
variable is preliminarily measured by the reduction of 
the visual indicator mean square residual (%IncMSE) and 
the reduction of model accuracy (IncNodePurity). Sex is 
used as the importance evaluation of the corresponding 
variable, and the variable importance evaluations of all 
variables are arranged in descending order. In this sec-
ond step mentioned, the determining method of optimal 
feature variable set comprises two input parameters of 
RF: the characteristic number mtry that binary tree node 
comprises and the tree number Ntree of decision tree, 
mtry = P/3 (regression model) under the default situation, 
P is variable number, Ntree = 500; Model and train the 
data set; secondly, by calculating the OOB data error ob-
tained in Bootsrap sampling, to visualize the reduction of 
the indicator mean square residual (%IncMSE) and the re-
duction of model accuracy (IncNodePurity). Initially mea-
sure the importance of each variable and arrange them 
in descending order. Further, described original sample 
set is used as the input of RF model, carries out variable 
importance evaluation through RF model training, carries 
out feature selection to input variable by RFE method. 
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Selecting the optimal feature variable set with the small-
est model error to realize RF dimensionality reduction 
includes variable importance evaluation and important 
variable screening (Wu et al., 2021; Jumaa’h et al., 2019; 
Nafees et al., 2021). 

4.1. Variable importance evaluation
For each tree in RF, OOB is used to calculate its error, be 
OOBerr1; Noise interference is added to the feature X of 
all samples of OOB data randomly, and OOB data error 
again is calculated (OOBerr2); if there are Ntree trees in 
the RF, the the importance of feature X is calculated using 
the equation:

( )2 1 / ,Importance OOBerr OOBerr Ntree= ∑ −   (1)

where Ntree is the tree of decision tree in RF regression 
model.

4.2. Important variable screening
In the visualization of variable importance scores, the 
scores are arranged in descending order to determine 
the most influential factors in the feature set. The process 
utilizes RFE to iteratively remove less important variables 
from the set, comparing the corresponding OOB error 
rates for each reduced set. The set with the lowest error 
rate is selected as the optimal feature set, determining the 
optimal quantity of features.

For the third step, the GKF is chosen as the kernel 
function for the least squares SVM model. The parameters 
of the kernel function and the penalty parameter in the 
model are determined through a GA to find the optimal 
parameter combination globally. Initially, the SVM param-
eters are encoded and an initial population is randomly 
generated. The GA process includes setting the popula-
tion size, termination criteria based on evolution iterations, 
crossover and mutation probabilities, and initializing the 
parameter combination within specified ranges.

Next, the least squares SVM model is established us-
ing the kernel width parameter and penalty parameter, 
trained with the training dataset, and evaluated using 
RMSE as the fitness function for each individual in the 
population. The GA proceeds by selecting individuals 
based on fitness using the roulette wheel selection rule, 
performing crossover to generate new individuals, and 
introducing mutation with a defined probability. This it-
erative process continues until convergence criteria are 
met, optimizing to find the individual with the highest 
fitness as the optimal solution or until the maximum 
number of iterations is reached.

In the process of weighing the decision function of 
the accuracy of the least squares SVM model with the fit-
ness function of each individual of the population with 
the root mean square, by using the concrete raw material 
and the range of values of the mixing ratio as a constraint 
condition, it is guaranteed that each Reasonableness of 
the sample. The calculation model of the constraints is: 
(Chang & Chen, 2016).
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where 1X  is wcr, 3X  is cement amount, 4X  is fly ash, 5X  
is fine aggregate, X6 is coarse aggregate, 8X  is silica fume 
consumption, fcu, k is concrete cube compressive strength 
(CS) standard value.

As another parameter optimization scheme of the 
present work, by determining kernel function, selection 
parameter, set up least squares SVM (LSSVM) model, the 
optimal feature set that step 2 obtains is used as the in-
put variable of LSSVM, Train the sample data, output the 
prediction result of C-Carb depth, and use the test set to 
verify the prediction result of the model. Concretely: build 
the least squares SVM model, use the optimal feature vari-
able set as the input variable of the least squares SVM 
model, and the corresponding C-Carb depth value as the 
output variable, to the LVSS. The machine model is trained, 
and then the test data set is used to verify the predic-
tion result of the trained least squares SVM model on the 
ACP of concrete. That is, the GKF is selected to construct 
the least squares SVM model; the optimal feature variable 
set is used as the input variable of the least squares SVM 
model, and the corresponding C-Carb depth value is used 
as the output variable, and the ten-fold cross-validation is 
used to carry out Parameter optimization to determine the 
optimal parameter combination of the penalty parameter 
C of the least squares SVM model and the GKF kernel 
width parameter s2; the least squares SVM model using 
the optimal parameter combination based on the optimal 
feature variable set. Predict the test data set and output 
the prediction results to verify the carbonation resistance 
of concrete predicted by the trained least squares SVM 
model (Ibrahim et al., 2019).

More specifically, at first, the GKF (RBF) that selection 
mapping ability is strong, generalization performance is 
excellent, applicability is good establishes.

The least squares SVM (LSSVM) model, the GKF ex-
pression is as follows:

( )
2

2
, exp ,

2
i

i j
x x

K x x
 − = − s 
 

      (3)

where x is the variable of input, and ix  is the ith sample, 
and jx  is the jth sample, and 2s  is the kernel width pa-
rameter.

Next, adopt ten-fold cross validation to carry out pa-
rameter optimization, determine the penalty parameter 
of model and the optimal parameter combination of GKF 
kernel width parameter s2.

Finally, based on the optimal feature set, the sample 
training set and the test set are trained and predicted, and 
the output prediction results are represented by the actual 
value and the predicted value fitting curve.
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In fourth step of the current work, input test number 
set and utilize concrete ACP prediction model to predict 
C-Carb depth value, and verify the effect of concrete ACP 
prediction model of described concrete ACP prediction 
model. That is to analyze the error of the prediction results, 
select the SVM and the ANN without feature selection for 
modeling, and use the same error index for comparative 
analysis to verify the applicability and superiority of the 
model. That is to build the calculation model of the RMSE 
and R2 of the model performance parameters, and use the 
SVM model without the feature selection of the influenc-
ing factors and the prediction results of the ANN predic-
tion model and the result of the feature selection of the 
influencing factors. The prediction results of the concrete 
ACP prediction model are analyzed for errors, and the ef-
fect of the concrete ACP prediction model for predicting 
the C-Carb resistance is verified (Khalaf et al., 2021).

Concrete, at first, select model performance parameter 
RMSE, R2 to evaluate the predictive accuracy of model, to 
the further verification of output fitting curve effect, and 
expression is as follows:
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where   oy  is sample data observation value, and py  is 
model prediction value, and n is sample number.

Next, select the SVM that does not carry out feature 
selection and the result of ANN prediction model and do 
comparative analysis with it, affirmed the effectiveness and 
the correctness of RF feature screening again.

4.3. Control parameters for each of the 
algorithm
The control parameters for each algorithm separately as 
below:

 ■ Index System and Data Collection: You’ve established 
an index system for concrete ACP (Alkali Carbonate 
Reaction Potential), incorporating factors like water-
binder ratio, cement dosage, environmental factors 
(e.g., RH, temperature, CO2 concentration), and test 
factors. Sample data was collected and processed 
through denoising, splitting into training and test-
ing sets.

 ■ RF Regression Model: The RF regression model was 
employed for feature selection. Features impacting 
concrete ACP depth were evaluated based on the RF 
model’s importance metrics (%IncMSE, IncNodePu-
rity). This step helped identify key variables influenc-
ing carbonation depth.

 ■ Variable Importance Evaluation: Through iterative 
processes like RFE, you narrowed down to an optimal 
set of features (e.g., Tcarb, CS, C-CO2, RH, TEMP, fasc, 

cement content, water-binder ratio) that minimized 
error rates, thereby enhancing model accuracy.

 ■ LSSVM Model Construction: A GKF was selected for 
the Least Squares SVM (LSSVM) model, optimized 
using genetic algorithms to determine the best pa-
rameter combinations for predicting carbonation 
depth accurately.

 ■ Model Evaluation: The trained RF-LSSVM model 
demonstrated superior performance compared to 
SVM without feature selection ANNs, as evidenced 
by lower RMSE (Root Mean Square Error) and higher 
R2 (coefficient of determination) values. This validates 
the efficacy of your proposed approach in predicting 
concrete ACP reliably.

4.4. Peculiarity of their methods which used 
in this research
In the field of predicting the Accelerated Carbonation Per-
formance (ACP) of concrete, the methods utilized in the 
research are characterized by several distinctive features:

 ■ Integration of RF and LSSVM: The research combines 
RF for feature selection and LSSVM for modeling. 
This integration leverages RF’s ability to handle com-
plex datasets with LSSVM’s robust regression capa-
bilities, aiming to improve predictive accuracy while 
reducing computational complexity compared to 
traditional SVM approaches.

 ■ Comprehensive Feature Selection: The study em-
ploys a detailed feature selection process using RF. 
RF is utilized to evaluate the importance of each fea-
ture (influencing factors such as water-binder ratio, 
cement dosage, environmental factors like relative 
humidity and temperature, etc.), helping to identify 
the most critical variables that affect concrete ACP. 
This approach ensures that only the most relevant 
factors are included in the predictive model, enhanc-
ing its efficiency and accuracy.

 ■ Optimization Using Genetic Algorithms: Genetic algo-
rithms are employed to optimize the parameters of 
the LSSVM model. This method systematically search-
es for the best combination of kernel parameters and 
penalty factors, ensuring that the SVM model is fine-
tuned to provide the most accurate predictions of 
concrete carbonation depth. The use of genetic algo-
rithms helps in finding global optima efficiently, which 
is crucial for enhancing model performance.

 ■ Cross-validation and Error Analysis: The research ap-
plies rigorous cross-validation techniques (e.g., 10-
fold cross-validation) to assess model performance 
objectively. This process helps in validating the pre-
dictive capability of the developed models across 
different datasets, ensuring their robustness and re-
liability. Additionally, error analysis metrics such as 
RMSE and coefficient of determination (R-squared) 
are used to quantitatively evaluate and compare the 
accuracy of different models, providing insights into 
their predictive efficacy.
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The methods were validated internally through rigor-
ous data preprocessing, model selection, feature selection, 
and evaluation using cross-validation techniques. This en-
sures that the models are robust and not overfitting to 
the training data.

5. Results and discussion

The methodology employed in this study utilizes RF to 
effectively handle sample data with multiple indices and 
noise interference, identifying pertinent feature variables 
to enhance the predictive accuracy of the LSSVM model. 
This approach results in more precise and reliable predic-
tions of C-Carb depth. Moreover, the innovative method 
integrates RF with Least Squares SVM to establish a hy-
brid intelligent model, leveraging the strengths of differ-
ent algorithms while mitigating shortcomings of existing 
methods. This hybrid model reduces model dimensional-
ity, speeds up training, and resolves issues related to un-
stable prediction results, offering a rapid and effective tool 
for concrete ACP prediction.

The study specifically selects Least Squares SVM for 
constructing the predictive model, improving upon tradi-
tional SVM approaches. The RF-LSSVM model transforms 
complex quadratic programming problems into solutions 
of linear equations, thereby reducing computational com-
plexity and minimizing error rates, leading to enhanced re-
gression problem solving. The efficacy and correctness of 
RF feature screening are validated through error analysis. 
Additionally, GKF is chosen for its superior performance 
and simultaneous advantages of radial basis kernel func-
tions, along with robust anti-interference capabilities.

The proposed methodology for predicting concrete 
ACP encompasses the acquisition of sample data for the 
influence factor index system, RF regression model feature 
selection, and the modeling and evaluation of the Least 
Squares SVM (Sharafati et al., 2020).

5.1. Influence factor index system sample 
data acquisition
Fourteen influencing factors–such as the water-binder 
ratio (wbr), compressive strength (CS), carbon dioxide 
concentration (C-CO2), relative humidity (RH), tempera-
ture (TEMP), and others–are utilized as input variables. 
The output is the C-Carb depth. The dataset comprises 
96 monitored samples, and a snapshot of the data is pro-
vided in Table 1, showing critical variables affecting con-
crete carbonation.

5.2. RF regression model feature selection
The dataset is split into a training set of 76 samples and 
a test set of 20. The RF regression model is trained with 
parameters such as mtry = 5 and Ntree = 800. The im-
portance of each variable is visualized using metrics like 
%IncMSE and IncNodePurity, indicating that factors such 
as carbonation time (Tcarb), CS, C-CO2, RH, and TEMP have 
a strong influence on the depth of carbonation. The Pear-
son correlation analysis confirms these findings, showing 
strong positive correlations for some variables (e.g., C-CO2 
and RH) and negative correlations for others (e.g., Tcarb).

The RF program package in R software was utilized 
to visualize the Importance function evaluation index, as 
depicted in Figure 2. The variables are arranged in de-
scending order of importance, with a larger increase in 
node purity (IncNodePurity) indicating stronger variable 
importance. Similarly, a higher value of mean square error 
reduction (IncMSE) signifies greater variable importance.

From Figure 2, it is evident that factors such as CS, car-
bonation time (Tcarb), relative humidity (RH), temperature 
(TEMP), carbon dioxide concentration (C-CO2), water con-
tent (wc), fly ash content (fasc), water-binder ratio (wbr), and 
concrete specimen volume (csv) exhibit relatively high impor-
tance. This indicates that these variables significantly influ-
ence the depth of concrete carbonation (Sim & Park, 2011).

Table 1. Sample data

csv m3 wcr CS
MPa

cc
kg/ m3

fasc
kg/ m3

fagc
kg/ m3

cagc
kg/ m3

wrc 
(%)

wc
kg/ m3

RH 
(%)

TEMP 
(C) C-CO2

Tcarb
d

CS 
MPa

C-Carb 
depth mm

0.0032 0.6 52.5 270 0 748 1220 2.7 160 70 20 20 28 46.8 6.6
0.0032 0.6 52.5 243 42.5 742 1212 2.84 160 70 20 20 28 43.5 10.4
0.0032 0.6 52.5 189 121.5 732 1194 3.11 160 70 20 20 28 33.4 18
0.004 0.45 52.5 280 120 714 1165 2.4 180 70 20 20 7 32 6.1
0.004 0.45 52.5 280 120 714 1165 2.4 180 70 20 20 28 38 7.9
0.004 0.45 52.5 200 200 714 1165 2.4 180 70 20 20 7 23 11.2
0.004 0.45 52.5 200 200 714 1165 2.4 180 70 20 20 28 50.5 12.5
0.004 0.6 42.5 295 0 729 1106 2.95 177 63 19 0.03 28 30.2 1.5
0.004 0.6 42.5 295 0 729 1106 2.95 177 63 19 0.03 60 32.9 2.1
0.004 0.6 42.5 295 0 729 1106 2.95 177 63 19 0.03 90 34.8 2.5

.. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
0.003 0.45 42.5 520 0 525 1020 0 234 70 20 20 28 58 1.7
0.003 0.45 42.5 607 0 464 901 0 273 70 20 20 28 46.5 8.7
0.003 0.45 42.5 693 0 403 782 0 312 70 20 20 28 43.5 9



Journal of Environmental Engineering and Landscape Management, 2025, 33(2), 226–241 235

Figure 2. Schematic diagram of each variable with the visual 
index mean square residual error reduction (%IncMSE)

Figure 3. Influence factor correlation size figure

package, Figure 3 illustrates the results. The Pearson cor-
relation coefficient ranges from –1 to 1, where darker and 
larger circles indicate stronger absolute correlation coef-
ficients between variables, and vice versa for weaker cor-
relations.

From Figure 3, it is evident that factors such as car-
bon dioxide concentration (C-CO2), relative humidity (RH), 
and temperature (TEMP) exhibit a strong positive correla-
tion with C-Carb depth. Conversely, variables like concrete 
specimen volume (csv), carbonation time (Tcarb), and wa-
ter reducing agent (wrc) show a significant negative cor-
relation with C-Carb depth, consistent with the importance 
ranking diagram.

Additionally, to validate the predictive performance, 
the RMSE and R² values for different variable combinations 
were obtained through 10 repetitions of 5-fold cross-vali-
dation, as summarized in Table 2 (Nguyen-Sy et al., 2020).

From the table, it is analysed that,
 ■ The RMSE values range from 2.5902.5902.590 to 
4.3324.3324.332. A lower RMSE suggests that the 
model predictions are closer to the actual observed 
values. Therefore, variables 9 to 14 generally have 
lower RMSE values, indicating better model perfor-
mance in terms of prediction accuracy compared to 
variables 1 to 8.

 ■ The R-squared values range from 0.1340.1340.134 
to 0.6180.6180.618. A higher R-squared value indi-
cates that a larger proportion of the variance in the 

The Pearson correlation function in R software was 
employed to analyze the correlation between influencing 
factors and C-Carb depth, validating the previously men-
tioned order of importance. Using the ggplot2 program 
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dependent variable is explained by the independ-
ent variables. Variables 3, 9, and 10 show higher R-
squared values, suggesting these variables provide a 
better fit to the data and explain more variability in 
the dependent variable compared to others.

To visualize the change in RMSE according to Table 2, 
Figure 4 is drawn. 

Figure 4. RMSE change trend figure when different variable 
combinations are involved

The RMSE values for the variables analyzed in this study 
(Figure 4) vary across a range of 2.6 to 3.7. Variable 1 had 
the highest RMSE at 3.7, indicating a larger discrepancy 
between predicted and actual values compared to other 
variables. Variables 6, 10, 11, and 12 exhibited the lowest 
RMSE values, ranging from 2.63 to 2.64, suggesting higher 
accuracy in prediction for these variables. Variables 3, 7, 
and 14 showed moderate RMSE values around 2.7, while 
variables 2, 4, 5, 8, and 13 had RMSE values between 2.65 
and 2.81, indicating intermediate predictive performance. 
These RMSE values provide insights into the accuracy and 
variability of predictions across the 14 influencing factors 
considered in the analysis.

When the number of variables reaches 9, the RMSE 
value reaches its minimum, indicating the highest model 
accuracy at this point. Utilizing the RFE method based 
on importance ranking, the model is systematically built 
through cross-combination, progressively eliminating un-
important variables until all feature variables are evaluated. 
This process culminates in identifying the optimal set of 
variables.

The optimal index set includes variables such as car-
bonation time (Tcarb), compressive strength (CS), carbon 
dioxide concentration (C-CO2), relative humidity (RH), tem-
perature (TEMP), fine aggregate content (fasc), cement 
content (cc), water-binder ratio, and water content. These 
variables are selected to construct the least squares SVM 
model, ensuring optimal predictive performance (Nguyen-
Sy et al., 2020).

5.3. Least squares SVM modeling and 
evaluation
Randomly selecting 76 data groups as the SVM training 
set and the remaining 20 groups as the test set, we utilize 
nine influencing factors–Tcarb, CS, C-CO2, RH, TEMP, fly 
ash content, cement dosage, water-binder ratio, and wa-
ter content–as input variables for the model. The output 
variable is C-Carb depth. We load the e1071 version 1.6-7 
package in R language and optimize parameters using the 
10-fold cross-validation (CV) method. The optimization re-
sults are then outputted as shown in Table 3.

Table 3. Output optimization results

S.No. gamma cost error

1 1e-04 0 .1 17 .48027
2 1e-03 0 .1 17 .04788
3 1e-02 0 .1 14 .59542
4 1e-01 0 .1 11 .12708
5 1e-00 0 .1 14 .29068
6 1e-04 1 17 .04084
7 1e-03 1 14 .36732
8 1e-02 1 9 .24183
9 1e-01 1 6 .64675
10 1e-00 1 9 .80437
11 1e-04 10 14 .35399
12 1e-03 10 9 .30037
13 1e-02 10 4 .82437
14 1e-01 10 4 .29084
15 1e-00 10 8 .57455
16 1e-04 100 9.32133
17 1e-03 100 5.67290
18 1e-02 100 3.46779
19 1e-01 100 4.65478
20 1e-00 100 8.57457

The gamma values range from 10−410^{-4}10−4 to 
111, across different scales (1, 10, 100), which suggests 
a logarithmic scale exploration (e.g., 10−410^{-4}10−4, 

Table 2. RMSE and R2 change table for different variable 
combinations

Variables RMSE R-squared

1 4 .332 0 .134
2 3 .454 0 .295
3 2.640 0.610
4 2.730 0.573
5 2.804 0.551
6 2.655 0.594
7 2.692 0.588
8 2.714 0.584
9 2.590 0.618
10 2.608 0.611
11 2.643 0.602
12 2.607 0.608
13 2.623 0.600
14 2.656 0.590
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10−310^{-3}10−3, 10−210^{-2}10−2, 10−110^{-1}10−1, 
111).

The cost values also vary across powers of ten (1, 10, 
100), which is typical in SVM parameter tuning to explore 
a wide range of regularization strengths.

Error Values are the results obtained from applying 
each combination of gamma and cost parameters. Lower 
error values typically indicate better model performance, 
though the specific interpretation depends on the context 
of the problem (e.g., classification accuracy, mean squared 
error).

Observing the data, it is noted that, 
 ■ Higher values of gamma (e.g., 111 and 100100100) 
generally result in lower errors across different cost 
values, indicating that in this dataset, higher gamma 
values might be more suitable.

As cost increases (from 0.10.10.1 to 100100100), er-
rors generally decrease, suggesting a preference for higher 
regularization strengths in this specific context.

The result of parameter optimization is: best c = 0.01, 
best g = 100, best performance = 3.467780 (minimum), 
input this parameter and set up the least squares SVM 
model, training fitting result to training sample as shown 
in Figure 5, the prediction results for the test samples (Fig-
ure 6). It can be seen (Figure 5) that the simulation value 
is very close to the actual value, and the simulation effect 
is better. Use the trained RF model to predict the test set 

(Figure 6), it can be seen that the predicted value curve 
on the test set of the RF model is closer to the real value 
(Vasanthalin & Kavitha, 2021; Penido et al., 2022).

The provided data (Figure 5) represents the concrete 
carbonation depth values along with the corresponding 
number of samples for each depth value. Concrete car-
bonation depth refers to the penetration depth of carbon 
dioxide into concrete, which can affect its durability and 
structural integrity over time.

The dataset appears to be structured with two columns:
 ■ Actual Concrete carbonation depth value: This col-
umn lists the actual depth values in centimeters 
where carbonation has occurred within the concrete 
structure.

 ■ No. of samples: This column indicates the number of 
instances or samples where the carbonation depth 
matches the corresponding value listed.

Interpretation and Analysis:
The dataset shows a range of carbonation depths from 

0 cm to 73 cm. Here are some observations and insights:
 ■ Distribution of Carbonation Depths: The data indi-
cates that carbonation depths vary widely, with high-
er frequencies observed in the mid-range depths 
(around 4 cm to 14 cm) and some peaks at higher 
values (around 22 cm to 24 cm).

Implications for Concrete Durability: Deeper carbon-
ation can weaken concrete structures over time, affecting 

Figure 5. RF-LSSVM model training number set fitting result

Figure 6. LSSVM model test number set prediction result
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their ability to withstand environmental stresses and re-
ducing their lifespan.

The data (Figure 6) presented details the relationship 
between the actual concrete carbonation depth and the 
fitting carbonation depth, along with the number of sam-
ples at each depth.

At a carbonation depth of 0 mm, there are 11 samples 
where the actual carbonation depth is also 0 mm. As the 
carbonation depth increases, the number of samples fluc-
tuates. For example, at carbonation depth of 1 mm, there 
are 2 samples, and at 2 mm, there are 3 samples. The 
number of samples continues to increase with the car-
bonation depth up to 10 mm, where it reaches a peak of 
10 samples.

Beyond 10 mm, the number of samples starts to show 
variability again. At 11 mm, there are 5 samples, while at 
12 mm, there are 10 samples. The number of samples 
at 13 mm and 14 mm is 6 each, and at 15 mm, there 
are 11 samples. The trend continues with 5 samples at 
16 mm, 6 samples at 17 mm, and 7 samples at 18 mm and 
19 mm. Finally, at a carbonation depth of 20 mm, there 
are 13 samples.

This distribution suggests a varied data set with some 
depth intervals having significantly more samples than 
others, indicating possible areas of greater or lesser inter-
est or data collection intensity in the study of concrete 
carbonation.

Using the optimized influencing factors, a Least 
Squares SVM (LSSVM) model is built, with parameter tun-
ing performed using 10-fold cross-validation. Key param-
eters (gamma and cost) are varied across a wide range, 
and the optimal combination (best gamma = 100, best 
cost = 0.01) yields the lowest prediction error, indicating 
that the LSSVM model achieves a good fit with the data.

5.4. Prediction result evaluation
In order to check the superiority of RF fusion least squares 
SVM model (RF-LSSVM), select the SVM that does not 
carry out feature selection to model and do comparative 
analysis with ANN, select Equation (3) The RMSE and the 
certainty coefficient R2 of the Equation (4) are used to 
measure the prediction accuracy of the model, and the 
error comparison results (Table 4) (Zeng et al., 2022; Gan-
domi et al., 2014). 

Table 4. Comparison of error of the competent methods

Model
Performance

RMSE R2

RF-LSSVM 5e-5 0.999
SVMs (without feature selection) 0.984 0.896
ANNs 3.57 0.812

The results demonstrate that the RMSE of the RF-LSS-
VM model prediction is closest to 0, and the determination 
coefficient s2 is closest to 1. This indicates that the predic-
tion accuracy of the RF-LSSVM model is superior to that 

of the simple SVM and artificial neural network models. 
Therefore, the RF-LSSVM model shows a promising ap-
plication prospect in the research field of predicting the 
ACP of concrete based on materials and mix ratios. This 
structured comparison highlights the distinct features and 
relative advantages of the proposed RF-LSSVM approach 
compared to other ML algorithms in predicting concrete 
carbonation depth, as shown in Table 5.

Table 5. Comparison of machine learning approaches for 
predicting concrete carbonation depth

Aspect Proposed work  
(RF-LSSVM)

Comparison with 
other ML algorithms

Dataset 
Characteristics

96 samples, 14 
influencing factors 
(e.g., water-binder 
ratio, RH, TEMP)

Typically includes 
multiple influencing 
factors, exact details 
not specified

Machine Learning 
Models

RF for feature 
selection, LSSVM 
optimized with GKF

SVM, ANNs, 
Decision Trees, 
Random Forests, 
etc.

Feature Selection 
Approach

RF for identifying 
critical variables

PCA, Recursive 
Feature Elimination, 
Lasso Regression, 
etc.

Model Training 
and Optimization

Genetic algorithm for 
LSSVM optimization

Grid Search, 
Bayesian 
Optimization, 
Gradient Descent, 
etc.

Evaluation 
Metrics RMSE, R-squared

MAE, Accuracy, 
Precision, Recall, F1-
score, etc.

Cross-Validation 
Technique

10-fold cross-
validation

Leave-One-Out, 
Stratified K-Fold, 
Nested Cross-
Validation, etc.

Results

RF-LSSVM 
outperformed SVM 
and ANNs in terms 
of RMSE, R-squared

Comparative 
performance metrics 
across different 
algorithms

Visualization 
and Correlation 
Analysis

Visualized variable 
importance and 
correlations

Similar techniques 
used for 
interpretability and 
feature analysis

Validation 
(Internal)

Rigorous data 
preprocessing, model 
selection, cross-
validation

Similar practices 
for ensuring model 
robustness and 
reliability

The study has limitations. Firstly, the dataset used con-
sists of 96 samples, which may limit the generalizability of 
the findings to broader applications within the concrete 
industry. While RF was employed for feature selection, 
further exploration of its parameters and comparison with 
alternative methods could refine the variable selection 
process. Moreover, the model’s performance across vary-
ing concrete compositions, environmental conditions, and 
geographical locations requires more extensive validation 
to ensure robustness and applicability. Although evalua-
tion metrics such as RMSE and R-squared were utilized, 
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additional metrics could provide a more comprehensive 
assessment of the model’s predictive accuracy and reli-
ability. Furthermore, enhancing the interpretability of the 
model’s predictions and the underlying reasons for these 
predictions through explainable AI techniques could im-
prove trust and usability in practical settings. Lastly, 
validating assumptions about input variables and their 
relationships with concrete carbonation depth through 
rigorous sensitivity analyses and validation studies would 
strengthen the study’s conclusions and practical relevance.

The RF-LSSVM model’s performance is superior com-
pared to SVM without feature selection and ANNs. As 
shown in Table 4, the RF-LSSVM achieves an RMSE clos-
est to 0 and an R² value closest to 1, suggesting that it 
offers the most accurate predictions of concrete carbon-
ation depth among the models considered. The structured 
comparison in Table 5 also highlights the strengths of the 
RF-LSSVM approach, including its use of RF for feature se-
lection, optimization via genetic algorithms, and high pre-
diction accuracy across evaluation metrics like RMSE and R².

Hence the hybrid RF-LSSVM model proves to be a ro-
bust and reliable approach for predicting concrete carbon-
ation depth, significantly outperforming traditional SVM 
and ANN models.

6. Conclusions

The RF-LSSVM model developed in this study represents 
a notable advancement in predicting concrete ACP, par-
ticularly in assessing carbonation depth. By combining the 
strengths of RF for feature selection with LSSVM for accu-
rate modeling, this hybrid approach addresses the inher-
ent complexities in concrete data analysis more effectively 
than traditional methods.

The quantitative results of the RF-LSSVM model are 
compelling, demonstrating a reduced RMSE of 5e-5 and a 
high R-squared value of 0.999. These metrics underscore 
the model’s robustness and superior predictive accuracy. 
The RF-LSSVM model’s performance outstrips that of con-
ventional SVMs and ANNs, highlighting its potential for 
providing precise and reliable predictions crucial for con-
crete durability assessments.

Beyond enhancing prediction accuracy, the RF-LSSVM 
model significantly improves computational efficiency. The 
integration of RF for feature selection simplifies the mod-
el by reducing dimensions and optimizing training times. 
This efficiency is crucial in practical scenarios where timely 
and accurate assessment of concrete ACP is essential for 
informed decision-making in construction and infrastruc-
ture projects. The model’s ability to provide rapid predic-
tions can aid engineers and construction professionals in 
making better choices about materials and maintenance 
strategies, thus enhancing the overall durability and safety 
of concrete structures.

Additionally, the comprehensive feature analysis and 
correlation studies conducted as part of this research have 
provided valuable insights into the factors influencing con-
crete carbonation. By identifying and quantifying these 

factors, the study contributes to a deeper understanding 
of carbonation mechanisms and enriches the knowledge 
base in the field of construction material science. This de-
tailed analysis not only aids in predicting ACP but also 
informs the development of more effective protective 
measures and treatments for concrete.

The success of the RF-LSSVM model in this study un-
derscores its potential as a powerful tool for advancing 
concrete durability assessments. Future research could 
further refine this model and explore its application to a 
wider range of concrete types and environmental condi-
tions. Overall, this innovative approach offers significant 
benefits for optimizing concrete durability assessments, 
contributing to the development of more resilient and 
long-lasting infrastructure. 
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