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Highlights:
 ■ in this paper a novel integrated approach is proposed for continuously evaluating the performance of wastewater treatment plants (WWTPs), with a 
focus on treated wastewater quality assessment and reuse of treated water for beneficial purposes like irrigation, aquarium, groundwater recharge, 
and in river water discharge based on pollution level in treated water;

 ■ a model-based clustering with density estimation is implemented to generate the non-overlapped clusters to categorize the clusters by assuming that 
each data object originate from the mixture of underlying probability distributions;

 ■ cluster analysis using the Euclidean distance resulted in three clusters labeled under a specified category of water polluted: non-polluted, lightly 
polluted, highly polluted or slightly polluted. Water quality parameters like suspended solids (SS) have been considered for the analysis;

 ■ further, it motivates the reuse of treated water for beneficial purposes like irrigation, aquarium, groundwater recharge, and river water discharge 
based on pollution level in treated water.

Article History:  Abstract. One of the most promising efforts to fight against the water scarcity threat is to reuse the treated 
water released from WasteWater Treatment Plants (WWTP). The objective of this paper is to propose an inte-
grated approach for continuously evaluating the performance of wastewater treatment plants (WWTPs), with a 
focus on treated wastewater quality assessment and reuse of treated water for beneficial purposes like irriga-
tion, aquarium, groundwater recharge, and in river water discharge based on pollution level in treated water. 
This paper implemented a model-based clustering with density estimation to generate the non-overlapped 
clusters to categorize the clusters. Cluster analysis using the Euclidean distance resulted in three clusters la-
beled under a specified category of water polluted: non-polluted, lightly polluted, highly polluted or slightly 
polluted. Unlike standard clustering algorithms like K-means, hierarchical that produce optimized clusters in 
statistical terms that deviate from naturally categorized clusters, model-based clustering with density estima-
tion operates on the assumption that each data object originates from the mixture of underlying probability 
distributions. Water quality parameters like suspended solids (SS) have been considered for the analysis. Our 
experimental results conclusively show the polluted levels of wastewater from WWTP using a model-based 
clustering approach. The Dataset used in this work has been derived from the wastewater treatment plant 
located in Manresa, a town of 100,000 inhabitants near Barcelona (Catalonia). The plant treats a flow of 
35,000 m3/day, mainly domestic wastewater, although wastewater from industries located inside the town is 
received in the plant too. In this research, the plant’s behavior over 527 days are under consideration. Model-
based density clustering algorithm discovers 3 clusters, with half lying in size range of 14–89 and a maximum 
size of 352. With the help of natural clusters generated, our results show that out of 445 days, in 352 days, 
the treated water is almost non-polluted. By this, we can assess the performance of the wastewater treatment 
plant.
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of each entity so that the groups are homogenous and 
well-separated. It is also known as the unsupervised classi-
fication of patterns and has many applications in different 
areas. Several clustering methods can perform partitions 
but need help during cluster characterization (Jain et al., 
1999). The clustering objective is to find the co-clusters 
to be merged, choosing the sets of objects with the same 
properties. An appropriate variable required for cluster-

1. Introduction 

Clustering problems arise in numerous disciplines, includ-
ing medicine, biology, and environmental issues. Several 
approaches have been proposed for defining quality crite-
ria for solutions (clusters) and the methods to interpret the 
solution obtained. During cluster analysis, one wishes to 
partition objects into groups based on the given features 
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ing has to be selected at the beginning of the chosen 
clustering process so that it has to differentiate the data
segments perfectly, relatively satisfying the objective func-
tions. Generally, one should avoid using many numbers 
of clustering variables since it stops the iteration process 
very quickly, as all the data segments are no longer dis-
similar. Our problem comes under the above case. Since 
the objective is to categorize or label the cluster in terms 
of pollution, the selected variable should significantly im-
pact the pollution. Cluster heads can be used as service 
repository to send or publish service request (Buvana & 
Suganthi, 2015).

Finally, the selection of clustering variables depends 
on data availability or the objective function to satisfy 
(Mukhopadhyay et al., 2012). Next, by selecting a particu-
lar clustering procedure, one can determine how clusters 
have to be formed. It involves optimizing, such as minimiz-
ing the within-cluster variance or maximizing the distance 
between the objects or clusters. Constrained multiobjec-
tive problems can be solved by modifying the dominace 
in dense population (Deb et al., 2002). But fuzzy algo-
rithms leads to formation of uninterested optimal clusters 
which is not suited for formation of well seperated clus-
ters (Dunn, 1973). Our paper uses model-based clustering 
along with density estimation to achieve our objective. 
In model-based clustering, the data d is viewed as tak-

ing from mixture density ( ) ( )
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where pc 

is the probability density function of the observations in 
group c, and bc is the probability that observation comes 
from the cth mixture component (bc Є (0, 1). The Gaussian 
distribution consistently models every component. Finite 
mixture models provide a basic statistical approach for 
clustering. Each single component probability corresponds 
to an individual cluster, and comparisons can be made for 
the models which differ in the component distributions 
or several components using some statistical criteria. 
Model estimation for the data is done by the clustering 
process, which allows non-overlapping clusters, resulting 
in a probabilistic clustering that measures the uncertainty 
of observations belonging to the components of the finite 
mixture. In the final step, the solution has to be interpreted 
by labeling and defining the generated clusters. This work 
has been done by assessing the values of water quality 
parameters. A similarity measure cam also be used to 
identify and measure the separative property of the 
formed clusters (Davies & Bouldin, 1979). Model based 
clustering can also be used to produce overlapped clusters 
in discriminat analysis and multivariate analysis (Fraley & 
Raftery, 2007).

This paper’s principal objective is to suggest an inte-
grated method for the automated monitoring and evalu-
ation of treated water quality from wastewater treatment 
plants (WWTP). With the use of clustering techniques, this 
method seeks to classify the pollutant levels of treated 
wastewater in order to make it easier to potentially re-
use treated water for beneficial uses including irrigation, 
aquariums, groundwater recharging, and river discharge.

The study focuses on the following in particular: Using 
suspended solids (SS) as the primary water quality met-
ric, different clustering techniques (K-means, Hierarchical, 
and Model-based clustering) are implemented to classify 
treated water into distinct contamination levels.

Assessing how well various clustering techniques pro-
vide categories that accurately represent the quality of 
treated water, such as non-contaminated, lightly polluted, 
and highly polluted.

Recommending useful uses for reusing cleaned water 
in accordance with the contamination level found by the 
cluster analysis. 

2. Related work 

Anaokar et al. (2018) analyzed the efficiency of nine 
wastewater characteristics from 6 wastewater treatment 
plants. The values were compared with  limits suggested 
by Central Pollution Control Board of India. Quantitative 
and qualitative approaches have been used for ranking 
the water quality parameters. Ashfaq et al. (2010) sys-
tematically evaluated the performance of common efflu-
ent treatment plant (CETP). The Collected samples are 
examined for the following parameters Ammoniacal Ni-
trogen, COD pH, BOD, TSS, and TDS. Results state that 
major pollutants can be reduced after effective treatment. 
Baki et al. (2019) developed a prediction model to esti-
mate the value of Biochemical Oxygen Demand (BOD) by 
using the values of other water quality parameters like 
suspended solids, electrical conductivity, total nitrogen, 
pH, and chemical oxygen demand. Mazhar et al. (2019) 
treated wastewater by three biological treatments such 
as sequential, aerobic, and anaerobic, to predict the wa-
ter quality of industrial wastewater from paper and pulp. 
Along with this, simulation modeling by Mamdani Fuzzy 
Logic (MFL) is associated with some selected param-
eters. The treated water was irrigated to determine its 
phytotoxic effects. Nadiri et al. (2018) predicted the wa-
ter quality indices like Biological Oxygen Demand (BOD), 
total suspended solids, temperature, pH and chemical 
oxygen demand (COD) of Tabriz wastewater treatment 
plant (TWWTP), introduced a predictive ensemble model  
as supervised committee FL (SCFL). In the testing pro-
cess, the mean absolute percentage error (MAPE) for 
BOD, COD, and TSS varies from 10% to 13% for each FL 
model (Nourani et al., 2018). Predicts the performance of 
Nicosia wastewater treatment using three artificial intel-
ligence models Support Vector Machine (SVM), Feed For-
ward Neural Network (FFNN), and Adaptive Neuro-Fuzzy 
Inference System (ANFIS). The performance will be cal-
culated using chemical oxygen demand, biological oxy-
gen demand, and total nitrogen. An Ensemble model has 
been developed with daily data to improve the prediction 
ratio (Padalkar & Kumar et al., 2018). In Common effluent 
treatment plants (CETPs), observations have shown that 
the removal efficiencies and reliability of each measure 
(BOD, COD, and TSS) varied. It can be enhanced by op-
timising treatment procedures, particularly primary clari-
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flocculators and aeration tanks, which are crucial compo-
nents of any CETP, and releasing effluent with hydraulic 
and organic loading to the CETP in accordance with re-
quirements. Sharghi et al. (2019) explain that for selecting 
water effluent parameters of WWTP for Artificial Neural 
Network (ANN) modeling self-organization map as AI-
based clustering method was employed. Also, two other 
models using principle component analysis (PCA) and 
the variables found using the mutual information (MI) 
measure that is not linear were developed and compared 
with the ANN model. In cluster analysis, automatic classi-
fication using different cluster algorithms is discussed to 
provide the guidelines in order to choose the algorithm 
for application (Kaufman & Rousseeuw, 2009). Based on 
the distance between centroids, data set and distance 
measure, a validity function was proposed to identify the 
compactness of clusters (Xie & Beni, 1991). 

In order to address the pressing problem of water 
shortage, this study suggests an integrated method for 
monitoring treated water quality in wastewater treatment 
facilities (WWTPs) in order to regularly analyze their per-
formance. The study classifies treated water into natural 
groupings according to pollution levels using model-
based clustering with density estimation, providing a more 
accurate assessment than conventional techniques. Results 
from a WWTP in Manresa, Catalonia, show that the plant 
is effective because treated water is almost completely 
free of pollutants for a significant amount of the evalua-
tion period. This research contributes to resilience against 
water scarcity concerns by supporting sustainable water 
management practices and increasing the possibilities for 
recycling treated water for purposes such as agriculture 
and groundwater recharge.

3. Water quality assessment 

Reuse of treated wastewater has been demonstrated as 
a dependable option water asset, which can constitute 
a noteworthy segment of coordinated water assets ad-
ministration and give a powerful answer for adapting to 
water shortage conditions. Researchers have significantly 
improved water quality from wastewater treatment plants 
(WWTP) in recent years by building many models. After 
implementing a model, the effort has to be made to assess 
the quality of water yield by that model. This paper aims 
to assess the water quality parameters and to classify them 
where the treated water can be effectively used. 

River Pollution Index (RPI):
The “River Pollution Index,” or RPI for short, is a com-

prehensive index that serves as the foundation for the En-
vironmental Pollution Act’s (E.P.A.) current assessment of 
river quality (Diller, 2013). RPI is a coordinated marker that 
determines a waterway’s degree of contamination. The 
concentration of four water quality parameters – dissolved 
oxygen (DO), suspended solids (SS), biochemical oxygen 
demand (BOD5), and ammonia nitrogen (NH3-N) is used 
to determine the index value. Below are the RPI computa-
tion and comparative baselines (Table 1) (Diller, 2013).

We have used the dataset from the plant located in 
Manresa, a town in Catalonia with 100,000 residents, close 
to Barcelona. The 35,000 m3/day flow of wastewater that 
the facility handles is mostly from homes, though it also 
receives wastewater from businesses in the area. Eight of 
the system variables which are quality indicators are mea-
sured on a daily basis at various plant locations, including 
the input (P1), the pretreatment stage (P2), the biological 
reactor information (P3), and the plant’s water output (P4). 
This results in a set of 38 values each day, nine of which 
are performance percentages. This study has taken into 
account the plant’s behaviour over a period of 527 days. 

This paper assesses water quality parameters like sus-
pended solids (SS), pH, temperature, turbidity, total dis-
solved solids (TDS), and biochemical oxygen demand 
(BOD). Water quality studies that include total suspended 
solids (TSS) are necessary for wastewater treatment op-
erations since TSS is a crucial indication of environmental 
health. Large amounts of suspended organic and inor-
ganic particles are present in wastewater, which needs to 
be eliminated by filtration, settling/flotation, or screening. 
before environmental discharge. High amounts of TSS can 
reduce the quality of the water in the receiving environ-
ment if they are not adequately eliminated by treatment. 
Because of the suspended solids’ absorption of light, the 
water’s temperature rises and its oxygen content falls, 
making it unsuitable for aquatic life. The objective is to 
classify the water released from the plant at the end of the 
treatment process. All the instances in the dataset are col-
lected from the sensors daily. domain has been described 
as an ill-structured domain (Lichman, 2013). 

Number of occurrences: 527
Number of Features: 07
Attribute Information:
Every attribute is continuous and numerical.
1. PH-S (output pH)   
2. DBO-S (output biological demand of oxygen)

Table 1. RPI baselines comparison (Diller, 2013)

Water quality parameter Non polluted Lightly polluted Mode rately polluted Highly polluted

Ammonia Nitro gen (NH3-N) mg/L NH3-N ≦ 0.50 0.50 > NH3-N ≦ 0.99 1.00 ≦ NH3-N ≦ 3.00 NH3-N > 3.00
Dissolved Oxygen (DO) mg/L DO ≧ 6.5 6.5 < DO ≧ 4.6 4.5 ≧ DO ≧ 2.0 DO < 2.0
Suspended Solids (SS) mg/L SS ≦ 20.0 20.0 > SS ≦ 49.9 50.0 ≦ SS ≦100 SS > 100
Biochemical Oxygen Demand 
(BOD5) mg/L BOD5 ≦ 3.0 3.0 < BOD5  ≦ 4.9 5.0 ≦ BOD5 ≦ 15.0 BOD5 > 15.0
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3. DQO-S (output chemical demand of oxygen)
4. SS-S (output suspended solids)
5. SSV-S (output volatile suspended solids) 
6. SED-S (output sediments) 
7. COND-S (output conductivity)
Method of Sampling: Over the course of 527 days, 

wastewater samples were taken at regular intervals from 
the Manresa WWTP. These samples show wastewater in-
takes from both residential and commercial sources. 

Investigated Parameters: In addition to other perti-
nent indicators including pH, temperature, turbidity, total 
dissolved solids (TDS), and biochemical oxygen demand 
(BOD), Suspended solids (SS) are the main water quality 
parameters that were examined in this study. 

Period of Investigation: The investigation period ex-
tended 527 consecutive days, providing for a full analysis 
of the plant’s performance under varied conditions.

4. Methods 

The K-means clustering algorithm and Hierarchical clus-
tering algorithm is explained in this section. And our pro-
posed model-based clustering algorithm with density es-
timation is explained in detail.

4.1. K-means clustering
K-means is an unsupervised clustering algorithm that finds 
groups within the data (Burkardt, 2009) K-means cluster-
ing seeks to divide a collection of observations (x1; x2; ... ; 
xn) into a set of k clusters (≤n) such as S = S1; S2; ... ; Sk in 
order to minimise the within-cluster sum of squares. Each 
observation is a d-dimensional vector which is defined as 
the sum of distance functions between each cluster point 
and the k centres. K-means’ objective functionis to identify

2
arg min 1 – ,t i is k i x S x c= ∈∑ ∑  (1)

where ci is the centroid of points in Si.
The K-means clustering algorithm’s sensitivity to initial 

centroids means that various initial centroids may produce 
different clusters, which is one of the method’s main limi-
tations. A preprocessor can also be used in Kmeans algo-
rithm to produce well seperated clusters (Baridam, 2012). To 
optimize the categorization of clusters in numerical dataset, 
K-means algorithm is well suited (Begum et al., 2016).

4.2. Hierarchical clustering
The following represents a general agglomerative algo-
rithm for hierarchical clustering:

Algorithm 1
Step 1. Determine all inter-object dissimilarities.
Step 2. Generate clusters from the two closest clusters  

or objects.
Step 3. Redefine differences that exist between the new 

cluster and other objects or clusters, leaving the other in-
terpoint dissimilarities unaltered.

Step 4. Return to Step 2 until every item is found in a 
single cluster.

Step 1 often calls for O(N2) computations, or N(N – l)/2 
inter-object dissimilarities. Although the number of vari-
ables influences the amount of time needed for calcula-
tions, they are typically thought of as constants for each 
given data collection. In Steps 2 and 3, it might be worth-
while to think about maintaining a sorted list of all the 
dissimilarities that are being considered; this would require 
an initial sorting time of O(N2 log N) and subsequent up-
dating time. If not, any execution of Step 2 will need O(N2) 
time. The hierarchy calls for N – 1 iterations (Steps 2, 3, 
and 4) in order to form the N – 1 cluster at most. Step 3 in-
cludes applying the Lance-Williams combinatorial formula 
and can be completed in O(N) time. If k is any other object 
or cluster and the recently merged objects or clusters are 
indexed by / and y, the formula is:

D(i +j, k) = a(i)d(i, k) + a(j)d(j, k) + bd(i, j) + c|d(i, k) – d(j, k)|, 
        (2)

where the values of a, b and c depend on the clustering 
strategy. In addition to uniting what may initially appear 
to be multiple operations, the aforementioned recurrence 
formula also helps with the study of subordinate ques-
tions, such as the circumstances under which inversions 
(or reversals) occur. i.e.

d(i + j, k) ≥ d(i, j) for some i, j, k  
(Murtagh, 1983; Batagelj, 1981). (3)

The main disadvantage of hierarchical clustering is 
that it often won’t provide the best solution. When miss-
ing data is found, it will swamp up and work poorly with 
mixed data types. Hierarchical clustering is not suitable for 
huge data sets.

4.3. Proposed algorithm
We adopted model-based clustering, which assumes that 
each data object originates from a combination of the 
probability distributions at work. Every cluster has a dis-
tinct distribution associated with it. The likelihood of the 
expression data is maximized to estimate the parameters 
of each distribution, or cluster. Figure 1 shows the flow 
of our algorithm, and the following process explains how 
non-overlapping clusters are generated.

4.3.1. Preprocessing and selecting attributes for water 
quality assessment

Since the experiment’s dataset were derived from the ur-
ban wastewater treatment plant in real-time, the data has 
to be preprocessed and filtered by removing missing val-
ues and omitting attributes like categorical values, which 
could not be considered during clustering. Also, the at-
tribute for density estimation is fixed in this stage. In this 
experiment an attribute named date has been omitted. 
An attribute named SS-S (Suspended solids) has been se-
lected for density estimation since this attribute is mainly 
used in water quality assessment.



114 S. F. Begum, K Lokeshwaran. Automatic monitoring of treated water released from wastewater treatment plants using model-based...

4.3.2. Model-based clustering with density estimation

Due to recent advances in strategies and programming 
for model-based clustering and to the interpretability 
of the outcomes, clustering procedures based on like-
lihood models are progressively favored over heuristic 
techniques. The clustering process evaluates a model for 
the information that allows for overlapping clusters that 
measure the instability of perceptions belonging to com-
ponents of the mixture. The subsequent grouping model 
can likewise be utilized for other vital issues in multivari-
ate analysis, including density estimation and discriminant 
analysis. While participation in segments is vital in clus-
tering, the mixture likelihood (Banfield, & Raftery, 1993) 
itself, or its incentive at given focuses, is the focus of con-
centration in density estimation (Silverman, 1986). The fit-
ted probability can be utilized to uncover or think about 
information patterns. Model-based clustering computes 
the Bayesian Information Criterion (BIC) (Schwarz, 1978), 
considering the number of components in the model, the 
data dimensions, and the maximized log-likelihood for 
the model. The maximum log-likelihood with a penalty 
on the number of model parameters is the BIC. It permits 
the examination of models with varying parameteriza-
tions and contrasting quantities of clusters. When all is 
said is done, the bigger the estimation lower the BIC, the 
more clusters and robust the model’s evidence. Here, BIC 
chooses a two-component mixture of Gaussian variables 
with a similar change. The parameter appraisals can be 
perused from the outline yield using R gives mixing prob-
abilities, means, and variances.

Figure 1. Architecture diagram of wastewater treatment 
data using density-based clustering

4.3.3. Optimization in terms of yielding natural 
clusters

As we mentioned earlier, the objective of our experiment 
refers to generating more natural clusters. Though famil-
iar with clustering algorithms like K-means, hierarchy pro-
duces optimized clusters in statistical terms that deviate 
from naturally categorized clusters. In our experiment, we 
mean that natural clusters should possess an equal range 
of water quality parameters and hence can be categorized  
each cluster under some specific category of water quality 
assessment in terms of the pollution level. We have proved 
this assessment in Section 5.

5. Results and discussion

All the clustering algorithms discussed in this paper are 
implemented with RStudio on a Windows platform. All al-
gorithms have been implemented on the benchmark data-
set in which wastewater samples were taken at regular in-
tervals from the Manresa WWTP. In this dataset, each data 
object refers to the output of the wastewater treatment 
plant each day. The experimental results for the average 
sum of intracluster distance are calculated on the data-
set discussed in Section 2 using three different clustering 
methods provided in Tables 2 and 3. The results are col-
lected over a single run generating 3 clusters by fixing 
K = 3.

After generating the clusters, the value of suspended 
solids of data objects in each cluster is noted, out of which 
minimum and maximum values are analyzed. By using K-
means clustering, when K = 3, At cluster number 1: Mini-
mum and Maximum value of suspended solids are 98 and 
238; at cluster number 2: Minimum and Maximum value of 
suspended solids are 30 and 84; at cluster number 3: Mini-
mum and Maximum value of suspended solids are 6 and 
29. The results given in Table 2 are obtained over 512 data 
points supervised over a single attribute (Suspended Sol-
ids). By Applying Hierarchical Clustering, when 3 clusters 
are generated, at cluster number 1: Minimum and Maxi-
mum value of suspended solids are 10 and 35; at cluster 
number 2: Minimum and Maximum value of suspended 
solids are 26 and 54; and at cluster number 3: Minimum 
and Maximum value of suspended solids are 53 and 238.

As per the comparison, the baseline of RPI discussed in 
Section 2, the range of suspended solids in non-polluted 
level water is less than 20; in lightly polluted, it is between 
20 and 50; and in highly polluted, it is greater than 50 
and less than 100. However, analyzing the results obtained 
over the K-means and Hierarchical clustering methods in 
Table 2, each cluster has data objects which do not fit into 
any above-said ranges. For example, when using K-means 
Clustering at cluster number 2, the minimum and maxi-
mum values of suspended solids are 30 and 84. We cannot 
conclude whether the data objects (particular days) the 
treated water is lightly polluted or highly polluted. 

Table 2. Range of clusters using K-means and hierarchical

K-means Hierarchical

1 2 3 1 2 3

Min 98 30 6 10 26 53
Max 238 84 29 35 54 238

Model-based clustering uses the probabilistic ap-
proach to find the clusters with the data objects limited 
to a fixed range, which once more depends on the first 
decision of parameter density estimation. A model-based 
clustering algorithm can generate non-overlapped clusters 
in which the minimum and maximum value of the quality 
parameter lies within the fixed range. Table 3 summarizes 
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the results of Waste Water Treatment Plant data, including 
the different statistical measures like mean, median, and 
standard deviation of all data objects with three generated 
clusters. Model-based density clustering algorithm discov-
ers 3 clusters, with half lying in size range of 14–89 and a 
maximum size of 352.

Figure 2. Distribution of suspended solids by clusters 
(model based clustering)

Figure 2 shows that the Cluster 1 has the largest num-
ber of observations (352 days) and is concentrated in the 
lower range of SS values. The majority of data points in 
this cluster fall within the range of 6 to 25. Cluster 2 has 
a smaller number of observations (89 days) compared to 
Cluster 1, and the SS values are distributed within a nar-
rower range of 26 to 53. Cluster 3 has the smallest num-
ber of observations (14 days) and is concentrated in the 
higher range of SS values. The majority of data points in 
this cluster fall within the range of 54 to 238. The overall 
distribution of SS values is skewed to the right, indicat-
ing that there are a few observations with very high SS 
values, while the majority of observations are in the lower 
range. The three clusters clearly show distinct patterns in 
the distribution of SS values, suggesting that the cluster-
ing algorithm effectively identified groups of observations 
with similar characteristics.

Cluster 1 likely represents treated wastewater with rela-
tively low levels of suspended solids, indicating effective 
treatment and potential suitability for reuse in applications 
like irrigation or groundwater recharge. Cluster 2 repre-
sents treated wastewater with moderate levels of suspend-
ed solids, requiring further treatment or careful consider-
ation for reuse. Cluster 3 represents treated wastewater 
with high levels of suspended solids, indicating potential 
issues with the treatment process or the need for more 
stringent treatment before reuse.

Cumulative distribution function (CDF) for the sus-
pended solids (SS) is shown in Figure 3 represents values 
in the clusters generated using model-based clustering. 
The CDF curve for Cluster 1 shows a rapid increase, in-
dicating that a large proportion of observations in this 
cluster have relatively low SS values. The curve plateaus 
at a lower value, suggesting that there are fewer ob-
servations with higher SS values. The CDF curve for 
Cluster 2 starts at a higher value than Cluster 1, indi-
cating that a larger proportion of observations in this 
cluster have higher SS values. The curve plateaus at a 
slightly lower value than Cluster 1, suggesting that there 
are fewer observations with extremely high SS values. 
The CDF curve for Cluster 3 starts at the highest value, 
indicating that most observations in this cluster have 
very high SS values. The curve plateaus at a relatively 
low value, suggesting that there are fewer observations 
with lower SS values. The model-based clustering ap-
proach successfully identified distinct clusters based on 
suspended solids (SS) values, demonstrating its ability 
to group data points with similar characteristics. The 
clusters likely represent different levels of water quality, 
ranging from low to high SS concentrations.

Figure 3. Cumulative distribution function of suspended 
solids (model based clustering)

6. Conclusions

In assessing the water quality in the wastewater treatment 
plant (WWTP), an effort has been made to use the data-
set derived from daily measures of the urban wastewater 
treatment plant. An optimized clustering method is iden-
tified by employing different clustering methods, which 
yields the natural clusters with the optimal number of 
clusters.

The plant under study is situated in Manresa, a 
100,000-person town close to Barcelona, in Catalonia. The 

Table 3. Range of clusters using model-based clustering with density estimation

Cluster no. n Mean SD Median IQR Min Max Pollution level

1 352 16.9346 4.2040 17 6 6 25 Slightly

2 89 33.1910 6.6825 32 10 26 53 Lightly
3 14 92.1428 47.2454 76 35 54 238 Highly
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35,000 m3/day flow of wastewater that the facility handles 
is mostly from homes, though it also receives wastewater 
from businesses in the area. Eight of the system vari-
able which are quality indicators are measured on a daily 
basis at various plant locations, including the input (P1), 
the biological reactor’s information (P3), the plant’s water 
output (P4), and after pretreatment (P2). This results in a 
set of 38 values each day, nine of which are performance 
percentages. This study has taken into account the 
plant’s behavior over a period of 527 days. In this paper, 
we presented a novel approach to checking the pollut-
ant level of treated water and assessing the performance 
level of wastewater treatment plants. Model-based clus-
tering with density estimation is used to calculate the 
wastewater treatment plant (WWTP) performance. This 
model will categorize the treated water into three levels: 
Lightly polluted, Moderately Polluted, and Highly Pol-
luted. Based on the number of data objects clustered in 
each category, the performance of WWTP is evaluated 
clearly. In model-based clustering with density estima-
tion, overlapping clusters have been completely avoided. 
By doing so, each cluster can be categorized in terms 
of water quality mentioning the level of pollution in the 
water. The inspiration for this algorithm is from form-
ing various groups of days which are non-overlapped 
and categorized. While identifying the pollution level in 
treated water will classify the operational state of WWTP 
to predict the faults at each stage of the WWTP. It gener-
ates the non-overlapped clusters by assuming that each 
data object originates from the mixture of underlying 
probability distributions and will consecutively assess the 
performance of the wastewater treatment plant. With the 
help of natural clusters generated, our results show that 
out of 445 days, in 352 days, the treated water is almost 
non-polluted. By this, we can assess the performance of 
the wastewater treatment plant. Further, it motivates the 
reuse of treated water for beneficial purposes like irriga-
tion, aquarium, groundwater harvesting, and river water 
discharge based on pollution level in treated water.
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