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Highlights:
 ■ data integration: This study combines observed and climate model data to analyse climate change in the lower Mahanadi River basin;
 ■ bias correction: Innovative bias correction techniques enhance the accuracy of climate projections by rectifying simulated data;
 ■ effective forecasting: Four machine learning models forecast precipitation and temperature, with Fbprophet and SARIMAX standing out for their 
performance;

 ■ decadal trends: Decadal projections of precipitation and temperature patterns reveal shifts under different future scenarios;
 ■ visualizing climate shifts: Utilizing ArcGIS for spatial analysis, this study provides intuitive visualizations of projected climate variability, facilitating easy 
comparisons between historical and future scenarios.

Article History:  Abstract. This study examined climate change dynamics in the lower Mahanadi River basin by integrating 
observed and climate model data. Historical precipitation and temperature data (1979–2020) from the India 
Meteorological Department (IMD) and monthly climate model data from the CORDEX-SMHI-MIROC model via 
the Earth System Grid Federation (ESGF) are utilized. Four machine learning models (Fbprophet, Holt-Winters, 
LSTM RNN, and SARIMAX) are applied to forecast precipitation, Tmax, and Tmin, and are compared across dif-
ferent representative concentration pathway (RCP 2.6, 4.5, and 8.5) scenarios. Diverse trajectories emerge, 
highlighting potential shifts in precipitation and temperature dynamics over near, mid, and far-term intervals. 
Fbprophet and SARIMAX are identified as superior models through performance evaluation metrics (R2, RMSE, 
r, P-bias, and NSE). Spatial analysis using ArcGIS and IDW interpolation reveals spatial variations in climate 
projections, aiding in visualizing future climate trends within the Mahanadi Basin. This study acknowledges 
limitations such as historical data uncertainties, socio-economic indicators, and unpredictable RCP trajectories, 
introducing a novel method to integrate machine learning with climate model data for assessing reliability. 
It also explores anticipated shifts in monthly precipitation and temperature patterns, providing insights into 
future climate variations.
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mental Panel on Climate Change [IPCC], 2022). It is cru-
cial to anticipate future climatic shifts, especially when 
considering their effects on river basins. Climate change 
has long been recognized as a significant factor influenc-
ing hydrology and water resources. Understanding these 
impacts is essential for effective management and adap-
tation strategies. This recognition highlights the urgent 
need for proactive measures to address the challenges 
posed by climate change in water management (Fiseha 
et al., 2014). Given the sensitivity of regional hydrology 
to a shifting climate (Saranya & Vinish, 2021), climate 
change projections assume a critical role in evaluating 
recent and impending alterations within the hydrological 
cycle. Such projections often hinge upon climate models 
and pivotal climatic parameters such as temperature and 
precipitation.

1. Introduction

In the present era, there is a heightened awareness and 
concern regarding climate change, a phenomenon that 
poses significant challenges and implications for the fu-
ture. Climate change has the potential to exacerbate and 
prolong droughts or floods, leading to adverse impacts 
on various aspects of society and the environment. This 
heightened concern underscores the urgent need for pro-
active measures and strategies to mitigate and adapt to 
the anticipated impacts of climate change. As the planet 
edges closer to the critical 1.5 °C threshold due to global 
warming, the risk of more severe climate disasters looms 
large. This poses increased dangers to both people and 
nature. We need to act fast to prevent further warming 
and protect ourselves and our environment (Intergovern-
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The evaluation of climate change repercussions on en-
vironmental dynamics, meteorological events, and climatic 
patterns necessitates the utilization of regional climate 
models (RCMs), propelled by an array of scenarios and 
grounded in statistical, physical, or dynamical downscal-
ing of model simulations and prognostications from these 
RCMs (Perkins et al., 2014). These climate studies rely upon 
the precipitation and temperature projections derived from 
these climate models. The World Climate Research Pro-
gram spearheads an intercomparison initiative, fostering 
collaboration and comparison among researchers’ models 
worldwide. In the South Asia context, the Coordinated Re-
gional Downscaling Experiment (CORDEX) took flight in 
2009, fostering a framework for assessing and validating 
downscaling models. The CORDEX initiative sets forth a 
series of experiments, yielding climate forecasts that fuel 
studies on impacts and adaptability. Notably, researchers 
have forecasted an upward trajectory in the average an-
nual temperature of India (Krishna Kumar et al., 2011).

In the realm of climate prediction, time series machine 
learning models have emerged as pivotal tools for pre-
dicting precipitation and temperature patterns. While an 
array of time series machine learning methodologies exist, 
Facebook Prophet (Fbprophet), Holt-Winters, Long Short-
Term Memory Recurrent Neural Network (LSTM RNN), and 
Seasonal AutoRegressive Integrated Moving Average with 
eXogenous factors (SARIMAX) have emerged as optimal 
options for grappling with rainfall and temperature data. 
These models offer distinct and efficient approaches for 
handling time series data (Jose et al., 2022). Notably, the 
landscape of weather forecasting and research originally 
evolved around statistical methodologies. For instance, the 
seasonal ARIMA model was harnessed by (Graham et al., 
2017) for forecasting and modelling rainfall (Dhamod-
haravadhani & Rathipriya, 2019). Holt Winter’s smooth-
ing method is the most accurate approach for predict-
ing monthly rainfall across regions. In a similar vein, Khan 
et al. (2020) advocated for the efficacy of the LSTM model 
in predicting monthly temperature and precipitation. Af-
firmative outcomes in forecasting monthly peak season-
al  precipitation and temperature data in the Himalayan 

region are attributed to the Fbprophet model (Haq, 2022).
This study has a dual objective: first, to rectify system-

atic biases present in precipitation and temperature pro-
jections derived from climate models. This involves utiliz-
ing the CMhyd tool to extract data from regional climate 
models and subjecting it to bias correction. Second, the 
research aims to evaluate and compare the performance 
of machine learning models, including Fbprophet, Holt 
Winter’s, LSTM RNN, and SARIMAX, in accurately repro-
ducing historical climate data (Chaturvedi et al., 2022). 
This entails assessing the effectiveness of machine learn-
ing models in replicating historical climate patterns and 
identifying the most reliable model for future projections. 
Additionally, the research compares projected historical 
climate data with future climate scenarios projected under 
different Representative Concentration Pathways (RCPs) to 
discern potential differences and improve understanding 
of future climate trends. Our research also extends to in-
vestigating anticipated shifts in monthly precipitation and 
temperature patterns, providing valuable insights into the 
potential variations shaping the future climate of the Low-
er Mahanadi Basin.

2. Study area

India has 12 significant river basins and the basin of the 
Mahanadi River basin ranks 8th in India having a total wa-
tershed area of nearly 1,39,681.5 km2. This accounts for 
around 4.30 percent of India’s entire geographical area. 
The Mahanadi Basin is located between latitudes 19°8’ and 
23°32’ North and longitudes 80°28’ to 86°43’ East (Fig-
ure 1). The Mahanadi Basin is surrounded by the central 
Indian mountains which are in the North direction. The 
basin is surrounded by the Eastern Ghats of India in the 
both South direction and the East direction. The Maikalaa 
mountain range is in the West direction. The length of 
the basin is approximately 586 km whereas the width of 
the basin is approximately 400 km which looks Mahanadi 
Basin is nearly round. The basin is divided into three parts, 
the lower Mahanadi Basin which is situated in the coastal 

Figure 1. Map of study area showing Lower Mahanadi River basin (the map is generated in ArcGIS software by the authors)



272 D. K. Raj, G. T. Temperature and precipitation projection in the lower Mahanadi Basin through machine learning methods

part of India the middle Mahanadi Basin, and then the 
upper Mahanadi Basin (Dadhwal et al., 2014; Mujumdar 
& Ghosh, 2008).

The geography of the Mahanadi Basin is diverse, the 
coastal regions have the lowest elevation whereas the 
northern highlands have the highest elevation. The basin 
has been divided into eleven elevation zones using the 
SRTM DEM (Shuttle Radar Topography Mission Digital El-
evation Model). The Mahanadi Basin experiences the cold, 
hot, southwest monsoon, and post-monsoon seasons. 
Winters are nice since the weather is bright and the winds 
are frequently mild, blowing from the north or northeast. 
During the monsoon season (June to October) more than 
90% of the annual precipitation occurs. Precipitation comes 
in bursts of varying lengths and intensities, rather than as 
a constant stream the warmest months in this region are 
April and May. The average maximum temperatures are 
likely to be in the range of 39 °C to 40 °C.

The Seonath, Arpa, Kurung, and Sakri Rivers drain the 
upper subbasin of the Mahanadi River. The Mand, Bhedan, 
IB, and Jonk Rivers constitute the Mahanadi middle sub-
basin, and the Ong, Tel, Hati, and Daya Rivers drain into 
the Mahanadi lower subbasin. The coastal and southern 
regions of the basin are covered by the Mahanadi lower 
subbasin (Kannan & Ghosh, 2011). The upper Mahanadi 
sub-basin is 21.34 percent of the entire geographic region 
of the Mahanadi Basin which accounts for 29,796.64 km2. 
The middle Mahanadi subbasin covers 37.16 percent of 
the Mahanadi Basin’s entire geographical area which ac-
counts for 51,895.90 km2. The Size Range of the watershed 
of the upper Mahanadi subbasin is approximately 314.34 
to 907.60 km2 and has 48 watersheds and the size range 
of the watershed of the middle Mahanadi subbasin is ap-
proximately 301.22 to 902.46 km2 and has 88 watersheds. 
The climate is tropical with a hot and moist monsoonal cli-
mate. Since Mahanadi depends primarily on rainfall, there 
are significant seasonal variations in the water availability.

Because of the watershed’s proximity to the Bay of 
Bengal, its weather and climatology are highly impacted 
which is where the majority of weather systems originate. 
The IMD (India Meteorological Department), CWC (Central 
Water Commission), and Automatic Weather Stations of 
ISRO are the 3 primary organizations in India that record 
meteorological features. The basin is home to thirteen 
CWC (Central Water Commission) meteorological stations. 
At these locations, rainfall, temperature, pan evaporation, 
moisture content, wind velocity, sunlight, and other cli-
matic indicators were measured according to indiawris 
government website, of the 2014 basin report.

3. Data set

The study’s data foundation is rooted in two distinct data-
sets: observed data and climate model data. The former, 
acquired from the India Meteorological Department (IMD), 
comprises precipitation and temperature records sourced 
from a network of stations across the expansive Mahanadi 
River basin. IMD’s diligent collection efforts have yielded 

comprehensive daily historical time series data, encapsu-
lating area-averaged precipitation and temperature dy-
namics (Pattanaik & Das, 2015).

Complementing this observed dataset, the study har-
nesses monthly climate model data procured from the 
Earth System Grid Federation (ESGF), a reputable reposi-
tory endorsed by the Intergovernmental Panel on Climate 
Change (IPCC). Specifically, the CORDEX-SMHI-MIROC-5 
Regional Climate Model output serves as the focal point of 
the investigation, accessible through the Climate4impact 
platform (IS-ENES3 C4I-Search, 2022). Facilitated by Euro-
pean initiatives (IS-ENES, IS-ENES2, CLIPC), Climate4impact 
offers a conduit for the practical utilization of climate re-
search data, fortified by integration with ESGF and robust 
authentication mechanisms (Déandreis et al., 2014). 

The choice of the CORDEX-SMHI-MIROC-5 model is 
underpinned by its alignment with the Coordinated Re-
gional Climate Downscaling Experiment (CORDEX) mis-
sion, exemplifying collaborative global efforts in regional 
climate downscaling. This selection finds validation in Jain 
et al.’s work (2019), wherein the model’s adeptness in cap-
turing Indian summer monsoon precipitation variability is 
underscored. Encompassing historical data from 1979 to 
2010 and future scenarios projected under representative 
concentration pathways (RCP 2.6, RCP 4.5, and RCP 8.5) 
from 2005 to 2050, this model substantiates the study’s 
exploration of climatic dynamics in the lower Mahanadi 
River basin (Jain et al., 2019). 

In the context of hydrologic system forecasting, wa-
tershed models often grapple with biases arising from pa-
rameter variations and regional averaging in temperature 
and precipitation simulations. Overcoming these challeng-
es, the study introduces bias correction techniques, recti-
fying simulated climate data through step adjustments to 
align with observed records (Teutschbein & Seibert, 2012). 
At the heart of this correction process lies the CMhyd tool, 
adept at extracting and rectifying data from global and 
regional climate models. Integral to bias correction are 
transformation algorithms, pivotal in reshaping climate 
model outputs. Parametrizing bias correction hinges on 
discerning biases by comparing observed and simulated 
climate data (Salvi et al., 2017). Amidst this intricate in-
terplay, harmonizing these elements lays the foundation 
for understanding the hydrological ramifications of future 
climate change.

4. Methodology

In this climate simulation, bias-corrected observed climatic 
data from the center stage were used as input for the time 
series machine learning algorithm. Averting the direct use 
of RCM output, which carries systematic bias, is advised. 
Rectification of biases in precipitation and temperature 
projections, stemming from the indicated GCM and RCM 
pairings, is crucial (IPCC, 2022). Leveraging the CMhyd 
tool, data from regional climate models is extracted and 
subjected to bias correction, a process detailed in the CM-
hyd user manual (Rathjens et al., 2016). This methodology 
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ensures a more reliable foundation for time series machine 
learning, enhancing the accuracy of climate simulations 
(Figure 2).

The process begins with Data Input, which incorporates 
historical climate data from the Indian Meteorological De-
partment (IMD), simulated historical climate data (CORDEX-
SMHI-MIROC-5), and simulated future climate data from the 
CORDEX-SMHI-MIROC-5 model, under three RCP scenarios 
(2.6, 4.5, and 8.5). Subsequently, both sets of data undergo 
bias Correction, utilizing an algorithm to rectify any system-
atic disparities between simulated and observed data.

The bias-corrected simulated historical climate data are 
then used to project the historical climate data using ma-
chine learning models. This step essentially attempts to re-
produce the observed historical climate using the model’s 
capabilities. Following the Projection of Historical Data, the 
machine learning models undergo a Performance Evalua-
tion to assess their effectiveness in reproducing historical 
climate data. This evaluation aids in identifying the most 
reliable model for making future projections.

In the comparison stage, the projected historical cli-
mate data from the best machine learning model are com-
pared with the RCP’s future climate scenarios. This com-
parison helps to identify any potential differences between 
the projected future climate based on the RCP scenarios 
and the actual historical climate as understood through 
machine learning models.

The outputs consist of visualizations through graph 
plots, which offer a quick comparison of trends in pro-
jected historical climate data and RCP future scenarios. 
Additionally, spatial analysis involves geographical repre-
sentations illustrating how climate change is expected to 
vary across different regions.

4.1. Description of forecasting models
4.1.1. FBProphet model

FBProphet, developed by Facebook, stands as a prominent 
tool in time series analysis. This forecasting approach em-
ploys an additive algorithm, adept at capturing nonlinear 

Figure 2. Modified workflow diagram for the bias correction and projection framework within the Climate Model Data for 
Hydrologic Modelling (CMhyd) (adapted from Rathjens et al., 2016)
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trends with annual seasonality across daily and monthly 
intervals. Notably, FBProphet accommodates the influence 
of holiday patterns, rendering it robust for seasonal time 
series and historical data encompassing multiple seasons 
(Chaturvedi et al., 2022) and available as open-source soft-
ware in both R and Python (Alam et al., 2021) 

4.1.2. Holt Winter model

The Holt-Winters technique is a common time series fore-
casting methodology that incorporates trend and season-
ality. The Holt-Winter methodology may be implemented 
to time-series data to deal with seasonal variations and 
trends. Winters’ exponential smoothing approach enhanc-
es Holt’s method by making it easier to accommodate a 
seasonal component. Because it is created based on both 
single and double exponential smoothing, Winter’s expo-
nential smoothing is often referred to as triple exponential 
smoothing. Winter’s methodology requires a level, trend, 
and seasonal component in the time-series data (Almaz-
rouee et al., 2020).

4.1.3. LSTM RNN model

Long short-term Memory (LSTM), an architecture rooted 
in artificial recurrent neural networks (RNNs), constitutes a 
powerful deep learning paradigm. Comprising LSTM units, 
an LSTM network’s neurons assume the form of memory 
cells, setting it apart from conventional RNNs (Ishida et al., 
2021) (Chaturvedi et al., 2022). LSTM is a type of neural 
network that links past data to current neurons. Each neu-
ron has three gates: an input gate, a forget gate, and an 
output gate. The tanh layer, sigmoid layer, and pointwise 
multiplier operation are also included (Selvin et al., 2017; 
Tsai et al., 2018). The following are the different gates and 
their functions. 

1. Input gate: The input gate determines which new 
cell state information should be remembered.

2. Forget gate: The forget gate specifies which infor-
mation from each cell will be discarded.

3. Output gate: This gate is the LSTM’s output.
4. Cell State: This program runs throughout the con-

nection and adds and deletes data using gates. The 
sigmoid layer produces values ranging from 0 to 
1, signifying how much of each element should be 
allowed to flow through.

5. A new set is obtained by the tanh layer, which is 
then stored in the state.

4.1.4. SARIMA eXogenous model

SARIMAX is a mathematical prediction model that in-
tegrates exogenous components and accounts for time 
series dependency over seasons. The SARIMAX model 
is a version of the SARIMA model that integrates exog-
enous (outside of the model) factors to increase fore-
casting ability. With a differentiating operator, the model 
consists of two basic parts: an autoregressive part and a 
moving average part (Vagropoulos et al., 2016; McHugh 
et al., 2019).

4.2. Description of bias correction tool
4.2.1. CMhyd tool

The CMhyd tool is a powerful software solution designed 
to facilitate the preparation of simulated climate change 
data for hydrologic impact studies. Developed by a team 
of experts, including Hendrik Rathjens, Katrin Bieger, 
Raghavan Srinivasan, Indrajeet Chaubey, and Jeffrey G. 
Arnold, CMhyd addresses a crucial challenge in climate 
modelling – biases in simulated climate data that hinder 
accurate hydrological simulations. CMhyd enables users to 
extract and bias-correct data obtained from global and 
regional climate models, enhancing their reliability for hy-
drological modelling applications. CMhyd stands for cli-
mate model data for hydrologic modelling. 

CMhyd, originating from the Soil and Water Assess-
ment Tool (SWAT), serves as a vital programming tool 
designed to bridge climate simulations and hydrological 
models. Its primary role revolves around furnishing climate 
simulation data to determine optimal gauge placement 
within hydrological models (Rathjens et al., 2016). By har-
nessing climate model data tailored for specific gauge po-
sitions, CMhyd undertakes the essential task of data ac-
quisition and subsequent bias correction. Remarkably, the 
bias correction methodology, along with its experimental 
parameters, exhibits applicability not only to historical data 
but also extends its utility to forecasted climate scenarios. 
This forward-looking adaptability underscores the tool’s 
capacity to harmonize the same bias correction technique 
for rectifying future climate data (Teutschbein & Seibert, 
2012). Presently, the prevailing and widely embraced ap-
proach for bias correction is linear scaling, a technique 
recurrently employed in diverse studies (Ines & Hansen, 
2006).

In pursuit of refining climate model outputs, bias cor-
rection procedures harness a transformative algorithm. 
This pivotal approach rests upon the fundamental tenet 
of pinpointing disparities between observed and project-
ed historical meteorological data, thereby rectifying the 
synthesized historical climate data. Developed using Py-
thon 2.7, CMhyd exemplifies a potent solution in this do-
main, employing a suite of vital Python packages includ-
ing NetCDF41, NumPy, SciPy, and the PyQt42 application 
framework. This amalgamation of tools empowers CMhyd 
to execute its role as a versatile and effective instrument 
for enhancing climate modelling precision and facilitating 
seamless integration into hydrological analyses.

CMhyd’s core objective revolves around delivering 
tailored simulated climate data for precise gauge loca-
tions, facilitating subsequent extraction and bias correc-
tion of climate model data at individual gauge stations. 
This correction process, which is crucial for enhancing 
climate model outputs, employs various bias correction 
methods driven by a transformation algorithm. CMhyd 
efficiently identifies climate model grid cells aligned 
with gauge stations, leveraging netCDF file metadata. 
Through this process, temperature and precipitation 
data are seamlessly converted into degrees Celsius and 
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millimeters, respectively (Yeboah et al., 2022). CMhyd 
boasts a repertoire of eight distinct bias correction 
techniques, with the current study highlighting the 
implementation of linear scaling methods as a pivotal 
approach to enhance accuracy (Das et al., 2022). This 
amalgamation of functionalities positions CMhyd as a 
versatile and indispensable tool for optimizing climate 
data integration within hydrological assessments.

5. Results

5.1. Performance evaluation of machine 
learning models for precipitation, Tmax, and 
Tmin forecasting in the Mahanadi Basin
In this research, the forecasting of precipitation, Tmax, and 
Tmin was conducted using Python with four distinct ma-
chine learning models, namely Fbprophet, Holt-Winters, 
LSTM RNN, and SARIMAX. Historical monthly data span-
ning from 1979 to 2020 for the lower Mahanadi Basin has 
been employed, while future data forecasting was based 
on the period from 1979 to 2010. Model validation was 
performed using historical monthly data up to 2020. The 
evaluation of model performance encompassed a compre-
hensive set of statistical performance indicators, including 
the coefficient of determination (R2), root mean square 
error (RMSE), coefficient of correlation (r), percentage bias 
(P-bias), and Nash-Sutcliffe efficiency (NSE) (Table 1). This 
robust methodology ensures rigorous and accurate evalu-
ation of the predictive capabilities of the chosen machine 
learning models.

Table 1. Performance evaluation of different models using 
statistical metrics

Para-
meter R2 RMSE r P-bias NSE

Fbpro-
phet

Preci-
pitation 0.763 0.957 0.873 0.373 0.843

Tmax 0.8883 0.0029 0.9424 –0.1197 0.5528

Tmin 0.947 0.021 0.973 –0.040 0.959

Holt-
Win-
ters

Preci-
pitation 0.746 1.818 0.864 0.339 0.818

Tmax 0.8919 0.0753 0.9443 –0.1011 0.7459

Tmin 0.953 0.003 0.976 –0.035 0.974

LSTM 
RNN

Preci-
pitation 0.297 2.138 0.545 0.397 0.464

Tmax 0.8393 0.0325 0.9161 –0.0901 0.7476

Tmin 0.870 0.042 0.932 –0.038 0.947

SARI-
MAX

Preci-
pitation 0.757 0.965 0.870 0.371 0.839

Tmax 0.8932 0.025916 0.9450 –0.1122 0.6804

Tmin 0.953 0.024 0.976 –0.040 0.972

In the evaluation of different models for predicting 
precipitation, Tmax (maximum temperature), and Tmin 
(minimum temperature), various performance metrics 
were considered. Fbprophet and SARIMAX consistently 
exhibited strong performance across the parameters, 
boasting higher R2 and NSE values, indicative of supe-
rior predictive capability and fit. Moreover, both mod-
els demonstrated lower P-bias values, reflecting reduced 
bias in predictions. While LSTM RNN demonstrated 
competitive results, its NSE values were comparatively 
lower. Overall, the combination of Fbprophet and SARI-
MAX emerged as favourable choices for all three param-
eters due to their robust performance across multiple 
evaluation metrics.

5.2. Decadal changes in precipitation and 
temperature patterns: addressing biases and 
unveiling temporal trends
We addressed biases within the RCP (2.6, 4.5, and 8.5) 
scenarios using a precise linear scaling approach. Sub-
sequently, we categorized the corrected data into near-
term (2021–2030), mid-term (2031–2040), and far-term 
(2041–2050) intervals, as outlined in Table 2. Our ap-
proach meticulously rectified biases, ensuring robust-
ness. Linear scaling enhanced data alignment with his-
torical patterns, bolstering projection reliability. Catego-
rization into temporal segments offers comprehensive 
insights into evolving trends over decades. 

We present changes in precipitation (%) and dy-
namic temperature interplay against historical bench-
marks. These data are encapsulated in the concise table 
“Decadal Changes of Projected Precipitation, Tmax, and 
Tmin from Four Different Machine Learning Models and 
Three RCP Scenarios in the Lower Mahanadi Basin.” This 
framework showcases our study’s holistic approach and 
deepens our understanding of the region’s changing 
climate.

5.2.1. The near-term (2021–2030) Fbprophet, Holt 
Winter, LSTM RNN, and SARIMAX models and under 
the three RCP (2.6, 4.5, and 8.5) scenario

In the decade ahead (2021–2030), advanced models shed 
light on potential shifts in the climate of the Mahanadi Ba-
sin. Predictions of annual average precipitation and tem-
perature changes, using various methods and scenarios, 
yield intriguing findings. Holt Winter’s model (Figure 6) 
foresees a substantial 10.50% surge in annual average pre-
cipitation, suggesting heightened rainfall trends. However, 
Fbprophet, LSTM RNN, and SARIMAX models (Figure 6) 
diverge, indicating slight to moderate declines of 3.59%, 
1.00%, and 4.01% respectively. RCP scenarios unravel di-
verse trajectories: RCP 2.6 suggests a marginal 0.19% rise, 
RCP 4.5 projects a more notable 6.97% increase, while RCP 
8.5 paints a contrasting picture with an 8.94% decrease.

Shifting the focus to temperature, forecasted patterns 
reveal captivating dynamics. Maximum temperature pro-
jections (Figure 3a) signal annual average increments, 
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with Fbprophet predicting a 2.13 °C rise, Holt Winter 
predicting a 0.56 °C increase, and SARIMAX predicting 
a 0.79 °C elevation. Intriguingly, LSTM RNN takes a dif-
ferent route, hinting at a 0.37 °C reduction. Similarly, 
for minimum temperature, Fbprophet, Holt Winter, and 
SARIMAX models predict gains of 2.49 °C, 1.22 °C, and 
1.54 °C respectively, while the LSTM RNN suggests a de-
crease of 0.45 °C.

Noteworthy seasonal patterns emerge, with peak pre-
cipitation observed in July and August (380 mm to 450 mm), 
while minimal levels occur in December and January (15 mm 
to 20 mm). Temperature extremes manifest in May (44 °C) 
and December/January (13 °C), contributing to a rich por-
trayal of upcoming climatic intricacies. These multifaceted 
predictions, illustrated in Figures 6 and 3a, provide valuable 
insights into the potential climatic landscape ahead.

Table 2. Decadal changes of projected precipitation, Tmax, and Tmin from four different machine learning models and three RCP 
scenarios in the lower Mahanadi Basin

Models and 
RCPs Fbpro phet Holt win ter’s LSTM RNN SARI MAX RCP 2.6 RCP 4.5 RCP 8.5

2021–2030
Precipi tation –3.59% 10.50% –1.00% –4.01% 0.19% 6.97% –8.94%
Tmax 2.13 0.56 –0.37 0.79 0.45 0.70 0.92
Tmin 2.49 1.22 –0.45 1.54 0.35 0.63 0.43

2031–2040
Precipi tation –4.78% 14.18% –1.02% –5.23% –8.62% 8.16% 3.28%
Tmax 2.89 1.00 –0.36 1.02 0.74 1.27 0.88
Tmin 3.37 1.52 –0.43 1.96 0.57 1.04 0.65

2041–2050
Precipi tation –5.91% 16.10% –1.01% –6.45% 9.29% –7.37% 4.26%
Tmax 3.64 1.43 –0.37 1.26 0.49 1.84 1.14
Tmin 4.24 1.83 –0.41 2.38 0.64 1.31 1.16

 a) b)
Figure 3. a) The graph shows the monthly average temperature maximum of observed data and projected data in near 
(2021–2030), mid (2031–2040) and far (2041–2050) term from four different time series machine learning models and three RCP 
scenarios (RCP 2.6, RCP 4.5 and RCP 8.5) in the lower Mahanadi Basin; b) The graph shows the monthly average temperature 
minimum of observed data and projected data in near (2021–2030), mid (2031–2040) and far (2041–2050) term from four diffe-
rent time series machine learning models and three RCP scenarios (RCP 2.6, RCP 4.5 and RCP 8.5) in the lower Mahanadi Basin
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Figure 4. Projected variability in annual maximum temperatures across three time periods: near (2021–2030), mid (2031–2040), 
and far (2041–2050). These projections are compared to the historical period (1979–2010) and evaluated under three RCP 
scenarios (RCP 2.6, RCP 4.5, and RCP 8.5)

Figure 5. Projected variability in annual minimum temperatures across three time periods: near (2021–2030), mid (2031–2040), 
and far (2041–2050). These projections are compared to the historical period (1979–2010) and evaluated under three RCP 
scenarios (RCP 2.6, RCP 4.5, and RCP 8.5)

5.2.2. The mid-term (2031–2040) from Fbprophet, 
Holt Winter’s, LSTM RNN, SARIMAX model and 
under the three RCPs’ (2.6, 4.5, and 8.5) scenario 

Starting with precipitation, when compared to historical
data, Holt Winter’s model points to a substantial 14.18%
increase in average annual rainfall. In contrast, Fbprophet,
LSTM RNN, and SARIMAX models present different results,
suggesting percentage decreases of 4.78%, 1.02%, and 
5.23%, respectively. Interestingly, RCP 4.5 and RCP 8.5 show 
an anticipated increase in annual average precipitation,

with percentages of 8.16% and 3.28% respectively. How-
ever, RCP 2.6 predicts a decrease of 8.62%. These trends 
align with a consistent rhythm observed in both RCP sce-
narios and machine learning models, showing peak rainfall 
in July and August (ranging from 385 mm to 465 mm) and 
a subdued period in December and January with minimal 
rainfall (15 mm to 20 mm) (Figure 6). 

Concerning temperature, the models provide valuable 
insights. For maximum temperatures, the Fbprophet, Holt 
Winter, and SARIMAX models converge, predicting annual 
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average increments. Fbprophet forecasts a rise of 2.89 °C, 
Holt Winter predicts a rise of 1.00 °C, and SARIMAX sug-
gests a rise of 1.02 °C. Interestingly, the LSTM RNN pre-
dicts a different scenario, hinting at a decrease of 0.36 °C 
in the annual average maximum temperature.

Similar trends emerge for minimum temperatures. The 
Fbprophet, Holt Winter, and SARIMAX models predict an-
nual average increases. Fbprophet indicates a substantial 

rise of 3.37 °C, Holt Winter’s 1.52 °C, and SARIMAX 1.96 °C. 
In contrast, LSTM RNN introduces a unique perspective, 
suggesting a decrease of 0.43 °C. This analysis revealed 
consistent temperature patterns across both RCP scenarios 
and machine learning models. The coldest months, De-
cember and January, experience temperatures dropping to 
~14 °C minimum, while the warmest readings are in May, 
reaching ~28 °C minimum (Figure 3b). 

Figure 6. The graph shows the monthly average precipitation of historical data and projected data in near (2021–2030), mid 
(2031–2040) and far (2041–2050) term from four different time series machine learning models and three RCP scenarios 
(RCP 2.6, RCP 4.5 and RCP 8.5) in the lower Mahanadi Basin

Figure 7. Projected variability in precipitation for the near (2021–2030), mid (2031–2040), and far (2041–2050) terms compared 
to the historical period (1979–2010), across RCP scenarios (RCP 2.6, RCP 4.5, and RCP 8.5)
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In conclusion, this detailed exploration of mid-term cli-
mate projections, visualized in Figures 6 and 3a-b, deepens 
our understanding of potential climate dynamics. This study 
highlights the intricate relationships between various models 
and scenarios, aiding our comprehension of future climatic 
shifts.

5.2.3. The far-term (2041–2050) Fbprophet, Holt Winter, 
LSTM RNN, and SARIMAX models and under the three 
RCP (2.6, 4.5, and 8.5) scenario

Starting with precipitation, a comparison with historical 
data yields intriguing results. Holt Winter’s model forecasts 
a substantial 16.10% rise in annual average rainfall during 
this far-reaching period. Conversely, Fbprophet, LSTM RNN, 
and SARIMAX models portray a different outlook, indicating 
percentage decreases of 5.91%, 16.10%, and 6.45% respec-
tively. Intriguingly, RCP 2.6 and RCP 8.5 envision an uptick 
in annual average precipitation, with percentages of 8.16% 
and 3.28% respectively. However, RCP 4.5 presents an alter-
native perspective, suggesting a decrease of 7.37%. Echoing 
a consistent rhythm across both RCP scenarios and machine 
learning models, we witness peak precipitation in July and 
August (ranging from 403 mm to 440 mm), while December 
and January usher in a period of minimal rainfall (10 mm to 
20 mm) (Figure 6).

Shifting the focus to temperature dynamics, these models 
offer crucial insights. For maximum temperatures, a conver-
gence of predictions is observed. Fbprophet, Holt Winter, 
and SARIMAX models anticipate annual average increments. 
Fbprophet envisions a rise of 3.64 °C, Holt Winter suggests 
1.43 °C, and SARIMAX points to 1.26 °C. Notably, the LSTM 
RNN deviates from this trend, indicating a decrease of 0.37 °C 
in the annual average maximum temperature.

Likewise, a common thread emerges in minimum tem-
perature projections. The Fbprophet, Holt Winter, and SARI-
MAX models forecast annual average increases. Fbprophet 
projects a substantial rise of 4.24 °C, Holt Winter at 1.83 °C, 
and SARIMAX at 2.38 °C. Interestingly, the LSTM RNN intro-
duces an alternate view, suggesting a decrease of 0.41 °C.

In parallel to the broader context, a consistent rhythm 
persists in temperature patterns across both RCP scenarios 
and machine learning models. The coolest months, Decem-
ber and January, experience temperatures reaching ~15 °C 
minimum, while May boasts the highest readings at ~28 °C 
minimum (Figure 3b). In summation, this in-depth explora-
tion of far-term climate predictions, as elucidated in Figures 6 
and 3a, 3b, augments our understanding of potential climatic 
trajectories. It underscores the intricate connections between 
diverse models and scenarios, deepening our comprehension 
of impending climate dynamics.

5.3. Visualizing future climate trends in the 
Mahanadi Basin through spatial analysis
ArcGIS and the inverse distance weighting (IDW) interpola-
tion technique were utilized. To perform IDW interpolation, 
a network of strategically selected station points was estab-
lished across the Mahanadi Basin. These points, thought-

fully positioned for comprehensive coverage, facilitated 
accurate and detailed spatial representations of the cli-
mate variables. This approach enhances the precision and 
reliability of our spatial analyses. This study visually de-
picts projected climate changes in the Mahanadi Basin. 
Historical and three RCP scenarios (RCP 2.6, RCP 4.5, RCP 
8.5) are color-coded, highlighting anticipated variability in 
annual maximum and minimum temperatures, as well as 
precipitation across near (2021–2030), mid (2031–2040), 
and far (2041–2050) timeframes. This spatial representa-
tion facilitates easy comparison with the historical period 
(1979–2010), aiding in the assessment of RCP impacts. The 
map serves as a comprehensive tool for intuitively grasp-
ing the geographic extent and spatial nuances of climate 
shifts, offering valuable insights for researchers and de-
cision-makers alike, and aiding in the understanding of 
the evolving climatic dynamics within the Mahanadi Basin.

Figure 4 illustrates projected variability in annual maxi-
mum temperatures across three time periods: near (2021–
2030), mid (2031–2040), and far (2041–2050). These projec-
tions are compared to the historical period (1979–2010) and 
evaluated under three RCP scenarios (RCP 2.6, RCP 4.5, and 
RCP 8.5).

6. Discussion

When we compared historical data using four different time-
based machine learning models, the projected precipitation 
in the lower Mahanadi Basin suggested that the expected 
climate changes might not lead to a significant alteration in 
the total amount of precipitation received in the study area. 
However, the distribution of this precipitation across different 
seasons is likely to undergo significant changes. The chosen 
climate scenario (RCP) and the specific time under considera-
tion play crucial roles in determining the annual precipita-
tion trends, which exhibit notable variability along the coastal 
zone in the eastern region.

All considered climate scenarios indicate an increase in 
annual precipitation across all examined periods (Figure 7). In 
the case of the RCP 2.6 scenario (Figure 7), the projected pre-
cipitation pattern resembles the historical trends during the 
near-term period of 2021–2030. In a considerable portion of 
the western region, except near the coast, there is a possibil-
ity of reduced precipitation compared to historical levels. This 
pattern is also observed in certain central and northern areas. 
These anticipated changes are characterized across three dis-
tinct time phases (the 2030s, 2040s, and 2050s), aligning with 
the approach taken by (Mavume et al., 2021).

Under the RCP 4.5 scenario (Figure 7), projections indi-
cate increased precipitation near the coastal regions of the 
eastern area for both the near-term (2021–2030) and far-
term (2031–2040) periods, in contrast to historical values and 
RCP 2.6 predictions. However, a slight decrease in coastal 
precipitation is expected during the far-term period (2041–
2050). The RCP 8.5 and RCP 2.6 scenarios demonstrate simi-
lar precipitation patterns, with a marginal decline observed 
across all three-time phases. By the mid-century, a discernibly 
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uneven distribution of precipitation across the region be-
comes evident compared to historical conditions.

Anticipated changes over three time periods (2021–2030, 
2031–2040, and 2041–2050) reveal that the highest annual 
temperatures will exceed historical records. While the coastal 
region of the lower Mahanadi Basin will experience relatively 
minor fluctuations, more significant temperature variations 
are expected in the interior and western areas. This observa-
tion aligns with findings by (Vijayakumar et al., 2021) and a 
report on the Mahanadi Basin published by the Water Re-
sources Department of India.

Under the RCP 2.6 scenario (Figure 4), there is a consis-
tent pattern of temperature increase across almost all three 
analysis periods. The western segment of the lower Maha-
nadi Basin shows elevated temperatures in comparison to 
the historical norm. In the lower basin, following the RCP 2.6 
scenario, temperatures are projected to rise by approximately 
0.45 °C in the near-term, 0.75 °C in the mid-term, and 0.50 °C 
in the far term (2021–2030, 2031–2040, and 2041–2050, re-
spectively).

In the case of the RCP 4.5 scenario, temperature changes 
are relatively lower in certain parts of the lower Mahanadi 
Basin when compared to the RCP 2.6 scenario (Figure 4). The 
lower basin is expected to experience temperature increases 
of about 0.70 °C, 1.27°C, and 1.84 °C during the three time 
periods (2021–2030, 2031–2040, and 2041–2050, respec-
tively).

Under the RCP 8.5 scenario, more substantial tempera-
ture changes are anticipated across the entire basin. The 
lower Mahanadi Basin is projected to encounter temperature 
rises of approximately 0.92 °C, 0.88 °C, and 1.14 °C over the 
three time periods (2021–2030, 2031–2040, and 2041–2050, 
respectively).

Projected changes over the next three periods (2021–
2030, 2031–2040, and 2041–2050) indicate that the minimum 
annual temperatures will be higher than historical records. 
While the coastal region of the lower Mahanadi Basin will 
experience relatively stable temperatures, more pronounced 
temperature shifts are expected in the interior and western 
areas. This finding aligns with (Vijayakumar et al., 2021) and 
the Mahanadi Basin report published by the Indian Ministry 
of Water Resources Department.

Examining the RCP 2.6 scenario (Figure 5) reveals a con-
sistent pattern of increasing minimum temperatures across 
almost all three time periods. The western part of the lower 
Mahanadi Basin shows elevated temperatures compared to 
the historical baseline. Under the RCP 2.6 scenario, the lower 
basin is projected to experience temperature increases of 
approximately 0.45 °C in the near term, 0.75 °C in the mid-
term, and 0.50 °C in the far term (2021–2030, 2031–2040, and 
2041–2050, respectively).

The RCP 4.5 scenario presents a comparatively lower 
temperature change in certain parts of the lower Mahanadi 
Basin when compared to RCP 2.6 (Figure 5). The lower basin 
is projected to see temperature increases of approximately 
0.35 °C, 0.57 °C, and 0.64 °C during the three time periods 
(2021–2030, 2031–2040, and 2041–2050, respectively). On the 
other hand, the RCP 8.5 scenario indicates larger temperature 

fluctuations compared to RCP 2.6 and historical trends (Fig-
ure 5), with the lower Mahanadi Basin experiencing tempera-
ture increases of approximately 0.63 °C, 1.04 °C, and 1.31 °C 
over the same three time periods.

Considering the broader context, according to (Fadnavis 
et al., 2020) the average surface air temperature variation in 
India’s CORDEX model for the mid-term phase (2040–2069) 
relative to historical data (1976–2005) is anticipated to range 
between 1.39 °C to 2.70 °C. In the long-term phase (2070–
2099), relative to the same historical data, the anticipated 
temperature variation is projected to be between 1.33 °C to 
4.44 °C under scenarios of global warming caused by green-
house gases. 

The outcomes of this study unveil an uneven distribu-
tion of precipitation alongside an evident increase in both 
maximum and minimum temperatures across the region. 
As a result, it is conceivable that heatwaves could become 
more frequent, intense, and expansive, spanning a larger 
geographical extent from the mid-to late-21st century, in 
line with insights by (Rohini et al., 2019) and (Fadnavis et al., 
2020).

In the context of the lower Mahanadi Basin, our findings 
support the notion of heightened precipitation levels during 
July and August, a trend that aligns with the observations 
made by (Swain, 2016). Furthermore, spanning the entirety 
of the lower Mahanadi Basin, it is anticipated that both maxi-
mum and minimum temperatures will experience an eleva-
tion during May and June, while reaching their lowest points 
in December and January, corroborating the observations 
made by (Vijayakumar et al., 2021).

When assessing models for precipitation, Tmax, and Tmin 
predictions, Fbprophet and SARIMAX consistently showed 
strong performances, with higher R2 and NSE values, indicat-
ing superior predictive capability. They also exhibited lower 
P-bias values, indicating reduced bias. While LSTM RNN had 
competitive results, its NSE values were comparatively lower. 
Overall, Fbprophet and SARIMAX proved favorable for all 
three parameters due to their robust performance across 
multiple evaluation metrics. Limitations include uncertainties 
in historical data, socioeconomic indicators, and parameter 
choices for model outputs, as well as unpredictable trajec-
tories in representative concentration pathways (RCPs) and 
uncertainties in the effectiveness of future climate policies.

7. Conclusions

In conclusion, the examination of historical data using four 
time-based machine learning models offers valuable insights 
into projected climate changes in the lower Mahanadi Basin. 
While total precipitation may not experience a significant 
change, the distribution across seasons is expected to shift 
notably. Analysis across various climate scenarios (RCP 2.6, 
RCP 4.5, and RCP 8.5) indicates consistent trends of increas-
ing annual temperatures over three analyzed periods, with 
coastal areas experiencing minor fluctuations compared to 
more significant shifts in the interior and western regions. 
The predicted precipitation changes suggest an overall in-
crease annually, with diverse patterns in distribution across 
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the scenarios. Furthermore, the study highlights that the 
highest annual temperatures are projected to surpass histori-
cal records, particularly affecting interior and western areas. 
Fbprophet and SARIMAX have emerged as superior models 
for predicting precipitation, Tmax, and Tmin, demonstrating 
strong performance with higher R2 and NSE values and low-
er P-bias values, despite limitations such as uncertainties in 
historical data, socio-economic indicators, and future climate 
trajectories. In light of these findings, it is evident that the 
lower Mahanadi Basin faces complex challenges from climate 
change, necessitating ongoing research and adaptive strat-
egies. Understanding the nuances of precipitation patterns 
and temperature variations is crucial for effective planning 
and mitigation efforts. However, uncertainties surrounding 
future climate policies and trajectories underscore the need 
for continued monitoring and flexibility in adaptation strate-
gies. Overall, this study underscores the importance of pro-
active measures to address the potential impacts of climate 
change on the lower Mahanadi Basin and emphasizes the 
role of robust modelling techniques in informing decision-
making processes.
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