
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Copyright © 2024 The Author(s). Published by Vilnius Gediminas Technical University

MUNICIPAL SOLID WASTE COLLECTION AND TRANSPORTATION ROUTING 
OPTIMIZATION BASED ON IAC-SFLA

Youbiao HU  , Qiding JU   , Taosheng PENG, Shiwen ZHANG, Xingming WANG 

School of Earth and Environment, Anhui University of Science and Technology, Huainan, China

Highlights:
 ■ IAC-SFLA was successfully applied in municipal solid waste collection and transportation;
 ■ multi-model collection and transportation systems can reduce the cost of waste collection and transportation;
 ■ IAC-SFLA outperformed the basic AC algorithm by reducing 19.76 km and increasing the average loading rate by 4.15%.

Article History:  Abstract. In order to realize the efficient collection and low-carbon transport of municipal garbage and accel-
erate the realize the “dual-carbon” goal for urban transport system, based on the modeling and solving meth-
od of vehicle routing problem, the municipal solid waste (MSW) collection and transport routing optimization 
of an Improved Ant Colony-Shuffled Frog Leaping Algorithm (IAC-SFLA) is proposed. In this study, IAC-SFLA 
routing Optimization model with the goal of optimization collection distance, average loading rate, number of 
collections, and average number of stations is constructed. Based on the example data of garbage collection 
and transport in southern Baohe District, the comparative analysis with single-vehicle models, multiple-vehicle 
models, and basic ant colony algorithms. The multi-vehicle model of collection and transportation is superior 
to the single-vehicle model and the improved ant colony algorithm yields a total collection distance that is 
19.76 km shorter and an average loading rate that rises by 4.15% from 93.95% to 98.1%. Finally, the improved 
ant colony algorithm solves for the domestic waste collection and transportation path planning problem in 
the north district of Baohe. Thus, the effectiveness and application of the proposed algorithm is verified. The 
research result can provide reference for vehicle routing in the actual collection and transport process, im-
prove collection and transport efficiency, and achieve the goal of energy conservation and emission reduction.
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In this study, the state probability transfer function and 
pheromone update rule in the ant colony algorithm were 
improved and then fused with the hybrid frog-hopping 
algorithm to obtain an improved ant colony-hybrid frog-
hopping algorithm. This was followed by the planning of 
the domestic waste collection and transportation path in 
the Baohe District of Hefei City using MATLAB®, with an 
aim to solve the problems of long urban domestic waste 
collection as well as transportation distance and collection 
based solely on experience.

2. Literature review
The vehicle routing problem was first proposed by Dantzig 
et al. and has received widespread attention from schol-
ars, resulting in many variants of research on vehicle rout-
ing optimization problems, such as capacity constrained 
vehicle routing problems, vehicle routing optimization 

1. Introduction

With the increasing level of urbanization in our country, 
the optimization of municipal solid waste vehicle routing 
has attracted growing attention in academic circles and 
has presented new characteristics. In addition, recycling 
and transfer comprise the key connecting parts in front-
end domestic waste generation and end treatment, with 
the cost of domestic waste collection and transporta-
tion accounting for approximately 50% of the total cost 
of waste treatment (Cao et al., 2021). Correspondingly, 
reasonable planning of urban domestic waste collection 
and transportation path can not only save operation time, 
improve collection and transportation efficiency, save fuel 
cost, and reduce the transportation cost of vehicles, but it 
can also reduce the environmental pollution of domestic 
waste, which provides a crucial foundation for ecological 
and environmental protection (Ganji et al., 2020).
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problems considering time windows, dynamic vehicle rout-
ing problems, and so on (Yesodha & Amudha, 2022). With 
the increasingly prominent environmental issues, some 
scholars have begun to study the green vehicle routing 
problem, using different path optimization strategies to 
reduce energy consumption and carbon emissions.

Existing algorithms for solving the vehicle path plan-
ning problem include exact, metaheuristic, and intelligent 
algorithms (Dhanya & Kanmani, 2016; Wang et al., 2020c; 
Wu et al., 2022). Each algorithm for the vehicle path prob-
lem has its own advantages and applications. For a collab-
orative multicenter vehicle routing problem with time win-
dows and dynamic customer demands. A hybrid heuristic 
algorithm comprising an improved k-medoids clustering 
algorithm and an extended reference pointbased non-
dominated genetic algorithm-III, is designed to solve the 
multi-objective optimization model (Wang et al., 2022b). A 
truck-drone hybrid routing problem with time-dependent 
road travel time (TDHRP-TDRTT) to address the truck-drone 
cooperation issue, and the proposed model and algorithm 
are of practical significance in reducing operating cost, im-
proving transportation efficiency, and facilitating a smart 
and sustainable urban logistics distribution system (Wang 
et al., 2022a). Wang propose an optimization framework 
for large-scale multi-echelon logistics delivery and pickup 
networks to solve the GLLRPE for logistics operations sus-
tainability (Wang et al., 2020a). The exact approach can 
locate the exact solution to a problem, but it requires ex-
tensive computation. Moreover, as the size of the problem 
increases, the solution computation becomes more time-
consuming and complex (Bräysy & Gendreau, 2005; Maha-
to & Singh, 2018). In recent years, metaheuristic algorithm 
was widely used for optimizing the design of green supply 
chain networks. For example, cuckoo optimization algo-
rithm, multi-objective invasive weed optimization, multi-
objective simulated annealing algorithm, multi-objective 
gray wolf optimization, and multi-objective invasive weed 
optimization generate high-quality solutions (Goli et al., 
2020, 2022). Compared to the exact approach, the meta-
heuristic algorithm is faster, but its overall search perfor-
mance is poor, and it cannot guarantee that the solution 
obtains all of the problem’s solution spaces; thus, “satisfac-
tory solutions” are common (Homberger & Gehring, 2005; 
Wang et al., 2020b). Conversely, the intelligent algorithm 
is an approach that has been researched for many years, 
has a strong global search capability, and can produce 
high-precision, satisfactory results within a specified time 
frame (Wang & Li, 2018; Zhou et al., 2022). The Ant Colony 
Algorithm is an example of an intelligent algorithm that is 
ideally suited for solving the optimization problem of do-
mestic waste collection and transportation routes (Pellerin 
et al., 2020). However, its own positive feedback makes it 
easy to fall into the local optimal solution, thus making it 
difficult to obtain the global optimum (Chen et al., 2017; 
Zhu et al., 2020). In addition, it also has the disadvantages 
of slow solution speed and long search times. Recent re-
search indicates that the frog-hopping algorithm is more 
applicable to vehicle path problems (Dalavi et al., 2016; 

Hidalgo-Paniagua et al., 2015). Although the ant colony 
algorithm solves complex optimization problems with high 
precision, the search time is long, and the search efficiency 
is low; conversely, the frog hopping algorithm has better 
global convergence, particularly in the later stages, but has 
specific requirements for the initial solution. Hence, it can 
be seen that improving existing algorithms or using dif-
ferent algorithms to form hybrid algorithms to solve MSW 
vehicle routing problems is still a hot research direction in 
the field of algorithms.

In existing research on green vehicle routing problems, 
there is little comprehensive consideration of the impact of 
fixed vehicle costs, transportation costs, carbon emission 
costs, as well as vehicle capacity and time window con-
straints on transportation costs. Thus, this study takes the 
example of garbage collection and transportation in Baohe 
District as the research object, comprehensively consider-
ing four factors: collection distance, average loading rate, 
number of collections, and average number of stations. A 
green and low-carbon garbage collection and transporta-
tion vehicle scheduling and path optimization model is 
constructed, and an improved ant colony-shuffled frog 
leaping algorithm is designed to solve the problem and 
find the optimal collection and transportation plan.

3. Problem statement and mathematical 
model

3.1. Problem statement
The domestic waste collection route problem is a typical 
Vehicle Route Problems (VRP), which also belongs to the 
NP problem (Non-deterministic Polynomial), a multi-drive, 
multi-loop, multi-vehicle, single-point-to-multiple-collec-
tion point, and a waste collection problem with a dynamic 
road network (Kang & Lee, 2018). Accordingly, the waste 
collection route comprises a very complex combinatorial 
optimization problem; thus, the fundamental theory ap-
plicable to VRP also applies to it.

In this study, by analyzing the current state of research 
and combining it with the reality of the study area, the Ca-
pacity Vehicle Routing Problem (CVRP) model with capac-
ity constraints is extended by analogy with the generalized 
VRP problem, as described below (Hiermann et al., 2016):

1. Known conditions: A total of m identical domestic 
waste collection vehicles parked at v0 (garage) were re-
quired to go to n waste collection points in the destination 
area for domestic waste collection and transportation. The 
waste collection points include v1, v2, ..., vn; the location 
coordinates of each waste collection point comprise xi and 
yi; the volume of waste qi (i = 1, 2, ..., n) at this collection 
point is known, which finally goes to the terminal transfer 
station vn+1.

2. The required number of vehicles, K, is dependent 
on the overall conditions within the collection area, the 
allocation of a certain number of refuse collection vehicles 
with a capacity of Q, and the distribution of routes and 
carriers on the return route to minimize the total distance.
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3. Restrictions: The removal vehicle leaves the point of 
departure (v0) to collect the waste from each collection 
point in the area. This collection point can only be served 
by one removal vehicle. The vehicle stops collection when 
it is full and then returns to the point of departure; the 
carrying capacity of the transport vehicle must not be ex-
ceeded and traffic regulations need to be observed.

3.2. Mathematical model
Generally speaking, the establishment of mathematical 
models for domestic waste collection and transportation 
can be divided into three steps (Zhang et al., 2022): (1) de-
fining decision variables based on the actual problem 
situation, which are typically represented by letters with 
different subscripts, and defining controllable factors as 
decision variables; (2) defining the objective function: the 
objective function of a multi-model for waste collection 
and transportation is typically to minimize distance, oper-
ating costs, and human and material resources; (3) deter-
mining Constraints: for different mathematical models, the 
constraints are often complex and uncertain, and need to 
be set according to the actual situation.

Let the distance from task i to j be dij and the distance 
from the yard to task j be d0j, then the cost per vehicle   k

ijC
s determined as follows.

1. When i is a garage: 0 0 1 0 ,    1,2, ,k k k
j jC C C d j M×= + =  ; 

2. When i is a task point: 1    0, ,,   0 1, ,k k
ij ijC C d i j M×= ≠ =  , 

where 0  ,kC  – model k marginal cost of adding one vehicle;
1  kC – the cost per unit of travel for model k relative to 

distance.
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Using ti to denote the start time of task i, i.e. the time 
when the vehicle arrives at waste collection point i, and 
cti to denote the time (i = 1, 2, ..., M) when task point i 
completes the collection task (i.e. the waste is transported 
back to the transfer station), where t0 = 0 and ct0 = 0; tij 
to denote the travel time of the vehicle from i to j (i, j = 
1, 2, ..., M); the time for the vehicle to reach task point j 
is given by: 

( )
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Equation (3) indicates the time at which the collection 
vehicle reaches mission point j; Equation (4) represents 
the optimal service time period specified for the collection 
point; Equations (5) and (6) represent the corresponding 
0–1 variable constraints.

A mathematical model of domestic waste collection 
is developed as follows (Aliahmadi et al., 2020; Nguyen-
Trong et al., 2017):
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Equation (7): z represents the value of the objec-
tive function.   k

ijC  represents the transportation cost of 
a model k from collection point i to collection point j. 
It is represented variably depending on the aim of the 
model built, and in this study, it is represented as the 
distance of collecting and transportation; Equation (8) 
indicates that each waste collection point is guaran-
teed to be collected by only one vehicle of a model 
that corresponds to its waste generation; Equations (9) 
and (10) represent the binding relationship between the 
two variables; Equation (11) indicates that the volume of 
collection for each vehicle dispatched with a compatible 
collection point does not exceed the full capacity of that 
vehicle; Equations (12), (13), and (14) indicate that each 
vehicle departs from the refuse transfer station and re-
turns to the transfer station after completing the refuse 
collection task.

Additionally, the number of vehicles assigned to 
each model during collection is less than the number of 
each model owned by the garage. The model uses full 
capacity as a control constraint, i.e., the total amount 
of household waste loaded by a collection vehicle does 
not exceed the maximum full capacity of that vehicle, 
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thereby substantially increasing the full capacity of the 
vehicle and reducing the number of vehicles that must be 
dispatched, thereby reducing operating costs. 

Ultimately, the fundamental constraints on the to-
tal collection minimum distance during transport are as 
follows: 1) all waste generated must be collected and 
transported to achieve daily output; 2) the total amount 
of household waste collected on any one collection path 
must not exceed the full capacity specified for the collec-
tion vehicle, or a penalty function will be implemented; 
and 3) it is guaranteed that all waste is collected at all 
collection points.

4. Materials and methods

4.1. Study area
The area under study comprises the Baohe District of Hefei 
City, Anhui Province. Baohe District is situated in the 
southeast of the main urban area of Hefei City, Anhui 
Province, with a total regional area of 340 km2, 70 km2 
of which are covered by Chaohu Lake. According to the 
seventh census, the resident population of Baohe Dis-
trict in 2020 is 1.21 million, of which 690,000 are urban 
residents. In 2021, Baohe District achieved a gross re-
gional product of 160.694 billion yuan, a 7.3% increase 
over the previous year.

The focus of the investigation is the region’s mu-
nicipal solid waste. The Xiaocangfang domestic waste 
transfer station is located north of Taishan Road and 
Fanrong Avenue and is responsible for the transfer of 
all household waste within the Baohe District. Currently, 
the transfer station has a transfer capacity of 1,300 tons 
per day, including 200 tons/day of food waste and 
1,100 tons/day of other waste. In urban areas, garbage 
is collected twice daily at 9:00 a.m. and 9:00 p.m. Af-
ter the collection and transportation is completed, the 
waste is transported to Longquanshan Landfill and Fei-
dong Energy-saving Incineration Power Plant from the 
Xiaocangfang Refuse Transfer Station.

Due to the large number and dispersed distribution 
of front-end domestic waste collection and transporta-
tion stations in the district, the waste generation vol-
ume of each district varies, and only special vehicles 
are used to clean and transport domestic waste. While 
the driving route of the cleaning vehicles relies solely 
on experience driving, the absence of scientific path se-
lection and optimization is likely to reduce the collec-
tion and transportation efficiency of the collection and 
transportation system and increase the collection and 
transportation costs. Thus, it is necessary to combine 
the domestic waste collection and transportation model 
with path planning algorithms to select a suitable col-
lection and transportation path so as to reduce the sys-
tem collection and transportation cost and improve the 
collection and transportation efficiency, provided that 
the collection and transportation requirements are met.

4.2. Data sources
The data information on road network distribution, road 
length, and road class needed for this study was ob-
tained from vector data downloaded from the National 
Road Network Vector Map 2020 of the Open Street Map 
website, and the road network map of the study area 
was obtained after cropping as depicted in Figure 1.

Figure 1. Road network and collection points in study area

As China’s waste classification management is still in 
its infancy, statistics and monitoring of waste generation 
at each collection point are not yet available. According 
to the findings of relevant studies, the population is the 
primary factor influencing the volume of domestic waste 
generation (Cheng et al., 2020; Zhao et al., 2022), so the 
waste generation was estimated based on the popula-
tion of the selected domestic waste collection points in 
the Baohe District. According to the Hefei City Statisti-
cal Yearbook 2021, the average household population 
in Baohe District in 2020 was 2.86 people, and the total 
number of households in each district was determined 
by checking the total number of households in each dis-
trict on the websites of Anjuke and Chain Home. Corre-
spondingly, the average daily per capita domestic waste 
removal volume in China was obtained as 1.12 kg per 
person (Wang et al., 2017), based on the data obtained 
from the Research Report on the Assessment of Urban 
Domestic Waste Management in China by the National 
Institute of Development and Strategy, Renmin Univer-
sity, China, from which the total waste collection volume 
of each recycling point was derived.
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4.3. Ant colony algorithm
In his Ph.D. dissertation published in 1991, Italian scholar 
M. Dorigo introduced a new method of ant colony opti-
mization (ant colony algorithm) based on the colony be-
havior of real ants in nature and applied it to solve a se-
ries of combinatorial optimization problems (Dorigo et al., 
1996). Extensive observation and study by entomologists 
have revealed that ants are capable of figuring out the 
shortest route from the nest to the food source without 
any initial guidance and that they can respond by creating 
new path choices in response to environmental changes 
(Zhang & Xiong, 2018). Ant colony algorithm is easy to 
combine with other algorithms, and by making reasonable 
improvements to its mathematical model, it can effectively 
solve many problems. Many scholars have combined it 
with other heuristic intelligent optimization methods and 
achieved good results. By utilizing a design approach that 
complements each other's strengths, optimization solu-
tions can be enriched and better solutions can be sought.

The basic algorithm for an ant colony consists of two 
processes. The first process is state transfer; accordingly, 
the probability function for state transfer in the ant colony 
algorithm is determined by the distance between nodes 
and the pheromone concentration (Luo et al., 2020). Thus, 
at time t, after city i, the state transfer probability of ant 
k choosing the next city j is given by the following equa-
tions:

( )
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where allowedk = {0, 1, ..., n−1} denotes the city that ant 
k is allowed to choose next; ηij(t) denotes the visibility of 
edge (i, j), reflecting the degree of heuristic for transferring 
from city i to city j, and is a heuristic function defined ac-
cording to its own fitness (ηij =1/dij); α is the pheromone 
heuristic factor; β is the expectation heuristic factor; taubk 
denotes the taboo table of the set of cities that the ant has 
finished visiting; and dij is the node i to node j Euclidean 
distance.

The second process is pheromone updating, and after 
n seconds, the ant completes a cycle in which the quantity 
of pheromone on each path is adjusted in accordance with 
Equation (18) (Chen et al., 2017; He et al., 2021).
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where ( ), 1  k
ij t t∆τ +  presents the number of pheromones 

left on path (i, j) by the kth ant at time (t, t + 1), which 
depends on the performance of the ants, the path 
length, and the density of the pheromones. Additionally

( )  , 1k
ij t t∆τ + , presents the increment of pheromones on 

path (i, j) in the current cycle; (1 – ρ) prevents the tracks 
from accumulating continuously on the path and is gener-
ally set to 0 < ρ < 1.

4.4. Shuffled frog leaping algorithm
Based on guided search, Eusuff and Lansey (2003) pro-
posed a Shuffled Frog Leaping Algorithm (SFLA) inspired 
by frog group foraging. The algorithm simulates the co-
evolution of subpopulations of a group of frogs as they 
search for the most food locations, and it combines de-
terministic and stochastic methods with more efficient 
computational power and global search performance. It 
combines deterministic and stochastic methods, provid-
ing more efficient computing power and global search 
performance.

The algorithm divides a group of frogs with the same 
structure into multiple populations, searches for feasible 
solutions locally based on specific strategies for the frogs 
in the population, and then searches for the global optimal 
solution via global information exchange. The combination 
of global information exchange and local optimal search, 
thus, enables the algorithm to escape the local extremum 
and accelerates global optimal search (Duan et al., 2018). 
The process is described below:

First a population of frogs (p) is randomly generated, 
with each frog representing a solution xi = [xi1, xi2, ..., xis] 
containing s variables. The frogs within the population are 
then ranked in descending order of individual fitness and 
then grouped to form a matrix of p = r × c subpopula-
tions, which contains c subpopulations of r frogs each. The 
solutions with the best and worst fitness in each popula-
tion are denoted by Xb, Xw, respectively, and the solution 
with the highest global fitness among all populations is 
denoted by Xg. When performing a local search for each 
colony, it is necessary to perform a cyclic update of Xw in 
the colony using the following equations.

( ) ;j b wD rand X X= × −  (19)

' , ,,w w j j min maxX X D D D D = + ∈    (20)

where Dj is the distance moved on component j; rand is a 
random number between 0 and 1; and Dmin, Dmax are the 
minimum and maximum steps allowed for frog position 
change.

If the resultant solution X’w is superior to the initial 
solution Xw , update the solution in the original popula-
tion; if no improvement is observed, Xb is replaced with 
Xg. Subsequently, Equations (19)–(20) are repeated. If 
there is still no improvement, a new solution is randomly 
generated to replace the original Xw . This update proce-
dure is repeated until the specified number of iterations is 
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completed. When the local depth search of all populations 
is complete, the frogs of all populations are reordered and 
divided into populations, followed by another local depth 
search, and so on, until the termination condition is met.

4.5. Fusion of improved ant colony algorithm 
and shuffled frog leaping algorithm
4.5.1. Improved ant colony algorithm

1. Improvement of the state probability transfer function
To address the deficiencies of the conventional ant col-

ony algorithms, the state transfer probability formula pre-
sented in this paper is first enhanced. Based on the transfer 
probability used by the traditional ant colony algorithm in 
node selection, pseudo-random rules are introduced to en-
sure the initial convergence speed of the algorithm (Reed 
et al., 2014). When the ant selects the next node j, it first 
makes a selection according to Equation (21).
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where q represents a random number in the interval (0, 1); 
q0 is a design parameter whose value decreases with in-
creasing number of iterations; ηjD is the inverse of the 
distance from node j to the target D; and α and β denote 
the relative importance of the pheromone and distance 
expectations.

If q is less than or equal to q0, then the node
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 Correspondingly, the 

candidate node j will be selected based on the maximum 
pheromone concentration and the highest path node ex-
pectation in any selectable node s∈allowedg; when q is 
larger than q0, node j is selected using the probability for-
mula ( )  k

ijP t  or any candidate; subsequently, the roulette 
wheel is used to decide the next node.

2. Dynamic global pheromone improvements
The traditional ant colony algorithm only takes into 

account the effect of pheromone concentration on the 
path and visibility between the current node and the next 
node. This method can effectively solve the node selection 
problem in the early stages of the algorithm, but leads 
the algorithm to fall into local optimum in the middle and 
late stages. Correspondingly, the probability function is 
improved by analyzing the calculation results, as shown in 
Equation (22) (Deng et al., 2020).
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where H denotes the cumulative number of times node s 
has been visited. Clearly, the transfer probability ( )k

ijP t  is 
inversely proportional to H, which helps to increase the 
diversity of solutions.

In ant initialization algorithms, a fresh pheromone in-
crement is generally set, which is plainly irrational since 
the increase in pheromone needed by the algorithm fluc-
tuates between various iterations. To avoid getting stuck 
in a local optimization situation, a dynamic pheromone 
update algorithm is used to speed up the convergence of 
the algorithm, as seen in Equation (23).

( ) 0 ,tQ Q t= + λ  (23)

where Q0 is the initial value of the pheromone and λ is the 
pheromone update mechanism.

4.5.2. Algorithm fusion

Reason for fusion: The ant colony algorithm solves com-
plex optimization problems with high accuracy, but the 
search time is long and the search efficiency is not high. 
Although the global convergence of the frog hopping al-
gorithm is better, particularly the search efficiency at the 
later stage, but there is a requirement for the initial so-
lution. Thus, the combination of the two algorithms can 
achieve optimal results. 

The specific steps are as follows:
1. Pheromone Q, the number of iterations N, and oth-

er control parameters were initialized.
2. The next node j was then determined by the state 

transformation equations by Equations (21) and 
(22), and the previous position was initialized to 
i. In addition, position j was placed in a forbidden 
table corresponding to ant k until all ants K had 
completed their search operations.

3. The value of the objective function for each ant was 
recorded.

4. Based on the calculation results of the ant colony 
algorithm, the size of each objective function was 
ranked. The path with priority M was selected as 
the initial M frogs for the hybrid frog hopping al-
gorithm. Meanwhile, the fitness of each frog was 
calculated using various objective functions, and 
the values of each objective function were ranked 
according to the outcomes of the ant colony algo-
rithm. The paths with M priorities were used to ini-
tialize M frogs for the hybrid frog jump. In addition, 
the fitness level of each frog was determined by 
analyzing each objective function.

5. Subgrouping M frogs: They were divided into m 
subgroups of n frogs each, based on fitness values. 

6. In various subpopulations, the worst frog learned 
from the best. If the fitness increased after learning, 
the poorest frog obtained more information from 
the best overall; subsequently, the next iteration was 
initiated; if the fitness value did not improve after 
learning, it was updated according to Equation (23) 
and proceeded to the next step.

7. Typically, in←in+1; if in < m (m is the number of 
subgroups), the protocol was initiated back from 
step (6). Conversely, the local search was deemed 
complete and the next step was initiated.
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8. Global search: g←G+1; if G < Gmax, the protocol was 
initiated back from step (5); conversely, the global 
optimal frog was obtained as the output. Subse-
quently, the next step was initiated.

9. The as-generated final path was then optimized us-
ing the simplified operator to obtain the optimal 
result as the output. The flow chart of the improved 
algorithm is shown in Figure 2.

5. Results and discussion

5.1. Algorithm validation: southern Baohe 
District
5.1.1. Algorithm parameter setting

In this study, an improved ant colony-shuffled Frog Leap-
ing Algorithm was used to solve the path planning prob-
lem of domestic waste collection and transportation in 
the Baohe District, and the example was simulated using 
MATLAB® (version R2019a). The values of the algorithm 
parameters directly affect the efficacy of the algorithm’s 
solution and the superiority of the optimal solution; there-
fore, prior to conducting the example experiments, in order 
to determine a reasonable combination of parameters to 
ensure the efficacy of the example and the reliability and 
efficacy of the algorithm, the algorithm parameters were 
set by consulting relevant literature and by testing multi-
ple parameter combination schemes through simulation: 
the initial number of iterations of the algorithm Nc = 1, the 
pheromone heuristic factor α = 0.67, expectation heuristic 

factor β = 0.343, decay coefficient of pheromone trajectory 
ρ = 0.67, total pheromone value Q = 3, number of ants 
m = 10, the maximum number of iterations NCmax = 80, 
number of frog population groupnum = 4, number of it-
erations outside the group gc = 4, number of iterations 
inside the group lc = 5, and number of frogs N = 20.

5.1.2. OD matrix distance analysis

Through survey and research, it is known that there are 
135 dwelling quarters in the south of Baohe District. Thus, 
in this study, “quarters” is extended as a household trash 
collecting station. At the same time, due to the dense 
streets and road distribution characteristics, many garbage 
collection points are located close to each other or on the 
same road, while the location of the starting point (Xiao-
cangfang garbage transfer station) as a garbage collection 
vehicle is relatively far away. Thus, in order to facilitate the 
study and be more realistic, 50 different neighborhoods 
were selected as the study objects according to different 
areas, different side roads, distance, and superposition of 
domestic waste volume, etc. The precise distribution is de-
picted in Figure 3, and the coordinates of the collection 
points and the domestic waste output of the correspond-
ing points are shown in Table 1.

In order to make the domestic waste collection and 
transportation vehicles drive more in line with the actual 
situation, the new OD distance analysis, in the loading po-
sition was selected with the help of ArcGIS network analy-
sis tools. In addition, the distribution of domestic waste 
collection points in the south of Baohe District for the 

Figure 2. Ant colony-shuffled frog leaping algorithm flow chart
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loading starting point was solved and the data was orga-
nized to obtain the actual distance cost matrix between 
the two pairs of points in order to load when the vehicle 
is in motion. The results are shown in Figure 3.

5.1.3. Algorithm implementation

In order to increase the reliability of the results, the re-
search process for different models to solve the vehicle 
path planning problem on MATLAB® code is solved five 
times. After comparing the collection distance five times, 
the number of collection, the average loading rate, and 
the number of stations, the optimal one operation result 
is selected.

Case 1: The vehicle path planning problem is solved for 
single model collection mode when the load of domestic 
waste collection vehicles is 5 t and 8 t, respectively, using 
the improved ant colony-shuffled frog hopping algorithm. 

Figure 3. Analysis of OD distance between collection points 
and nodes in the south of Baohe District

Table 1. Coordinates of the MSW collection points and 
quantity in southern Baohe District

Grade xi yi gi(t)

Z 117.373552 31.797494 0
1 117.3551875 31.78727937 0.86
2 117.3663054 31.7817819 2.98
3 117.3688812 31.77538763 3.00
4 117.3404518 31.77757364 1.59
5 117.3127509 31.78074578 2.57
6 117.3142584 31.76372043 1.11
7 117.309501 31.74574595 1.99
8 117.3044228 31.74943532 2.05
9 117.3044428 31.74882525 1.43
10 117.2993938 31.74930329 3.00
11 117.2994439 31.74887318 1.00
12 117.2933053 31.75186176 2.00
13 117.281408 31.75743857 2.00
14 117.3146101 31.73075523 1.22
15 117.2940845 31.74631025 2.47
16 117.2888343 31.74928763 1.58
17 117.2887346 31.74895773 2.01
18 117.2942447 31.74314976 1.12
19 117.2942548 31.74260967 0.99
20 117.3008219 31.73681966 3.06
21 117.2820672 31.75170701 3.00
22 117.2887151 31.74584747 0.98
23 117.2838042 31.74940445 0.96
24 117.2838242 31.74892439 1.58
25 117.2887155 31.74261719 1.04
26 117.2855515 31.74441165 0.57
27 117.2937861 31.73677961 1.51
28 117.2826369 31.74565572 1.88
29 117.2916007 31.73506245 1.01
30 117.2884968 31.736457 2.46
31 117.2876783 31.73682812 0.41
32 117.2843444 31.73958288 0.45
33 117.2739924 31.74003504 2.35
34 117.3146209 31.7074712 2.03
35 117.2671708 31.74315048 1.62
36 117.2778277 31.73512136 1.37
37 117.2722946 31.73691582 1.34
38 117.2778678 31.73320116 0.98
39 117.272954 31.73507505 0.58
40 117.2709866 31.73266611 2.44
41 117.2894377 31.71433356 2.87
42 117.2770794 31.72336034 2.03
43 117.2750323 31.72217189 1.06
44 117.2698589 31.72432613 1.43
45 117.2732548 31.72016309 0.54
46 117.2757917 31.71666065 2.66
47 117.247964 31.73200349 1.09
48 117.2637772 31.72051058 2.31
49 117.2671033 31.71566759 3.06
50 117.2735654 31.70020014 0.64

Figure 4. Route planning of single-type bicycle (5 t) in 
southern Baohe District
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The results are shown in Figure 4, Figure 5, Table 2, and 
Table 3. The horizontal coordinate X indicates longitude; 
the vertical coordinate Y indicates latitude; the numbers 
(red dots) indicate waste collection points; Z indicates the 
small barn domestic waste transfer station; and the blue 
line indicates the route of the domestic waste collection 
vehicle. The same representation is used in Figures 5 to 7.

Case 2: A multi-vehicle collection model was developed, 
using a combination of four different loadings of 5 t, 6 t, 8 t, 
and 12 t domestic waste collection vehicles to solve the ve-
hicle path planning problem in the south area of the Baohe 
District, based on the basic ant colony algorithm for the solu-
tion; the results are shown in Figure 6 and Table 4.

Table 4. South multi-vehicle basic ant colony algorithm path 
planning table

N Driving route
Loa-
ding 
rate

Sites 
num-
ber

Ty-
pes

1 Z→4→1→Z 0.94 2 5 t
2 Z→21→13→Z 1 2 5 t
3 Z→48→15→11→Z 0.963 3 6 t
4 Z→32→10→9→6→Z 0.998 4 6 t
5 Z→3→2→Z 0.997 2 6 t
6 Z→47→39→49→34→14→Z 0.997 5 8 t
7 Z→50→45→38→37→17→22→27→Z 1 7 8 t
8 Z→42→46→40→Z 0.891 3 8 t
9 Z→35→33→28→24→19→29→5→Z 0.999 7 12 t
10 Z→41→30→31→20→25→26→16→Z 1 7 12 t
11 Z→43→44→36→23→18→12→8→7→Z 0.998 8 12 t

Total distance: 
300.74 km Figure 5. Route planning of single-type bicycle (8 t) in 

southern Baohe District

Table 2. Route planning of 5 t MSW collection and 
transportation vehicle in southern Baohe District

N Driving route Loading 
rate 

Number  
of sites 

1 Z→48→35→25→Z 0.994 3
2 Z→36→26→9→4→Z 0.992 4
3 Z→41→34→Z 0.980 2
4 Z→40→39→32→31→18→Z 1 5
5 Z→29→27→16→1→Z 0.992 4
6 Z→28→20→Z 0.988 2
7 Z→38→22→12→11→Z 0.992 4
8 Z→14→6→5→Z 0.980 3
9 Z→10→7→Z 0.998 2
10 Z→50→46→24→Z 0.976 3
11 Z→49→37→Z 0.880 2
12 Z→45→43→33→19→Z 0.988 4
13 Z→21→13→Z 1 2
14 Z→2→Z 0.596 1
15 Z→15→8→Z 0.904 2
16 Z→47→44→30→Z 0.996 3
17 Z→3→Z 0.600 1
18 Z→42→23→17→Z 1 3

Total 
distance: 459.27 km

Table 3. Route planning of 8 t MSW collection and 
transportation vehicle in southern Baohe District

N Driving route Loading 
rate

Number of 
sites

1 Z→42→30→15→11→Z 0.995 4
2 Z→34→46→45→27→23→Z 0.962 5
3 Z→49→35→32→28→1→Z 0.983 5
4 Z→21→10→7→Z 0.998 3

5 Z→44→38→36→29→18→8→Z 0.995 6

6 Z→14→16→5→4→Z 0.870 4
7 Z→41→47→39→25→19→9→Z 1 6
8 Z→50→40→33→26→12→Z 1 5
9 Z→13→24→37→20→Z 0.997 4
10 Z→3→2→Z 0.748 2
11 Z→43→48→31→22→17→6→Z 0.985 6

Total 
distance: 315.28 km

Figure 6. Results of the basic ant colony algorithm for 
multi-vehicle in the south area



40 Y. Hu et al. Municipal solid waste collection and transportation routing optimization based on IAC-SFLA

Case 3: A multi-vehicle collection and a transportation 
model was developed, using a combination of four differ-
ent loadings of 5 t, 6 t, 8 t, and 12 t domestic waste col-
lection vehicles to solve the vehicle path planning problem 
in the south area of the Baohe District, based an improved 
ant colony-shuffled frog hopping algorithm; the results are 
shown in Figure 7 and Table 5.

Figure 7. Route planning diagram of multi-vehicle in 
southern Baohe District

Table 5. Route planning table of multi-vehicle in southern 
Baohe District

N Driving route
Loa-
ding 
rate

Sites 
num-
ber

Types

1 Z→34→14→4→Z 0.968 3 5 t
2 Z→33→32→8→Z 0.970 3 5 t
3 Z→41→29→18→11→Z 1 4 6 t
4 Z→3→2→Z 0.997 2 6 t
5 Z→48→39→28→17→25→Z 0.978 5 8 t
6 Z→19→27→36→26→23→5→Z 0.996 6 8 t
7 Z→20→31→22→15→12→10→Z 0.993 6 12 t
8 Z→42→43→45→44→40→16→13→Z 0.923 7 12 t
9 Z→50→49→37→21→24→9→1→Z 0.993 7 12 t
10 Z→46→47→35→38→30→7→6→Z 0.993 7 12 t

Total distance: 
280.98 km 

As seen from the table, the larger the load capac-
ity of the vehicle, the longer the corresponding driving 
route. Additionally, the corresponding loading rate and the 
number of stops will be relatively high. This is because 
the larger the load capacity of the vehicle, the larger the 
amount of waste it can carry, and thus the more collec-
tion points the vehicle can pass through and the longer 
the collection path.

5.1.4. Comparative analysis of model and algorithm

In order to compare the differences between the two 
modes of single-vehicle type and multi-vehicle type col-

lection, as well as the basic and improved ant colony algo-
rithms, the results of the solved algorithms were compared 
and analyzed in terms of collection distance, average load-
ing rate, number of collections, and average number of 
stations, respectively, as shown in Table 6.

Table 6. Comparison of results of different consignments in 
southern Baohe District

Cases Dis tance 
(km)

Ave rage 
loa ding 
rate (%)

Number 
of pick-
ups and 

deli veries

Average 
number 
of sites

1
5 t type 459.27 93.64 18 2.7
8 t type 315.28 95.77 11 4.5

2 multi-model 300.74 93.95 11 4.5
3 multi-model 280.98 98.10 10 5.0

As shown in Tables 2–6, a comparative analysis with 
different single-vehicle models, multiple-vehicle models, 
and basic ant colony algorithms is presented:

1. Comparison between single-vehicle models
As seen from Table 6, Case 1, when the single-vehicle 
type used was changed from 5 t to 8 t, the distance 
traveled by the vehicle in the collection was also reduced 
from 459.27 km to 315.28 km. In addition, the number of 
vehicle collections was reduced from 18 to 11, and the 
average loading rate and the average number of stops 
were increased from 93.64% to 95.77% and 2.7 to 4.5, re-
spectively. It can therefore be concluded that when only 
a single vehicle type is selected for use in the collection, 
the higher the vehicle load capacity, the shorter the dis-
tance traveled throughout the collection process, with a 
concomitant increase in the average vehicle loading rate, 
along with a concomitant decrease in the number of col-
lections and an increase in the average number of stops 
per collection route.

2. Single-vehicle versus multi-vehicle model
As shown in Table 5, when using the combination of 

multiple vehicle types for collection and transportation, 
the southern Baohe District needs to use the models with 
5 t, 6 t, and 8 t to collect 2 times and the model with 12 t 
to collect 4 times respectively. Thus, the total number of 
collection and transportation is 10 times. Moreover, from 
the comparison of Case 1 and Case 2 in Table 6, it can be 
found that when using the combination of multiple vehicle 
types for collection and transportation, the total distance 
was reduced to 280.98 km. In addition, there was a reduc-
tion of 34.3 km and a reduction in the number of collec-
tion trips. Moreover, the average loading rate increased 
from 95.77% to 98.1%, with an increase of 2.33 percentage 
points. Conversely, the average number of stops increased 
to 5. Therefore, it can be concluded that the collection 
mode with multiple vehicle types performs better than the 
collection mode with a single vehicle type in transporta-
tion. In the multi-model collection mode, vehicles traveled 
a shorter total distance, completed fewer collection trips, 
had a higher average vehicle loading rate, and passed 
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through a greater number of stops. When multi-vehicle 
modes minimize the distance traversed by the vehicles, 
they save collecting time and are less likely to incur time 
penalty fees, resulting in a lower relative total cost.

3. Comparison of basic and improved ant colony al-
gorithms

From the comparison of Case 2 and Case 3 in the table, 
it can be found that the total collection distance obtained 
by solving using the improved ant colony algorithm was 
19.76 km shorter than the result of the basic ant colony 
algorithm, and the average loading rate increased from 
93.95% to 98.1%, with an increase of 4.15%. In addition, the 
number of stations on each collection path also increased, 
and the total number of collections decreased once. In 
conclusion, the improved ant colony algorithm outper-
forms the basic ant colony algorithm in every respect.

5.2. Algorithm application:  
northern Baohe District 
In the example study in the south district of Baohe, it was 
determined that the multi-vehicle model of collection and 
transportation is superior to the single-vehicle model in 
terms of vehicle travel distance and average loading rate 
and that the improved ant colony algorithm solves better 
than the basic ant colony algorithm; consequently, for the 
domestic waste collection and transportation path plan-
ning problem in the north district of Baohe, the multi-
vehicle model was chosen.

Figure 8 displays the results of the distribution of do-
mestic waste collection points and OD distance analysis in 
the area for the 99 living communities that were selected 
for this study in the same manner as described in sec-
tion 5.1.

Using a multi-vehicle collection model, the vehicle path 
planning problem for northern Baohe District was solved 
using a combination of four vehicle types with different 
loads of 5 t, 6 t, 8 t, and 12 t, as well as an improved ant 
colony-hybrid frog hopping algorithm; the results are de-
picted in Figure 9 and Table 7.

After five runs, the program’s results were recorded, 
and the best one was chosen to produce Table 7 by com-
paring the collection distance, number of collections, aver-
age loading rate, and number of stations for each run. The 
best solution to the domestic waste collection and trans-
portation path planning problem in the northern district 
of Baohe was found after compilation and summarization, 
as shown in Table 8. When the multi-vehicle model was 
used to collect household waste in the northern part of 
the Baohe District, as shown in Table 8, the total collection 
distance was 714.83 km, the average vehicle loading rate 
for all routes was 95.56%, and there were 18 collections, 
with 6 collection vehicles from the 5 t model, 6 from the 
6 t model, 8 from the 8 t model, and 9 from the 12 t model 
being used. However, the final number of vehicles required 
for the collection process is not the number of vehicles for 
each model. For instance, if there are 6 of the 5 t vehicles 
that are required, only 1 of the 5 t collection vehicles can 
be used to complete 6 collections, or 2 of the 5 t vehicles 
can be used to 3 collections each, and so on.

Table 7. Route planning of multi-vehicle in northern Baohe 
District

N Driving route Loading 
rate

Site 
num-
ber

Types

1 Z→2→Z 0.616 1 5 t
2 Z→72→33→11→Z 0.906 3 5 t
3 Z→18→12→Z 0.98 2 5 t
4 Z→23→6→Z 0.998 2 5 t
5 Z→44→7→Z 0.962 2 5 t
6 Z→75→66→Z 0.994 2 5 t
7 Z→70→20→17→Z 0.995 3 6 t
8 Z→19→1→Z 0.997 2 6 t
9 Z→73→49→39→Z 0.957 3 6 t
10 Z→38→3→Z 0.985 2 6 t
11 Z→42→32→Z 0.983 2 6 t
12 Z→68→48→Z 0.993 2 6 t
13 Z→93→54→29→Z 0.918 3 8 t
14 Z→41→51→55→69→Z 0.961 4 8 t
15 Z→60→56→45→4→Z 0.968 4 8 t

Figure 8. Analysis of OD distance between collection points 
and nodes in northern Baohe District

Figure 9. Route planning of multi-vehicle in the northern area
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N Driving route Loading 
rate

Site 
num-
ber

Types

16 Z→81→57→92→87→Z 0.973 4 8 t
17 Z→34→26→Z 0.688 2 8 t
18 Z→85→36→24→22→10→Z 0.968 5 8 t
19 Z→99→47→15→Z 0.983 3 8 t
20 Z→62→53→31→9→Z 0.991 4 8 t
21 Z→79→65→74→28→Z 0.995 4 12 t
22 Z→83→86→25→86→13→5→Z 0.989 6 12 t
23 Z→40→76→64→52→21→Z 0.983 5 12 t
24 Z→61→59→77→96→84→Z 0.997 5 12 t
25 Z→94→91→78→46→30→8→Z 0.996 6 12 t
26 Z→97→89→43→35→14→Z 0.988 5 12 t
27 Z→90→80→88→95→82→27→Z 0.996 6 12 t
28 Z→98→71→58→37→Z 0.987 4 12 t
29 Z→67→50→63→16→Z 0.966 4 12 t

Total distance: 714.83 km

Table 8. Results of multi-vehicle routing planning in the 
north area of Baohe District

Total 
distance

Average 
loading 

rate 

Number of 
pick-ups and 

deliveries

5 t 
type

6 t 
type

8 t 
type

12 t 
type

714.83 km 95.56% 18 6 6 8 9

5.3. Management insights
Taking into account the domestic waste collection route 
planning for the southern and northern districts of Baohe, 
the results of the domestic waste collection route planning 
for the entire district of Baohe District can be obtained 
based on the collection distance, average loading rate, 
number of collection trips, and use of various types of 
vehicles, as shown in Table 9. In Baohe District, we can see 
that the average loading rate is 96.83% and that the total 
collection path distance for household waste is 995.81 km. 
The collection of household waste in the district must be 
completed 28 times, 8 times for vehicles carrying 5 t and 
6 t, 10 times for vehicles carrying 8 t, and 13 times for 
vehicles carrying 12 t. The management insights of this 
study can be summarized as follows:

1. The participation of IAC-SFLA reduce the transpor-
tation distances of vehicles. By optimizing the allocation 
of transportation resources, the utilization rate of vehicles 
can be improved, thereby reducing the number of vehi-
cles. Therefore, it can save costs or resources and create 
higher profits for enterprises.

2. The participation of IAC-SFLA increase the average 
loading rate. Using multiple vehicle models for transpor-
tation will improve the utilization rate of transportation 
equipment, thereby improving transportation efficiency 
and service quality. Therefore, dynamically adjusting ve-
hicle models and optimizing vehicle scheduling schemes 
can significantly improve the average loading rate, thereby 
reducing operating costs and environmental pollution.

3. The government and enterprises should strength-
en cooperation. The government should encourage cross 
city, multi vehicle collaboration, and design resource sav-
ing and environmentally friendly transportation networks. 
Enterprises should use artificial intelligence and big data 
resource sharing platforms to reduce operating costs, im-
prove cooperation efficiency, and promote the sustainable 
development of vehicle transportation networks.

Table 9. Summary of MSW collection and transportation 
route planning scheme in Baohe District

Distance

Ave-
rage 

loa ding 
rate

Num-
ber of 
pick-

ups and 
deli-
veries

5 t 
type

6 t 
type

8 t 
type

12 t 
type

South 280.98 km 98.10% 10 2 2 2 4
North 714.83 km 95.56% 18 6 6 8 9
Total 995.81 km 96.83% 28 8 8 10 13

6. Conclusions

An improved ant colony-hybrid frog-jumping algorithm 
was used to solve the path-planning problem for urban 
household waste collection with capacity constraints for 
single and multi-model vehicles, and multiple perspectives 
were used to compare and contrast the various solutions. 
The conclusions are as follows:

1. Multi vehicle transportation is better than single 
vehicle transportation

In the homegrown waste assortment and transporta-
tion course arranging issue in the south region of Baohe, 
when contrasted and the single-vehicle assortment and 
transportation model, the assortment distance is de-
creased to 280.98 km, which is 34.3 km less contrasted and 
the single-vehicle model, and the quantity of assortments 
is diminished by 1 time; The average loading rate rises by 
2.33 percentage points, from 95.77% to 98.1%; and there 
were now an average of 5 stations. Consequently, in the 
metropolitan waste assortment course arranging issue, the 
assortment model with numerous vehicles outflanks the 
single vehicle assortment model as far as assortment dis-
tance, normal stacking rate, number of assortments, and 
a normal number of stations.

2. The fusion algorithm is superior to a single algo-
rithm

When compared to the basic ant colony algorithm 
for solving the domestic waste collection path planning 
problem in the south district of Baohe, the improved ant 
colony algorithm yields a total collection distance that is 
19.76 km shorter and an average loading rate that rises 
by 4.15% from 93.95% to 98.1%; The total number of col-
lections decreases by one, but there is an increase in the 
number of stations on each collection path. As a result, the 
improved ant colony algorithm performs better than the 
basic algorithm in every way.

End of Table 7
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3. The participation of IAC-SFLA increase the average 
loading rate and reduce the transportation distances of 
vehicles 

The average loading rate for domestic waste is 
96.83%, and the total collection and transportation path 
distance for the district of Baohe is 995.81 km. In order 
to complete the collection and transportation of domes-
tic waste throughout the entire district, 28 times are re-
quired–8 times for vehicles weighing 5 t and 6 t, 10 times 
for vehicles weighing 8 t, and 13 times for vehicles weigh-
ing 12 t. It is demonstrated that the fusion of the improved 
and shuffled Frog Leaping Algorithms can be used to solve 
the domestic waste collection path planning problem, 
making the improved ant colony-shuffled Frog Leaping 
Algorithm feasible and generalizable.

Future studies will be focused on planning the collec-
tion and transportation routes of rural household waste. 
In order to accelerate the convergence speed of the algo-
rithm, we suggest studying other optimization algorithms 
and comparing them with the algorithm in this paper.
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