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are based on various physicochemical laws, heat-transfer 
and mass-transfer, etc. These are Eulerian or Lagrangian 
models, the main characteristics of which are high univer-
sality and wide limits of variation of conditions. Statistical 
models (Gocheva-Ilieva et  al., 2014; Zhang et  al., 2017) 
operate on the black box principle. They have many ad-
vantages, as high accuracy and simple computation, but 
are valid only in a limited range of changing conditions. 
Widely used in practice are combined models, represent-
ing a hybrid between deterministic and statistical models 
(Chaloulakou et al., 2003; Hoi et al., 2009). They combine 
the advantages of both types of modelling.

On the other hand, artificial intelligent-based technics 
are increasingly used in this field due to the many advan-
tages, as high accuracy, efficient work with high volume 
of data and generalization ability. The first applications of 
machine learning methods are from the beginning of the 
90s, as the main reason for their using is the ability to 
handle non-linear relationships (Roadknight et al., 1997). 
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Highlights

	X This study proposes an adequate analytical forecasting model of PM10 concentration, based on meteorological variables.
	X The created time series model is based on the combination ofARIMA and Multiple Linear Regression methods.
	X The adequacy requirements related to probability distribution and correlation of the residuals was established.

Abstract. Air pollution is one of the serious environmental problems. The high concentrations of particulate matter can 
have a serious impact over human health and ecosystems, especially in highly urbanized areas. In this regard, the present 
study employs a combined ARIMA-Multiple Linear Regression modelling approach for forecasting particulate matter con-
tent. The capital city of Bulgaria is used as case study. A regression analysis techniques are used to study the relationship 
between particulate matter concentration and basic meteorological variables – air temperature, solar radiation, wind speed, 
wind direction, atmospheric pressure. The adequacy of the models has been proven by examining the behavior of the resi-
dues. The synthesized time series model can be used for forecasting, monitoring and controlling the air quality conditions. 
All analyzes and calculations were performed with statistical software STATGRAPHICS.
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Introduction

In recent years, there has been a worldwide trend towards 
increasing the concentration of particulate matter in the 
air. The high levels of air pollution from various anthropo-
genic activities on the territory of the Republic of Bulgaria 
(Doncheva & Boneva, 2013) are part of this global prob-
lem (Li et al., 2021). Deterioration of air quality is most 
noticeable in densely populated urban areas (Stoimenova, 
2016; Aarnio et al., 2016). For our country, the region of 
Sofia is one of the most affected by the emitted harmful 
substances in the air. The measured concentrations of par-
ticulate matter (PM) in the capital exceed systemically the 
permissible average daily norm, regulated in the Atmo-
spheric Air Purity Act.

The air quality studying and prediction can be estab-
lished by traditional and intelligent methods. The tradi-
tional methods include analytical and statistical models. 
The analytical (deterministic) models (Honore et al., 2008) 
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One of the mostly used method of air pollution forecast-
ing is Artificial Neural Networks, which are based on the 
process in the human brain. Neural network with differ-
ent structures, as Multiple Layer Perceptrone (Abderrahim 
et al., 2016), back propagation (Viotti et al., 2002; Kammal 
et al., 2006) and radial basis function (Wahid et al., 2011) 
have been used for prediction of wide range of pollutions 
and their concentration. Deep learning is a sophisticated 
version of neural networks and is also often used to pre-
dict of air pollution (Subbiah & Kumar, 2022). In recent 
years, the use of new algorithms, such as ensemble ma-
chine learning methods (Ejohwomu et al., 2022), which 
provide opportunities to generate more accurate and ef-
ficient forecasts, have increased.

The creation of an effective mathematical model is 
extremely important for the timely control of pollution 
sources in the areas with excessive levels of harmful sub-
stances in the air (Liping & Yaping, 2005). The statistical 
models are highly appropriate in many cases and can be 
built based on multiple linear regression (MLR), time se-
ries, Bayesian Autoregressive, etc. They provide predictive 
capabilities by using large arrays of numerical data.

The aim of this article is to develop a combined ARI-
MA-MLR model applied to air-pollution concentration of 
particulate matter PM10. The multiple linear regression 
model is used for studying the relationships between the 
concentration of particulate matter and five basic meteor-
ological variables. The statistical software for data process-
ing STATGRAPHICS was used to perform the necessary 
analyzes and calculations.

1. Experimental area and method

1.1. Study area

Sofia is the largest city in Bulgaria and the capital of Bul-
garia. It is located south of the center of the Sofia field, 
bordering the Stara Planina to the northeast and sur-
rounded by the mountains Lozen, Plana, Vitosha, Ly-
ulin to the southwest. The Sofia field is enclosed, hollow, 
with poor ventilation. Climatic conditions and the large 
number of anthropogenic sources of air pollution are the 
reason for the sharp increase in their concentrations in a 
short period of time.

Six automatic measuring stations have been installed 
on the territory of Sofia. The measuring station in the 
“Mladost” district is the only one on the territory of Sofia 
Municipality for which the high levels of PM10 pollution 
are formed mainly by the city traffic. “Mladost” district is 
located in the southeastern part of Sofia and represents 
about 10% of the city’s territory. To the west it borders 
the “Darvenitsa” and “Musagenitsa” districts, to the south 
the Kambanite area and the Ring Road. The southeastern 
part of “Mladost” is about 2–3 kilometers from the “Go-
rublyane” district, and to the north it borders Tsarigrad-
sko Shosse Blvd. “Druzhba” and residential area “Polygon”. 
The investigated area is shown on Figure 1.

The mathematical experimental model was developed 
to reveal the relationship between PM10 and the five in-
dependent meteorological variables as follows: daily aver-
age air temperature Tair; daily average solar radiation Rsun; 
wind speed Swind; wind direction Dwind; daily average at-
mospheric pressure Patm. All the data of the independent 
and dependent variables were measured on the territory of 
Mladost district, Sofia for a period of one calendar year – 
365 values for each variable from January to December 
2017. The measurements were performed with an auto-
matic measuring station Thermo Sharp 5030.

1.2. ARIMA-MLR method

The multiple linear regression models are based on the 
relationship between two or more variables to a response 
variable (Abdullah et al., 2017), by means of a linear equa-
tion of the following form:

=

= + + ε∑0
1

,
n

MLR i i
i

Y a a X  (1)

where YMLR is depended variable, Xi is the explanatory vari-
able, ai are regression coefficients, ε – stochastic errors due 
regression equation. MLR is an established effective method 
used for air pollution analysis (Ul-Saufie et al., 2011).

One of the most popular time series models for fore-
casting of air pollution is based by Autoregressive Inte-
grated Moving Average (ARIMA) method. The ARIMA 
model includes autoregressive (AR) and moving average 
(MA) components, which are determine by Box-Jenkins 
method (Box & Jenkins, 1976). The order of a time series 

Figure 1. Investigated area – Mladost district, capital city of Sofia, Bulgaria
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model is designated by following expression ARIMA (p, 
d, q), where p, d and q are the order of the autoregressive, 
the differencing and the moving-average components. The 
overall equation of this model can be expressed as follows 
(Mancini et al., 2022; Ye, 2019):

( )( ) ( )Φ − = ,1 d
P t q tB B Y Q B e  (2)

where Yt are the data at the time t, B is operator, Фp is 
the autoregressive polynomials, Qq is the moving average 
polynomials, et is the residue referred to at the time t.

Particulate air pollution is directly related to various 
meteorological factors (Galindo et  al., 2011). It is ex-
tremely important to carefully assess the meteorological 
phenomena that have the strongest impact on the process 
of pollutant spread in open urban areas. Combining all 
aspects related to climate and the spread of PM in one 
model is very complicated. A multi-stage calculation pro-
cedure is needed to establish the relationship between 
meteorological variables and particulate matter concen-
trations. For this reason, a combination of several math-
ematical methods is often used.

An interesting approach in the analysis of PM is the 
use of a combined method involving multiple linear re-
gression and an ARIMA model. In this case, the purpose 
of the ARIMA model is to fit the residuals of the linear 
regression model and make a short-term forecast. The 
predicted residuals are superposed with values of multi-
ple linear regression. The combined model as follows (Wei 
et al., 2006):
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where YMLR are predicted values of the multiple linear re-
gression, YMLR-RES – predicted values for the residuals of 
the multiple linear regression fitted for the ARIMA model.

The criteria chosen to evaluate the accuracy of the 
ARIMA-MLR models are RMSE (Root Mean Square Er-
ror), MAE (Mean Absolute Error), ME (Mean Error), 
MPE (Mean Percentage Error).
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2. Results and discussion

2.1. Synthesis of a mathematical model, based on 
meteorological variables

The task of developing a model includes establishing of 
relationships between variables, distribution tests, regres-
sion analysis and estimation of residual distribution. For 
simplicity and convenience, the following notations of the 
considered variables are accepted: C  – concentration of 
particulate matter PM10; T – daily average air temperature 
Tair; R – daily average solar radiation Rsun; S – wind speed 
Swind; D – wind direction Dwind; Р – daily average atmo-
spheric pressure Patm. Data in digital form of the listed 
variables for a period of one calendar year were used to 
conduct the research, related to the creation of a math-
ematical model. In Table 1 are given the obtained results 
from the descriptive statistic of the input data.

The input data includes 2199 values and is character-
ized by the absence of missing data, one outlier value. 
Figure 2 present time sequence plot for the data of PM10. 
Clear peaks are observed in winter, while in summer the 
levels are relatively lower.

From Figure  2 and the data in table, it can be con-
cluded that the concentrations of dust particles exceed 
50 µg/m3(prescribed threshold values of PM10) for certain 
periods of the year and represent a problem that needs 
special attention.

Table 1. Descriptive statistic of the initial data

Statistic T, °С R, W/m–2 S, m/s–1 D, degree P, mbar C, µg/m–3

Mean 11.73 166.092 1.50786 147.992 922.723 33.671
Median 11.65 159.6 1.425 144.85 923.0 27.78
Minimum –12.8 8.7 0.57 51.34 912.0 7.89
Maximum 27.8 379.5 3.15 261.99 934.0 153.76
Stand. Dev. 8.6435 105.597 0.419511 52.6419 3.83365 20.7459
Skewness –0.3091 0.301092 0.982012 0.0872178 0.0479695 2.36903
Kurtosis –0.6394 –1.24722 1.07464 –1.04098 0.503928 7.30544

Figure 2. Time sequence plot of the observed data for 
concentration of PM10
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2.2. Correlation analysis

The first stage in the search and synthesis of a mathemati-
cal model is the correlation analysis, which checks for the 
presence and direction of stochastic relationships between 
the variables. A study to detect the relationship between 
each of the six variables with the other five was performed, 
the result of which is presented in Figure 3.

Figure 3. Correlation field and distributions of variables

The Box-and-Whisker diagram, located on the di-
agonal of the figure, shows a graphical interpretation of 
the probability distribution of the six variables and how 
close it is to the normal. The middle vertical line in each 
box represents the median of the distribution, and the so-
called tails are observed on the both sides. The correlation 
fields below and above the diagonal represent the data be-
tween each of two variables.

The correlation of the Spearman rank for the 
six variables is given in Table 2. The table shows the 
correlations between each pair of variables. The correlation 
coefficients vary between –1 and +1 and show the strength 
of the relationship between the variables. The second 
number represents the number of data for each variable. 
The third number for the individual pairs of quantities in 

the table is p-value. It determines the statistical signifi-
cance of the calculated correlations. P-value below 0.05 
shows statistically significant non-zero correlations at a 
probability of 95.0%.

2.3. Investigation of the probability distributions of 
the variables

The study of the relationships between quantitative vari-
ables was carried out using linear regression analysis, 
which is one of the methods for finding dependencies, 
which at a later stage are used for model synthesis and 
forecasting. The presence of a correlation between the 
concentration of particulate matter and the other five 
variables determines the use of multiple linear regression. 
A needful condition for the validity of this method is the 
normal distribution of all variables. In the absence of suf-
ficient coverage of the analyzed distributions with the nor-
mal one for starting the calculations with the regression 
model, a fixed group of other distributions are allowed – 
Weibull, Half Normal, Beta and others.

If the data are not described by any of the allowable 
distributions, an appropriate mathematical transformation 
is performed. The transformation process continues until 
an acceptable distribution is found.

The verification of distributions is performed with 
standardized tests. The degree of proximity of the prob-
ability distributions of the variables or of the additionally 
performed transformations of the data to the normal dis-
tribution is checked by the performed tests for normal-
ity – χ2 and Shapiro-Wilk. For all other distributions the 
universal χ2 is used. All tests calculate the p-value, from 
which information for the statistical significance of the re-
sults is obtained. If a p-value greater than 0.05 is obtained, 
the corresponding distribution with a 95% probability can 
be accepted.

After analyzing the data for each variable, it was found 
that the distributions of each variable differ from the nor-
mal. After many transformations and checks, suitable new 
variables were found, satisfying the conditions of the tests.

Table 2. Correlations of Spearman rank

T, °С R, W/m–2 S, m/s–1 D, degree P, mbar C, µg/m–3

T, °С 0.8051 0.1912 –0.2290 –0.2854 –0.2728
p-value 0.0000 0.0003 0.0000 0.0000 0.0000
R, W/m–2 0.8051 0.1251 –0.1633 –0.0859 –0.3095 
p-value 0.0000 0.0171 0.0019 0.1018 0.0000 
S, m/s–1 0.1912 0.1251 0.2321 –0.2375 –0.4906 
p-value 0.0003 0.0171 0.0000 0.0000 0.0000 
D, degree –0.2290 –0.1633 0.2321 –0.1139 –0.2058 
p-value 0.0000 0.0019 0.0000 0.0301 0.0001 
P, mbar –0.2854 –0.0859 –0.2375 –0.1139 0.2240 
p-value 0.0000 0.1018 0.0000 0.0301 0.0000 
C, µg/m–3 –0.2728 –0.3095 –0.4906 –0.2058 0.2240
p-value 0.0000 0.0000 0.0000 0.0001 0.0000
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Below are the results and histograms for all variables. 
Check of the dependent variable C. The range of val-

ues of C is from 7.89 to 153.76 µg/m3. The variable cannot 
be approximated by a normal distribution. After a series 
of studies, an appropriate transformation of the sample 
was found by forming a new variable Log(Log(C)), which 
meets the conditions. Studies for distribution statistics 
were performed, as a result of which the following val-
ues were obtained: χ2 = 48.2603 with p-value = 0.101773, 
Shapiro-Wilk  =  0.982001 with p-value  =  0.284173. The 
histogram of the variable Log(Log(C)) and the function 
are shown in Figure 4a.

Check of the independent variable T. The values of 
T vary from –12.8 to +44  °C. The Beta (4-Parameter) 
distribution meets the set conditions. The results from χ2 

test are: χ2 = 20.7373 with p-value = 0.145434. The histo-
gram of T is shown in Figure 4b.

Check of the independent variable R. The probability 
distribution of R again differs from the normal. The data 
for approximation of the other admissible distributions 
were also checked. The results of these tests were unsatis-
factory. A large number of newly created variables for pos-
sible approximation with the admissible distributions have 
been studied. After tests and checks, it was found that the 
variable DIFF(R) can be approximated by an Exponential

Power distribution. The histogram and the function are 
shown in Figure 4c. The results obtained from the χ2 test 
are: χ2 = 47.4286 with p-value = 0.0963.

Check of the independent variable S. The range of 
values for S is 0.57÷3.15  m/s. From many tested trans-
formations, a suitable one was found that fulfills the con-
ditions for approximation with normal distribution. The 
new transformed variable is Log(S). The histogram of the 
transformed variable Log(S) and the function are present-
ed in Figure 4d. The results of standard tests for normal-
ity are: χ2  =  46.9452 with p-value  =  0.126677, Shapiro-
Wilk = 0.984525 with p-value = 0.526787.

Check of the independent variable D. The daily aver-
age values of the wind direction D measured in degrees 
clockwise from north are from 51.34o to 261.99o. The se-
lected new variable is D2, and its distribution can be ap-
proximated with the allowable Half Normal distribution. 
The performed universal test χ2 over the data gives the 
following values: χ2 = 46.9452 with p-value = 0.126677. 
The variable D2 is presented in Figure 4e.

Check of the independent variable Р. The values 
of P are in range 912÷934 mbar. As a result of studies 
with multiple transformations, a variable DIFF(P)  – fi-
nite difference was found, which can be approximated 
with a normal distribution. The histogram of the variable 

Figure 4. Histograms of the meteorological variables
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DIFF(P) and the function are presented in Figure 4f. The 
following values were obtained after performing the tests: 
χ2 = 19.9232 (universal) with p-value = 0.0685532, Shap-
iro-Wilk = 0.980394 with p-value = 0.168024.

After the performed tests and the found distributions 
for all variables, a synthesis of a regression model can be 
started.

2.4. Sythesis of a multiple linear regression model

A multiple linear regression model has been developed 
to reveal the relationship between PM10 and the five 
independent variables. The functional dependence 
between the dependent quantity and the predictors 
(independent variables) is determined by the method of 
least squares. The method of multiple linear regression 
was used due to the combined influence of plurality 
variables on the concentration of particulate matter. The 
model was developed after a series of studies, as a result of 
which a function satisfying the requirements for adequacy 
was found. The equation of the synthesized multiple linear 
regression model describing the relationship between 
PM10 and the five meteorological variables is as follows:

( )

( )( ) ( )

2

4 2 .

1 1Log 1.18604 0.01429
1exp

0.00037 log 0.1698log 0.000004

C
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R D P

 
 

   = + −       
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The obtained coefficient R2 indicated that the model 
describes 98.68% of the data. The resulting standard 
error, showing the standard deviation of the residues is 
0.394769, which can be used to build prediction limits for 
new observations. The mean absolute error is 0.301462 
and represents the mean residual value. Detailed statistics 
of the coefficients in the obtained linear regression model 
is presented in Tablе 3. The p-values of all independent 
variables are less than 0.05, that indicating they are sta-
tistically significant at the 95% confidence interval. The 
graph showing the observed versus predicted values of 
PM10 is shown in Figure 5.

2.5. Investigation of the behavior of the residues

In order to evaluate the developed model, it is mandatory 
to study the behavior of the residues. This is done with 
the help of standard statistical tests. The model is consid-
ered adequate and suitable for practical use only when an 
analysis of the residues has been made. The compulsory 
requirement is that they are normally distributed. The hy-
pothesis for normality of the distribution of the residues 
was tested.

In Table 4 and Table 5 the results of performed stand-
ard tests for normality of the residues are given. The high 
values of p-value > 0.05 for the χ2 and Shapiro-Wilk tests 
confirm the validity of the hypothesis for normal residue 
distribution at 95% confidence level. The results of the two 
Kolmogorov-Smirnov tests are in agreement with the re-
sults of the previous two tests (χ2, Shapiro-Wilk).

Table 3. Model coefficients assessed by MLR

Variable Estimate Std. error t-statistic p-value Standardized 
coefficients Beta

1/S 1.18604 0.114625 10.3471 0.0000 0.253
Log(R)4 –0.000372 0.0000616 –6.02973 0.0000 –0.80
P2 0.0000042 3.53054E-7 11.9606 0.0000 1.051
Log(D) –0.169795 0.053489 –3.17439 0.0016 –0.241
1/(exp(1/T)2 0.0142885 0.006846 2.08712 0.0376 0.014

Figure 5. Plot of predicted PM10 against observed PM10 concentrations
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Table 4. Residue normality test

Test Statistic p-value

Chi-Square 37.0822 0.465284
Shapiro-Wilk W 0.98665 0.733176
Skewness Z-score 1.03669 0.299878
Kurtosis Z-score 2.86051 0.004229

Table 5. Kolmogorov-Smirnov tests

Normal Values

DPLUS 0.030511
DMINUS 0.048488

DN 0.048488
p-value 0.360509

Figure 6 shows the results of a Q-Q test (Quantile-
Quantile test) of the model residues. It can be clearly seen 
from the figure that the residual values closely follow the 
line determined by the normal distribution. A slight de-
viation of the points is observed only in the initial section.

The performed tests give a reason for accepting the 
hypothesis for normal distribution of residues with a 95% 
level of probability.

2.6. Building of ARIMA forecasting model with 
regression

The aim is to build and explore ARIMA-MLR mod-
el in order to determine the relationship between the 

PM10-values and the meteorological variables. This model 
depends on time and includes additionally five transfer 
functions. The combined model synthesis procedure in 
the statistical package STATGRAPHICS requires time se-
ries to be constructed for each transfer function. In order 
to realize a short-term forecast for PM10, it is necessary to 
make short-term forecasts for all ARIMA models of the 
meteorological variables.

To achieve this goal, separate time series for each of 
the transformed meteorological variableswere created. The 
summary statistics of the ARIMA models for Tair, Rsun, 
Swind, Dwind and Patm are presented in Table 6.

After implementation of the short-term forecast the 
actual predicted values for all transformed meteorological 
variables were determined. These predictions after conver-
sion to the basic variables supplemented the remaining 
values and formed the necessary set to find a combined 
ARIMA-MLR model.

Based on obtained Multiple Regression Model (5) for 
the analyzed 365 values of PM10 concentrations and the 
five models for transformed meteorological variables, a 
model of the ARIMA(p, d, q) – type is being searched to 
satisfy various conditions. These conditions are the small-
est values of RMSE, MAE, ME, MPE, minimum of the 
SBIC (Schwarz Bayesian Information Criterion), normal 
distribution of the residues and the requirements, related 
to the autocorrelation and partial autocorrelation func-
tions.

In order to obtain the best fitting many ARIMA mod-
els with different parameters were tested. Block-diagram 
of creating of a ARIMA-MLR model is shown in Figure 7.

Figure 6. Curve for normality of the distribution of residues

Table 6. Statistics of ARIMA-models for the transformed meteorological variables

Meteorological 
variable RMSE MAE ME Ljung-Box test Type

T 2.33094 1.78373 0.0733489 0.250659 ARIMA(4, 0, 3)
Diff(R) 52.5178 38.3049 –0.0478155 0.469194 ARIMA(6, 0, 6)
Log(S) 0.256381 0.198433 0.000397 0.694541 ARIMA(1, 0, 0)
D2 14803.2 12006.8 29.9663 0.931213 ARIMA(3, 0, 5)
Diff(P) 2.3386 1.69874 –0.0354337 0.31978 ARIMA((1, 0, 2)
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The best adequacy was achieved for a model with fol-
lowing parameters – ARIMA(3, 0, 6). In this model the 
five meteorological variables T, R, S, D and Pwere used 
as transfer functions (STATGRAPHICS uses the term re-
gressors). The general equation of the combined model 
YARIMA-MLR is as follows:

( ) ( )
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1Log 3,0,6 1.18604

10.01429 0.00037 log
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0.1698log 0.000004
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 = + + 
 

 
 
  − − 
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The basic statistics of the combined model are given 
in Table 7. The time sequence plot is shown in Figure 8a. 

The autoregressive component AR of this model is p = 3, 
which shows that the level of pollution depends on the 
values for the previous 3 days. The MA component, char-
acterizing moving average process indicate that the local 
stochastic changes are influences by 6 previous members 
of the time series. The values of RMSE, MAE, ME and 
MPE are low and satisfy requirements of high accuracy of 
the presented model.

A diagnostic procedure for the mathematical model, 
which includes analysis of the distribution of the residues, 
testing the autocorrelation (ACF) and partial autocorrela-
tion (PACF) functions was also performed.

The results of the distribution check of the residuals 
are shown in Table 8. The Ljung-Box test, usually used 
in a ARIMA method checks of no remaining significant 
autocorrelation in the residuals of the model. The ob-
tained p-value (0.5362) indicated that the autocorrela-
tions are very small. The p-value (0.2014) of the standard 
Kolmogorov-Smirnov test for checking the normality 
of the distribution of residues is high, so it can be ac-
cepted, that they have normal distribution with a 95% 
confidence interval.

Table 8. Tests of the residuals

Tests Test statistic p-value

Ljung-Box 13.8593 0.5362

Kolmogorov-
Smirnov

DPLUS – 0.04042;
DMINUS – 

0.05609
DN – 0.05609

0.2014

Figure 7. Block-diagram of building of ARIMA-MLR model

Table 7. The RMSE, MAE, ME and MPE values  
of the ARMA-MLR model

Combined model – YARIMA-MLR Statistic Estimation

ARIMA(3, 0, 6) + Five Transfer 
Functions

RMSE 0.314154

MAE 0.236558

ME –0.006008

MPE –1.12703

SBIC –2.26024

Figure 8. a) Time sequence plots – ARIMA-MLR and actual values; b) Graph with 4-predicted values and  
actual values from 1 to 4 January 2019, 2020, 2021 

 a) b)
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The form of the autocorrelation ACF and partial au-
tocorrelation PACF functions for ARIMA (3, 0, 6) model 
are shown in Figure 9a and Figure 9b. They show that the 
individual autocorrelations are very small and fall within 
the confidence interval. The obtained values from the vari-
ous tests and the analysis of ACF and PACF show that the 
residues have a white noise character.

By using a developed ARIMA-MLR model a short-
term forecast for 4 days and predicted values was com-
pared with actual data for several following years was 
made. Figure 8b shows the result of comparison between 
predicted values and actual data of PM10 for 2019, 2020 
and 2021 at 95% confidence interval.

All simulations and analyzes made with the found 
ARIMA-MLR model fall into required confidence inter-
vals and demonstrate very good performance of the pro-
posed model.

Conclusions

The forecasting of air pollution has become one of the 
essential areas of investigation in recent years. In the 
presented study a combined Auto Regressive Integrated 
Moving Average (ARIMA) – Multiple Linear Regression 
(MLR) model was applied to study and prediction of PM10 
concentrations in Mladost district of Sofia, Bulgaria.

A multiple linear regression model was developed to 
reveal a causal relationship between PM10 and five vari-
ables (temperature, solar radiation, wind speed, wind di-
rection, atmospheric pressure). A correlation analysis was 
performed for the presence of possible stochastic relation-
ships between the particulate matter content and five me-
teorological variables. Using a correlation of Spearman’s 
rank, the relationship between each of the six variables 
and the other five was found. Appropriate transforma-
tions of the data were determined according to the tests χ2, 
Shapiro-Wilk and Kolmogorov-Smirnov for which admis-
sible distributions with 95% probability were found. The 
obtained high value of the statistics shows a very strong 
causal relationship between the concentration of particu-
late matter and the independent variables. The adequacy 
of the developed regression model was established by 
analysis of the residues. It showed that their distribution 

can be approximated with a 95% probability to normal 
and constant dispersion.

The combined ARIMA-MLR model was built to assess 
the relationship between PM10 and five meteorological 
variables. The obtained analytical functions for combined 
model are used to build short-term predictions (4-days) of 
particulate matter content. The analysis of the residuals, as 
well as the conducted comparison between the predicted 
data from the model and actual data of PM10 for three 
following years, shows very good adequacy and predictive 
characteristics of the proposed model.
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