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Abstract. Trinitrotoluene (TNT), a commonly used explosive for military and industrial applications, can cause

serious environmental pollution. 28-day laboratory pot experiment was carried out applying bioaugmentation using

laboratory selected bacterial strains as inoculum, biostimulation with molasses and cabbage leaf extract, and

phytoremediation using rye and blue fenugreek to study the effect of these treatments on TNT removal and changes

in soil microbial community responsible for contaminant degradation. Chemical analyses revealed significant

decreases in TNT concentrations, including reduction of some of the TNT to its amino derivates during the 28-day

tests. The combination of bioaugmentation-biostimulation approach coupled with rye cultivation had the most

profound effect on TNT degradation. Although plants enhanced the total microbial community abundance, blue

fenugreek cultivation did not significantly affect the TNT degradation rate. The results from molecular analyses

suggested the survival and elevation of the introduced bacterial strains throughout the experiment.
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Introduction

The nitroaromatic explosive, 2,4,6-trinitrotoluene (TNT),

has been extensively used for over 100 years, and this

persistent toxic organic compound has resulted in soil

contamination and environmental problems at many

former explosives and ammunition plants, as well as

military areas (Stenuit, Agathos 2010). TNT has been

reported to have mutagenic and carcinogenic potential

in studies with several organisms, including bacteria

(Lachance et al. 1999), which has led environmental

agencies to declare a high priority for its removal from

soils (van Dillewijn et al. 2007).

Both bacteria and fungi have been shown to

possess the capacity to degrade TNT (Kalderis et al.

2011). Bacteria may degrade TNT under aerobic or

anaerobic conditions directly (TNT is source of carbon

and/or nitrogen) or via co-metabolism where addi-

tional substrates are needed (Rylott et al. 2011). Fungi

degrade TNT via the actions of nonspecific extracel-

lular enzymes and for production of these enzymes

growth substrates (cellulose, lignin) are needed. Con-

trary to bioremediation technologies using bacteria or

bioaugmentation, fungal bioremediation requires

an ex situ approach instead of in situ treatment (i.e.

soil is excavated, homogenised and supplemented

with nutrients) (Baldrian 2008). This limits applicabil-

ity of bioremediation of TNT by fungi in situ at a field

scale.
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Bioremediation is increasingly discussed as a

useful, eco-friendly and cost-effective strategy for

cleaning up explosives-contaminated soils (van Dille-

wijn et al. 2007; Kapley et al. 2007; Stenuit, Agathos

2010). Bioremediation techniques including bioaug-

mentation, biostimulation, and phytoremediation, and

combinations of these methods, such as rhizoremedia-

tion, as well as landfarming and bioslurry reactors

have been tested for TNT removal in the laboratory

and in field scale with different levels of success leaving

the results still inconclusive (Clark, Boopathy 2007;

van Dillewijn et al. 2007; Gerth, Hebner 2007). Bio-

augmentation involves adding microorganisms with

specific degradative properties to the contaminated

environment to improve biodegradation and enhance

the transformation rate of pollutants (Kuiper et al.

2004). Despite problems with the survival of the

introduced bacterial inoculum (Ruberto et al. 2003),

bioaugmentation has been successful in removing TNT

(van Dillewijn et al. 2007) and so far the majority of

studies have focused on discovering microorganisms

that could be used to degrade pollutants (Ayoub et al.

2010). Biostimulation approaches add nutrients or

electron acceptor/donors to the polluted environment

to enhance the bioremediation of pollutants like TNT

(Gerth, Hebner 2007). Biostimulation can also be used

in combination with bioaugmentation to improve the

survival and catabolic activity of introduced microor-

ganisms. Phytoremediation utilizes green plants to treat

contaminated soil or water and has been successfully

applied to remediation of different pollutants, including

TNT (Hughes et al. 1996; Makris et al. 2007). In addi-

tion, plants release root exudates and enzymes that

stimulate microbial activity and contaminant degrada-

tion in the rhizosphere, enabling the application of

rhizoremediation, which is considered particularly ef-

fective for the treatment of contaminated soil (Schnoor

et al. 1995; Kuiper et al. 2004; Gerhardt et al. 2009).

However, despite several studies, bioremediation

of TNT is still considered challenging (Stenuit,

Agathos 2010). Due to the complexity of the bioreme-

diation processes in contaminated soils, as well as

environmental safety considerations, detailed monitor-

ing and final evaluation of remediation efficiency are

essential. The abundance of TNT-degrading microor-

ganisms, such as Pseudomonads, in explosive contain-

ing substrates is traditionally estimated by the CFU

method (George et al. 2008). Instead we propose

the use of Pseudomonas and Stenotrophomonas group-

specific primers in qPCR approach which allows

achieving the same goal in less time, avoids the

cultivation bias, and broadens the monitoring possibi-

lities for further bioremediation studies.

The objectives of this research were (i) to study the

effect of bioremediation methods and combinations

(biostimulation, bioaugmentation, phytoremediation)

on the degradation of TNT in soil and, (ii) to study

changes in microbial community structure and abun-

dance associated with the various bioremediation

strategies.

1. Methods

1.1. Bioremediation experiment setup

28-day laboratory bioremediation experiment was

performed using individual pots (Table 1), each of

which contained a mixture of 70 g industrial quartz

(B2 mm) and 8 g peat (dw) forming artificial soil

mimicking the soil of explosives contaminated Adazhi

military camp, Latvia. The initial TNT concentration

in soils of all TNT containing pots was 118 mg TNT/kg

(dw). The following amendments with documented

enhancing effects on the explosives degradation rate

(Clark, Boopathy 2007; Muter et al. 2008) were used

for biostimulation: 5 ml pot�1 molasses (30%, w/v);

5 ml pot�1 cabbage leaf extract; and 3 ml pot�1 mineral

medium stock. The mineral medium stock contained

60 g l�1 Na2HPO4, 30 g l�1 KH2PO4, and 5 g l�1 NaCl.

The cabbage leaf extract contained 4.2 g l�1 Ntotal,

10.2 g l�1 C; 0.222 g l�1 S, 9 g l�1 fructose,

11 g l�1 glucose, and 1 g l�1 sucrose. The molasses

(30%, w/v) contained 37.6 g l�1 Ntotal, 88.3 g l�1 C,

0.841 g l�1 S, and 100 g l�1 sucrose.

To each bioaugmented pot, 10 ml of inoculum

that contained a bacterial consortium (3*108 colony

forming units (CFU) ml�1) was introduced. The

bacterial consortium used as the inoculum was pre-

viously isolated from soil contaminated with explosives

at the Adazhi military camp, Latvia (Limane et al.

2011), thus fulfilling the suggestion that in order to

increase the survival of introduced consortium, the

strains used should originate from a similar ecological

niche as the study material (El Fantroussi, Agathos

2005). Using 16S rRNA gene full-length sequencing

(BCCM/LMG, Belgium), the predominant bacterial

strains in the inoculum were determined to be mem-

bers of Pseudomonas and Stenotrophomonas genus

(Table 2) which are well-established TNT (and its

metabolites) degraders and have been shown to be

Table 1. Variants used in vegetation pot experiments

Variants

N R B Nitro-aromatics Inoculum Amendments

1 1R 1A � � �
2 2R 2A � � �
3 3R 3A � � �
4 4R 4A � � �
5 5R 5A � � �
6 6R 6A � � �

N � non-planted; R � rye; B � blue fenugreek
� included with variant
� not included with variant
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among dominant groups in TNT-contaminated soil

microbial communities (Esteve-Nuñez, Ramos 1998;

Oh, Kim 1998; Snellinx et al. 2003; Cho et al. 2008;

Travis et al. 2008b).

For phytoremediation two different plants, rye
(Secale cereale) and nitrogen fixing blue fenugreek

(Trigonella caerulea) were chosen and cultivated using

10 seeds in each pot. A temperature of 22 8C and a

light period of 12 h were maintained throughout the

experiment. Plant biomass was harvested 14 days after

the beginning of the experiment, the plant roots were

homogenized with soil, and the experiment was

continued for an additional 14 days. All treatments
were performed in two replicates.

1.2. Analytical methods

TNT and its metabolites were detected and quantified

using high pressure liquid chromatography (HPLC)

according to EPA method (US EPA method 8330,

1994). The standard mixtures of explosives MixA (EPA

8330, SUPELCO Bellefonte, PA), Nitroaromatics/

ExplosiveMix1, and Nitroaromate-Nitroamine-Mix4

(Dr. Ehrenstorfer Reference Materials) were used for
calibration.

1.3. Microbial community metabolic profile by Biolog

EcoPlates

The functional diversity of the artificial soil microbial

communities was determined using Biolog EcoPlates

(Biolog Inc., USA). Tetrazolium dye used in the Biolog

EcoPlates wells is not metabolized by fungi, so fungi do

not contribute to color formation on these plates

(Preston-Mafham et al. 2002). From each soil sample a
10�5 dilution in sterile 0.85% NaCl (w/v) was prepared,

and 150 ml of the dilution was inoculated into each of the

96 wells (31 carbon sources and control in three

replicates) of the micro-plate and incubated at 25 8C.

The color development was measured as absorbance at

590 nm using a microplate reader (Multiscan 340C).

1.4. PCR-DGGE analyses of bacterial communities

Microbial DNA was extracted from 0.3 g (ww) soil

samples using PowerSoil DNA Extraction Kit (Mo Bio
Laboratories, Inc.) and stored at �20 8C. Bacterial

community structure was assessed with 16S rDNA

sequence specific primer pair 338F-GC/518R (Table 3).

The PCR mixture included 1�PCR buffer (75 mM

Tris-HCl, pH 8.8; 20 mM (NH4)2SO4; and 0.01%

Tween 20), 0.2 mM of each deoxynucleoside tripho-

sphate (dNTPs), 2.5 mM MgCl2, 0.006 mg ml�1

bovine serum albumin (BSA), 0.0008 mM of each

primer, and 0.5 U of Taq DNA polymerase (MBI

Fermentas, Lithuania). After 5 min of denaturation

at 95 8C, 30 thermal cycles of 2 min at 95 8C, 1 min at

53 8C, and 1 min at 72 8C, the PCR was completed with

an extension step at 72 8C for 10 min.
A denaturing gradient gel electrophoresis

(DGGE) system Dcode (BioRad, Inc. Hercules, CA,

USA) was used to separate the amplified gene frag-

ments. Prior DGGE analysis PCR products from two

replicates were pooled. PCR products were applied for

the DGGE analysis and electrophoresis was performed

as described by Muyzer et al. (1993) with 10% (vol/vol)

polyacrylamide gel (acrylamide : bisacrylamide �37.5 : 1

in 1�TAE buffer). A linear DNA denaturing gradient

of 35�65% was produced with deionized formamide

and urea (100% denaturant agent is 7 M urea and 40%

[vol/vol] deionized formamide). Electrophoresis was

performed using 1�TAE buffer for 13 h at a constant

temperature of 60 8C and constant voltage of 100 V.

The gel was stained in MilliQ water (Millipore,

Billerica, MA, USA) containing 0.5 mg l�1 ethidium

bromide and de-stained twice in MilliQ water.

The DGGE gel was digitized with Gel Doc System

(Bio-Rad, Inc. Hercules, CA, USA).

1.5. Evaluation of bacterial gene copy numbers by

quantitative PCR

Primer sets 785FL/919R, SteF/SteR, and PseF2/PseR

(Table 3) were used for total and Stenotrophomonas

and Pseudomonas genus-specific 16S rRNA gene

detection and enumeration on SYBR green qPCR. A

new Stenotrophomonas genus-specific primer set was

designed using the Primer3Plus program (Untergasser

et al. 2007) based on conserved motifs M1 and M4

proposed by Verma et al. (2010). Primer properties

were calculated with OligoAnalyzer 3.0 software (In-

tegrated DNA Technologies, IA, USA) and the speci-

ficity of the primer pair was checked by sequence

alignment using BLAST and NCBI entries. For

standard curve creation the DNA of reference strains

Pseudomonas mendocina PC1, Pseodomonas fluorescens

T11, and Stenotrophomonas maltophilia T9 (Collection

of Environmental and Laboratory Microbial Strains,

University of Tartu) were used for total, Pseudomonas-

specific, and Stenotrophomonas-specific 16S rRNA

PCR-amplifications, respectively.

The PCR reaction mixture was prepared as

described in Section 1.4, with the exclusion of BSA

from the mixture. The PCR reactions were performed

with the following reaction conditions: preheating at

Table 2. Sequencing results of bacterial strains used for

inoculum preparation

Bacterial

strain

Size

(bp)a Closest relative

%

identity

PS 11 1259 Pseudomonas palleroniana 99.9

ST 10 1263 Stenotrophomonas maltophilia 99.0

ST 13 1252 Stenotrophomonas maltophilia 99.4

aSize in bp of the sequenced PCR products
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95 8C for 5 min; 30 thermal cycles of 30 s at 94 8C, 30 s

at an annealing temperature of the primer pair used

(Table 3), and 45 s at 72 8C. The resultant PCR

products were cloned using InsT/Aclone PCR cloning

kit (Fermentas); plasmid-DNA was extracted using

QIAprep Spin Miniprep Kit (Qiagen, CA, USA); and

nucleotide sequenced using BigDyeTM chemistry with

M13-primers (Fermentas). The numbers of copies of

standards plasmids were calculated according to plas-

mid (2886 bp) plus insert lengths (Table 3), assuming a

molecular mass of 660 Da for a base pair. Standard

DNA stock solutions of 109 plasmid copies/ml were

prepared and serial dilutions ranging from 25 to 108

target gene copies were used for standard curve

creation on qPCR. The detection limit for all assays

was 25 target gene copies ml�1 of template.

The qPCR assays were performed on the real-time

PCR system, Rotor-Gene† Q (Qiagen), and the data

was analyzed using Rotor-Gene Series software, ver-

sion 2.0.2. The optimized reaction mixture contained

5 ml Maxima SYBR Green Master Mix (Fermentas);

0.0002 mM of forward and reverse primer, 1 ml

template DNA, and 3.6 ml sterile distilled water for a

total volume of 10 ml. The optimized reaction condi-

tions were 2 min at 50 8C, 10 min at 95 8C, followed by

45 cycles of 15 s at 95 8C, 30 s at the annealing

temperature of a primer pair used (Table 3), and 30 s at

72 8C. Immediately after the real-time PCR assay,

melting curve analyses were performed ramping tem-

peratures from 65 8C to 90 8C using a 3 s and 0.35 8C
interval with continuous fluorescence recording. The

initial target gene copy numbers in pot experiment

samples were deduced from the standard curves.

1.6. Data analysis

On the basis of an examination of the kinetic curves of

average well color development (AWCD) in each

Biolog plate, 48 h measurements were chosen for

further data analysis. Optical density values from

48 h measurements divided by AWCD were processed

by Principal Component Analysis (PCA). Centroids of

two replicate samples per treatment are shown on PCA

ordination plot. Digitized DGGE gel image banding
pattern was analysed using GelCompar II ver.4.0

program (Applied Maths NV, Belgium). Relationship

between samples was visualized on ordination plot

using PCA based on the Pearson correlation coeffi-

cient of densitometric curves obtained from the

DGGE fingerprints. One-way permutational multi-

variate analysis (PERMANOVA) with 9999 permuta-

tions was used to test for differences in microbial
community due to plant presence, treatment type and

TNT addition (Anderson 2001). Before conduct-

ing PERMANOVA, the distance-based test for the

homogeneity of multivariate dispersions was performed.

The Kruskal-Wallis one-way analysis of variance

by ranks was applied to compare gene copy numbers

and relative abundances between plant treatments

(nonplanted, rye, blue fenugreek; n �12 in each group)
and bioaugmentation/biostimulation treatments (no

treatment, biostimulation, biostimulation combined

with bioaugmentation, n �12 in each group). The

Mann-Whitney test was applied to compare gene copy

numbers and relative abundances between TNT-spiked

and non-spiked samples.

2. Results

2.1. Fate of TNT and metabolites

The concentration of residual contaminants in the soil

during and after bioremediation is an important and
readily measurable criterion for remediation technol-

ogy evaluation. Thus, the presence and concentration

of TNT and its biodegradation metabolites were

determined in the artificial soil samples after the

28-day experiment. TNT and two of its metabolites

(2-Am-4, 6-DNT and 4-Am-2, 6-DNT) were present,

even after 28 days of incubation, in all variants that

contained TNT; however, there was a notable decrease
from the initial TNT-contamination, even without any

bioremediation (Fig. 1). Rye cultivation had the most

Table 3. Characteristics of PCR primers used in DGGE and quantitative PCR methods

Primer Primer sequence (5?03?)
Amplicon

size (bp)

Annealing

temperature (8C) References

338F-GC CGCCCGCCGCGCGCGGCGGGCGGGGC

GGGGGCACGGGGGGACTCCTACGG

GAGGCAGCAG

236 53 Muyzer et al. 1993

518R ATTACCGCGGCTGCTGG Øvreås et al. 1997

785FL ggactacGGATTAGATACCCTGGTAGTCCa 156 63 Nõlvak et al. 2012

919R CTTGTGCGGGTCCCCGTCAAT

Ste-F TTGTCCTTAGTTGCCAGCAC 192 58 This study

Ste-R CCGGACTGAGATAGGGTTTC

Pse-F2 GGTCTTCGGATTGTAAAGCAC 184 58 Juhanson et al. 2009

Pse-R CCGGGGMTTTCACATCCAAC

acan be used as LUXTM primer when appropriate fluorophore is attached to the primer
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positive effect on TNT removal in all tested variants,

especially in those samples that also had inoculum and

amendments. In comparison, blue fenugreek cultiva-

tion had positive effect on TNT-degradation only in

the variant with inoculum and amendments. Higher

degradation of TNT was observed in those samples
subjected to both biostimulation and bioaugmentation.

2.2. Changes in microbial community functional

diversity

Biolog EcoPlates were used to estimate how TNT and

the different biotechnological applications affected the

functional diversity of the culturable microbial com-

munity. PCA results of the substrate utilization pat-

terns of all studied microbial communities indicated

the formation of several distinct clusters (Fig. 2),

especially in samples treated with both microbial
inoculum and amendments. This indicates that the

functional abilities (intensity and diversity of substrate

assimilation) of the soil microbial communities were

affected by the addition of the active consortium of

microorganisms. Impact of bioaugmentation on micro-

bial community functional pattern was confirmed by

PERMANOVA analysis (P B0.01). Bioaugmented

samples aside, all tested variants without plant culti-
vation clustered together irrespective of the treatment

applied. The type of plant cultivated (rye or blue

fenugreek) resulted in no significant variance in micro-

bial communities. The effect of TNT on the functional

diversity of soil microbial communities was not statis-

tically significant (P �0.05).

2.3. Changes in microbial community phylogenetic

structure

Multivariate analysis of DGGE data showed that the
samples fell into two clusters along the first PCA axis

on the basis of bioaugmentation treatment, and that

a distinct group of samples was formed when the

consortium of microorganisms (inoculum) was added,

as shown in samples 2, 2R, 2A, 5, 5A, and 5R (Fig. 3).

This group of samples was characterized by a bacterial

community structure which had more similarity to the

introduced bacterial consortium pattern than the rest
of the samples. Strong impact of bioaugmentation on

microbial community phylogenetic structure was con-

firmed by PERMANOVA analysis (P B0.001).

The second PCA axis separated samples accord-

ing to the plant treatment; samples with blue fenugreek

plants were discernible from both non-planted samples

and from samples with rye cultivation. Impact of plant

treatment on microbial community structure was
revealed by PERMANOVA analysis (P B0.01). Most

of the soil samples with no plant cultivation had very

little variation in bacterial community phylogenetic

structure and these were clustered with the rye

cultivated samples, indicating that rye had a rather

weak effect on the overall bacterial community struc-

ture in the soil. The PERMANOVA analysis did not

Fig. 3. Grouping of soil samples based on principal compo-

nent analysis of DGGE fingerprints. Sample codes are given in

Table 1. Circle with dashed line indicates soil samples with

blue fenugreek cultivation. Abbreviations: i � inoculum

Fig. 1. Fate of TNT after 28 days of treatment (initial TNT

concentration in soil 118 mg/kg). Sample codes are given in

Table 1

Fig. 2. Grouping of soil samples based on principal compo-

nent analysis of the 48 h substrate utilization patterns obtained

with Biolog EcoPlates. Sample codes are given in Table 1.

Abbreviations: i � inoculum
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reveal any TNT-induced effects on the bacterial

community phylogenetic structure (P �0.05).

2.4. Bacterial abundances influenced by TNT and

different treatments

Quantitative PCR targeting 16S rRNA genes was used

to evaluate the abundance of microbial populations in

the bioremediation experiments and to determine the

effect of different treatments.
Table 4 shows that TNT addition to soil had no

effect on the total bacterial community abundance;

however, selective pressure likely enhanced the abun-

dance of Pseudomonas and Stenotrophomonas groups

(on average 2.5 and 1.4 times, respectively) compared to

unspiked parallels (Fig. 4). Biostimulated samples

generally showed slightly higher estimated gene copy

numbers with all three primer pairs used in TNT spiked

variants, as compared to unspiked parallels.

As expected, cultivation of plants, especially blue

fenugreek, generally had positive effect on the total

bacterial 16S rRNA copy number per gram of soil

irrespective of other treatment types used (Kruskal-

Wallis test, P B0.01). Cultivation of blue fenugreek

also enhanced the total abundance of Pseudomonas

and Stenotrophomonas groups (up to 16.7 and 6.4

times, respectively; Kruskal-Wallis test, P B0.05),

whereas cultivation of rye did not have such a pro-

found effect. However, when these results were assessed

as functional group proportions in the total commu-

nity, no clear trend resulting from the presences of

plants was revealed. TNT had a statistically significant

positive effect on Stenotrophomonas species abundance

(Mann-Whitney test, P B0.05). Both Pseudomonas

and Stenotrophomonas groups were enhanced in TNT

spiked soils treated using the combined (simultaneous

bioaugmentation and biostimulation) method (Fig. 4).

3. Discussion

In an attempt to contribute to the filling of the void in

TNT biodegradation research, for this study biostimu-

lation, bioaugmentation, phytoremediation, and com-

Table 4. Quantification of 16S rRNA genes of total and selected functional groups of microbial community in soil samples.

Sample labels are given in Table 1. Standard deviation is shown in brackets

Sample

Total 16S rRNA gene copies per g

of soil

Pseudomonas 16S rRNA gene

copies per g of soil

Stenotrophomonas 16S rRNA gene

copies per g of soil

1 7.65*108 (0.02*107) 1.37*107 (0.02*106) 5.29*106 (0.02*105)

2 3.11*108 (0.04*107) 9.42*107 (0.02*106) 1.08*107 (0.03*105)

3 6.54*108 (0.06*107) 5.64*107 (0.06*106) 4.84*106 (0.04*105)

4 5.83*108 (0.05*107) 3.28*106 (0.00*106) 4.62*106 (0.01*105)

5 3.82*108 (0.04*107) 1.64*107 (0.01*106) 5.45*106 (0.02*105)

6 5.24*108 (0.02*107) 1.16*107 (0.01*106) 3.69*106 (0.05*105)

1R 5.56*108 (0.05*107) 1.69*107 (0.01*106) 6.05*106 (0.03*105)

2R 4.24*108 (0.01*107) 3.87*107 (0.01*106) 9.75*106 (0.02*105)

3R 7.95*108 (0.08*107) 7.39*107 (0.03*106) 9.46*106 (0.02*105)

4R 7.11*108 (0.03*107) 5.16*106 (0.01*106) 4.12*106 (0.02*105)

5R 6.37*108 (0.06*107) 1.23*107 (0.01*106) 2.64*106 (0.02*105)

6R 4.52*108 (0.02*107) 3.89*107 (0.01*106) 7.63*106 (0.02*105)

1A 1.91*109 (0.01*107) 1.46*108 (0.07*106) 2.33*107 (0.15*105)

2A 3.44*109 (0.19*107) 2.04*108 (0.34*106) 1.89*107 (0.04*105)

3A 8.58*108 (0.02*107) 1.71*108 (0.03*106) 1.27*107 (0.12*105)

4A 2.12*109 (0.51*107) 5.48*107 (0.05*106) 1.89*107 (0.04*105)

5A 3.24*109 (0.07*107) 6.97*107 (0.01*106) 2.15*107 (0.01*105)

6A 1.66*109 (0.09*107) 7.23*107 (0.12*106) 2.35*107 (0.20*105)

Fig. 4. Changes in relative abundance of Pseudomonas and

Stenotrophomonas groups recorded by 16S rRNA gene

enumerations using qPCR in samples with different treat-

ments.

Shown are group mean and standard deviation. Treatment

type abbreviations: TNT � TNT spiked soil, I � bioaugmen-

tation, A � biostimulation, O � only planted or nonplanted

samples, plus indicates combination of different treatments.
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binations of these approaches for TNT-removal were

selected for investigation at a laboratory scale.

The research indicates that all treatments used

resulted in decreased concentrations of TNT in soil.

Similar to previous reports (van Dillewijn et al. 2007;

Travis et al. 2008a, b), TNT and its aminoderivates

2ADNT and 4ADNT were the only compounds

detectable by HPLC; all of these were reduced to a

considerable degree of the initial concentrations. The

isomeric aminoderivates (2ADNT and 4ADNT) are

formed during microbial transformation of TNT

(Williams et al. 2004); these compounds exhibit less

toxicity than TNT and bind more tightly to soil clay

particles and organic matter, thereby reducing bioa-

vailability as well as toxicity in soil (Pennington et al.

1995; Price et al. 1997). Of the treatments used, the

combined bioaugmentation-biostimulation approach

coupled with plant (especially rye) cultivation was the

most effective treatment resulting in the lowest final

TNT concentrations.

The PCA analyses based on the substrate utiliza-

tion patterns and DGGE analysis results of studied

soil microbial communities showed very distinct clus-

tering of bioaugmented samples. This suggests that the

introduced TNT-degrading microbial community was

able to survive and dominate the community, which

fulfills one very important prerequisite for bioaugmen-

tation application (Thompson et al. 2005). This was

confirmed by a community structure analysis, which

showed a shift in community structures and clustering

of bioaugmented samples in both planted and non-

planted versions. Previous studies have established that

TNT-pollution causes shifts in soil microbial commu-

nity structure, usually towards the Pseudomonadaceae

and Xanthomonadaceae families (George et al. 2008;

Travis et al. 2008b). However, this shift was not as

strong (compared to uncontaminated parallels) in this

study as was the shift caused by different bioremedia-

tion treatment approaches. Furthermore, the quantifi-

cation of 16S rRNA gene copy numbers of the total

microbial community and two of its phylogenetic

groups (Pseudomonas and Stenotrophomonas) showed

that despite the stability in total community numbers,

these two groups grew quite significantly in TNT-

contaminated and, subsequently, bioaugmented soils.

This indicates the survival of introduced microbial

consortium in contaminated samples, as well as the

selective pressure of TNT.

Contrary to previous findings where rhizoremedia-

tion by maize overshadowed the effect of bioaugmenta-

tion in TNT removal from soil (van Dillewijn

et al. 2007), we found that the simultaneous application

of biostimulation and bioaugmentation treatments had

more profound effects on both TNT-removal and

microbial community composition than the cultivation

of plants. Also, great differences in the impact of

selected plant species on TNT-removal, as well as on

soil microbial communities were observed. Even

though the cultivation of nitrogen-fixing blue fenu-

greek greatly enhanced the total bacterial abundance in

soil, it had no significant enhancing effect on the

overall proportions of the studied phylogenetic groups,

resulting in less efficient removal of TNT. This could

be attributed to microbes in the rhizosphere that prefer

to use the compounds provided by the plant instead of

attacking the complex molecule of the pollutant. On

the other hand, rye cultivation, especially combined

with bioaugmentation, had the most positive effect on

TNT removal. The analyses of the microbial commu-

nity revealed that the cultivation of rye did not affect

the structure of microbial communities, but slightly

enhanced the overall abundance of microbes. Rye has

been used successfully in oil-sludge contaminated soil

bioremediation (Muratova et al. 2010) and it appears

that it can also be efficient in enhancing the removal of

TNT by microorganisms.

Gong et al. (1999) have proposed that TNT can

inhibit microbial growth and activity, even at very low

concentrations. However, no TNT-inhibitory effect

on the soil bacterial community was observed; the

16S rRNA gene abundance was comparable in TNT

spiked samples and uncontaminated parallels. This

corresponds well to other more recent results with

similar TNT contamination rates (Travis et al. 2008b)

and suggests that it may be possible to use even greater

TNT-loads for remediation without harming the micro-

bial community responsible for pollutant degradation.

Several recent TNT bioremediation experiments

have used a methodology consisting of CFU enumera-

tion, community level physiological profiling (CLPP),

and microbial community structure analyses using

DGGE to assess the microbial community parameters

in tested samples (George et al. 2008; Travis et al.

2008a, b). The application of these methods has pro-

vided many interesting findings, but has also revealed

several shortcomings. The only method free of cultiva-

tion bias in this selection is DGGE, which does not

allow direct quantifications of parts of the community

of interest. In this study, we applied quantitative PCR

(qPCR) to evaluate the abundance of the total bacte-

rial community, as well as two functionally important

groups in TNT removal from soil. Pseudomonads are

usually estimated by the CFU method, which is time-

consuming and has possible cultivation bias. As an

alternative, we suggest the use of Pseudomonas group-

specific primers on a qPCR approach to achieve the

same goal more accurately and in less time. Secondly

Xanthomonadaceae is known as a family that becomes

dominant in TNT-contaminated soils (George et al.

2008). We designed and successfully used a new Steno-

trophomonas-specific primer set for evaluation of the

abundance of the members of one genus of this family.

This new primer set can be used for monitoring this

bacterial group in further bioremediation studies.
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Likewise to cultivation based enumeration methods,

results of qPCR can be affected by workflow bias

(i.e. the specificy/universality of the primers used,

insufficient amplification program optimization and

data handling procedure). It also has to be kept in

mind, that the absolute gene copy numbers from

different studies gained by using different workflow

steps (i.e. different DNA extraction methods or

amplification kits) are not readily comparable (Smith,

Osborn 2009). Nevertheless, careful selection or design

of primers, appropriate optimization of amplification

programs used and meticulous data quality evaluation

can minimize possible bias arising from the method

used. As always, it is recommended to use qPCR in

combination with other methods to achieve compre-

hensive overview of the ongoing processes.

Combined bioaugmentation-biostimulation treat-

ment, coupled with rye cultivation, showed the most

promise for TNT bioremediation at a laboratory scale.

This assumption should further be tested at a field

scale. Also, more precise notions regarding the actions

of the microbial community responsible for TNT

degradation could be gained with further development

of the qPCR approach by designing appropriate

primers to determine which nitroreductases are present

and active in microbial communities of TNT-contami-

nated environment undergoing bioremediation treat-

ment. In our study we used microbiological methods

which address only bacteria as we were interested in

impact of added bacterial strains on soil bacterial

community. It is possible that applied treatments

affected also fungal community in soil, and further

research in this field is advisable.

Conclusions

1. Chemical analyses revealed significant de-

creases in TNT concentrations, including the reduction

of TNT to its less toxic amino derivates. The combina-

tion of bioaugmentation-biostimulation coupled with

rye cultivation had the most profound effect on TNT

degradation.

2. Results from the physiological, structural, and

quantitative microbial community analyses suggest

that TNT had no inhibitory effect on microbes. In

fact, the survival and elevation of Pseudomonas and

Stenotrophomonas strains, especially Pseudomonas, was

noted in TNT-contaminated samples.

3. Plants enhanced the total microbial community

abundance, but in the case of blue fenugreek, cultivation

did not significantly affect the TNT degradation rate.

4. Abundance of Pseudomonads in explosive con-

taining substrates are traditionally estimated by the

CFU method; instead the use of Pseudomonas group-

specific primers in a qPCR approach allows to achieve

the same goal in less time and avoids the cultivation

bias.

5. A new Stenotrophomonas-specific primer set

was designed and successfully used for evaluation of

this genus abundance broadening the monitoring

possibilities for further bioremediation studies.
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