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Abstract. Trinitrotoluene (TNT), a commonly used explosive for military and industrial applications, can cause

serious environmental pollution. 28-day laboratory pot experiment was carried out applying bioaugmentation using

laboratory selected bacterial strains as inoculum, biostimulation with molasses and cabbage leaf extract, and

phytoremediation using rye and blue fenugreek to study the effect of these treatments on TNT removal and changes

in soil microbial community responsible for contaminant degradation. Chemical analyses revealed significant

decreases in TNT concentrations, including reduction of some of the TNT to its amino derivates during the 28-day

tests. The combination of bioaugmentation-biostimulation approach coupled with rye cultivation had the most

profound effect on TNT degradation. Although plants enhanced the total microbial community abundance, blue

fenugreek cultivation did not significantly affect the TNT degradation rate. The results from molecular analyses

suggested the survival and elevation of the introduced bacterial strains throughout the experiment.
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Introduction

The nitroaromatic explosive, 2,4,6-trinitrotoluene (TNT),

has been extensively used for over 100 years, and this

persistent toxic organic compound has resulted in soil

contamination and environmental problems at many

former explosives and ammunition plants, as well as

military areas (Stenuit, Agathos 2010). TNT has been

reported to have mutagenic and carcinogenic potential

in studies with several organisms, including bacteria

(Lachance et al. 1999), which has led environmental

agencies to declare a high priority for its removal from

soils (van Dillewijn et al. 2007).

Both bacteria and fungi have been shown to

possess the capacity to degrade TNT (Kalderis et al.

2011). Bacteria may degrade TNT under aerobic or

anaerobic conditions directly (TNT is source of carbon

and/or nitrogen) or via co-metabolism where addi-

tional substrates are needed (Rylott et al. 2011). Fungi

degrade TNT via the actions of nonspecific extracel-

lular enzymes and for production of these enzymes

growth substrates (cellulose, lignin) are needed. Con-

trary to bioremediation technologies using bacteria or

bioaugmentation, fungal bioremediation requires

an ex situ approach instead of in situ treatment (i.e.

soil is excavated, homogenised and supplemented

with nutrients) (Baldrian 2008). This limits applicabil-

ity of bioremediation of TNT by fungi in situ at a field

scale.
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of rainfall-induced shallow landslides has long been an 
interest of research topic in many branches of science 
and engineering such as soil science, hydrology, and geo-
technical engineering (Montgomery, Dietrich 1994; Baum 
et al. 2002; Frattini et al. 2004; Tsai, Yang 2006; Tsai, Chen 
2010).

In the past, theoretical models have been developed 
to predict slope stability assuming a steady or quasi-steady 
water table associated with an infinite-slope stability anal-
ysis (Das 2010). With regard to the influence of rainfall 
infiltration on slope stability in unsaturated zones, Iverson 
(2000) assumed that this occurred when soil was nearly 
saturated, further solving the analytical solution of the 
Richards equation in the simplified form of a one-dimen-
sional linear diffusion equation, and allowing the develop-
ment of an analytical model of rainfall-induced shallow 
landslides. Baum et  al. (2002) expanded Iverson’s work 
and developed a transient rainfall infiltration and grid-
based regional slope-stability analysis (TRIGRS) model. 
Because of its practicability, the TRIGRS model became 
popular for assessing shallow landslides (Crosta, Frattini 
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Abstract. In this paper, a pioneer study on numerical modeling of rainfall-induced shallow landslides in unsaturated 
layered soil using the variably saturated flow equation is presented. To model the shallow landslides, the infinite slope 
stability analysis coupled with the hydrological model with the consideration of the fluctuation of time-dependent 
pore water pressure and Gardner equation for soil water characteristic curve was developed. A linearization process 
for the nonlinear Richards equation to deal with groundwater flow in unsaturated layered soil is derived using the 
Gardner model. To solve one-dimensional flow in the unsaturated zone of layered soil profiles, flux conservation and 
the continuity of pressure potential at the interface between two consecutive layers are considered in the numerical 
discretization of the finite difference method. The validity of the proposed model is established in three numerical prob-
lems by comparing the results with the analytical and other numerical solutions. Application examples have also been con-
ducted. Obtained results demonstrate that the fluctuation of pore water pressure in unsaturated layered soil dominates slope 
stability of landslides and the lowest factor of safety may occur at the interface between two consecutive layers. The find-
ings observed in this study are a fundamental contribution to environmental protection engineering for landslides 
in areas with higher occurrence and vulnerability to extreme precipitation.

Keywords: Variably saturated flow equation, Layered soil, Shallow Landslides, Groundwater flow.

Introduction

Due to global climate change, severe weather phenomena 
such as extreme precipitation events are becoming much 
more frequent around the world (Pereira et  al. 2010; 
Csete, Buzasi 2016). These affect the stability of slopes and 
have consequences on landslides. Since global warming is 
expected to increase the frequency and intensity of severe 
rainfall events, the number of people exposed to land-
slide risk may dramatically be increased (Gariano, Guz-
zetti 2016). Accordingly, it is of importance to understand 
and measure how climate variables and their variability 
affect landslide hazards. Landslides commonly observed 
in the foothill areas involve sliding surfaces which is typi-
cally called a shallow landslide with an indication of the 
high diffusion of shallow landslides phenomena in differ-
ent environmental and geological contexts, all over the 
world. In shallow landslides, the sliding surface is located 
in the soil mantle or regolith typically to depths of a few 
centimeters to a few meters. Shallow landslides may often 
occur within the vadose zone under unsaturated soil con-
ditions (Lu, Godt 2008; Yeh, Lee 2013). The assessment 
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2003; Keim, Skaugset 2003; Lan et  al. 2005; D’Odorico 
et al. 2005; Liu et al. 2008; Baum et al. 2010; Bordoni et al. 
2015; Schilirò et al. 2015; Alvioli, Baum 2016). 

In these numerical models, the hillslope soil is typical-
ly assumed to be homogeneous. Besides, Iverson’s method 
assumed that nearly saturated soil was a simplified form of 
the linear diffusion equation of the Richards equation, in 
which the influence of matric suction of soil and the soil 
water characteristic curve (SWCC) cannot be compre-
hensively considered during analysis. A complete theory 
of groundwater flow when rainfall infiltrates unsaturated 
zones can be described using either the variably saturated 
flow equation or the generalized Richards equation. The 
Richards equation is highly nonlinear and cannot directly 
provide an analytical solution. The soil water content is a 
major factor that influences the nonlinear physical rela-
tionship of the hydraulic conductivity in unsaturated zones 
(Van Genuchten 1980; Fredlund et al. 1994).

Since the appearance of layered soil is much more 
common than homogeneous soil in nature, the hydrological 
process in heterogeneous porous media has drawn much 
attention and been studied (Fok 1970; Aylor, Parlange 1973; 
Hachum, Alfaro 1980; Samani et al. 1989), using analytical 
or numerical methods (Hanks Bowers 1962; Whisler, Klute 
1966; Romano et al. 1988; Moldrup et al. 1989; Srivastava, 
Yeh 1991; Corradini et al. 2000; Ku, Tsai 2013). Because the 
numerical modeling of rainfall-induced shallow landslides 
in unsaturated layered soil using the variably saturated flow 
equation has hardly been reported, the study proposed a 
pioneer work on numerical modeling of rainfall-induced 
shallow landslides in unsaturated layered soil.

To model the shallow landslides, the infinite slope 
stability analysis coupled with the hydrological model with 
the consideration of the fluctuation of time-dependent 
pore water pressure and the SWCC proposed by Gardner 
was developed. A linearization process for the nonlinear 
Richards equation to deal with groundwater flow in un-
saturated layered soil is derived using the Gardner model. 
To solve one-dimensional flow in the unsaturated zone of 
layered soil profiles, flux conservation and the continuity 
of pressure potential at the interface between two consecu-
tive layers are considered in the numerical discretization 
of the finite difference method. In addition, model verifi-
cation and comparison were performed, and a numerical 
model of rainfall-induced shallow landslides in unsaturat-
ed zones was subsequently developed. The formulation of 
the proposed method is described as follows.

1. Methods

1.1. Formulation of the variably saturated flow 
equation

Unsaturated soil is composed through a three-phase mix-
ing process that involves a gas phase (air), a liquid phase 

(pore water) and a solid phase (soil particles). Soil layers 
above the water table are termed as the unsaturated zone. 
In geotechnical engineering, pore water pressure fluc-
tuation reduces soil suction which may cause soil failure. 
Generally, continuous rainfall reduces soil suction, affect-
ing the stability of slope. The complete theory of ground-
water flow and rainfall infiltration of the unsaturated zone 
can be expressed using the Richards equation:

 
( ) ∂ ∇ = +  ∂

2 ,s w
HK H S S C h
t

 (1)

where H represents the total groundwater head, K repre-
sents hydraulic conductivity, sS  represents the specific 
storage, wS  represents saturation, C(h) represents specific 
capacity, and t represents time. If porous media are het-
erogeneous and anisotropic, Eq. (1) becomes:

 
( ) ∂ ∇ ∇ = +  ∂s w

HK H S S C h
t

. (2)

This is known as the generalized Richards equation 
or variably saturated flow equation, which can be used to 
describe the groundwater flow in saturated and unsaturat-
ed zones simultaneously (Tóthová et al. 2007). Eq. (2) can 
be rewritten as follows for a complete three-dimensional 
problem:

 

( )

( ) ( ) ( ) ,

s w

x y z

H HS S C h
t t

H H HK h K h K h
x x y y z z

∂ ∂
+ =

∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂   + +    ∂ ∂ ∂ ∂ ∂ ∂    

 

(3)

where ( )xK h , ( )yK h , and ( )zK h  represent hydraulic 
conductivity in the x, y and z axis, which are all functions 
of the pore water pressure head h  when unsaturated. To 
convert Eq. (3) into an equation that considers infiltration, 
we assume that the x and y planes represent slope vertical 
sections, the z axis is perpendicular to the xy plan, and the 
total water head H can be expressed using the pressure 
head h  and elevation head E as follows:

 = +H h E .  (4)

When the slope infiltration problem is considered, 
the elevation head E varies with the slope angle a, as 
shown in Figure 1. The elevation head can be presented 
as follows:

 
( ) ( )sin cosE x z= a + a .  (5)

The governing equation can be obtained by substitut-
ing Eqs (4) and (5) into Eq. (3): 

 

( )( ) ( ) sin

( ) ( ) cos .

s w x

y z

h hS S C h K h
t x x

h hK h K h
y y z z

 ∂ ∂ ∂ + = − a +  ∂ ∂ ∂  
   ∂ ∂ ∂ ∂ + + a    ∂ ∂ ∂ ∂      

(6)

Thus, the majority of the variably saturated flow 
problem was simplified using Eq.  (6). Considering a 
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one-dimensional problem for example, rainfall duration 
was far shorter than the transmission time of pore water 
pressure in the x and y axis. This consideration can be re-
alistic for slopes, especially steep slopes usually covered 
by a thin soil mantle. Thus, only vertical water flow varia-
tions were considered, which can be presented as a one-
dimensional vertical infiltration equation:

 
( )( )  ∂ ∂ ∂ + = + a  ∂ ∂ ∂  

( ) coss w z
h hS S C h K h
t z z

. (7)

When soil is saturated, Sw = 1 and 1)( =hC . There-
fore, the saturated flow equation is a commonly used gov-
erning equation for groundwater in the saturated zone, 
where:

 

 ∂ ∂ ∂ = + a  ∂ ∂ ∂  
coss z

h hS K
t z z

.  (8)

When soil is not saturated, the groundwater flow 
equation in unsaturated zone can be expressed as:

 
( )  ∂ ∂ ∂ = + a  ∂ ∂ ∂  

( ) cosz
h hC h K h
t z z

.  (9)

When the soil layer is not saturated, Eq.  (9) can 
be used to calculate fluctuations in pore water pressure. 
When the soil layer is gradually saturated by rainfall, 
Eq. (8) is used for analysis because Eq. (7) primarily de-
scribes the pore water pressure changes in saturated and 
unsaturated zones. This study adopted Eq. (7) as the core 
governing equation of rainfall-induced pore water pres-
sure fluctuations in unsaturated zones. In 1958, Gardner 
(Gardner 1958) proposed a simple-one parameter model 
as follows:

 
a= gh

eS e , (10)

where ag is the soil pore-size distribution parameter which 
is related to the pore size distribution of soil. Se is the ef-
fective saturation defined by normalizing volumetric water 
content with its saturated and residual values as:

 ( )
θ−θ

=
θ −θ
( )r

e
s r

S , (11)

where θ represents the volumetric water content function, 

θr  represents the residual water content and θs  repre-
sents the saturated water content. Substituting Eq. (11) 
into Eq. (10), we have

 
( ) aθ = θ + θ −θ gh

r s r e . (12)

It is common to normalize the hydraulic conductivity 
of unsaturated soil with respect to their maximum value. 
The normalized value, referred to as the relative hydraulic 
conductivity, rK  can be expressed as:

 
=

( )
( ) z

r
s

K h
K h

K
, (13)

where sK  is the saturated hydraulic conductivity. ( )rK h  
is the relative hydraulic conductivity and it is a function 
of the pressure head which makes the Richards equation 
highly nonlinear. Rather than using the van Genuchten 
expression for eS , a simpler version is used as follows:

 re KS = . (14)

Therefore, a= gh
rK e . Using the Gardner model, we 

can derive a linearized Richards equation. First of all, we 
define a new parameter *h  which can be expressed as

 
a= −χ* ghh e , (15)

where *h  is the pressure head of the linearized Richards 
equation and χ is a constant which is a key transformation 
allowing the solution of the linearized Richards equation 
using the transform methods (Duffy 1994; Tracy 2006, 
2011; Liu et  al. 2015). The parameter χ has no physical 
meaning and can be expressed as aχ = g dhe . dh  is the 
pressure head when the soil is dry. Taking the derivative 
of Eq. (15) with respect to z, we obtain

 

a∂ ∂
= a

∂ ∂

*
gh

g
h he
z z

. (16)

Rearranging Eq. (16), we have

 

−a∂ ∂
=

∂ a ∂

*1 gh

g

h he
z z

. (17)

Again, substituting Eq. (15) into Eq. (17), we have

 

a −a ∂ ∂ =
 ∂ a ∂ 

*1g gh h
r

g

h hK e e
z z

. (18)

Eq. (18) can be written as 

 

∂ ∂
=

∂ a ∂

*1
r

g

h hK
z z

. (19)

Taking the derivative of a= gh
rK e  with respect to 

z, we have

 

a∂ ∂
= a

∂ ∂
ghr

g
K he
z z

. (20)

Substituting Eq. (17) into Eq. (20), we have

 

∂ ∂
=

∂ ∂

*
rK h

z z
. (21)

Fig. 1. The definition of the coordinate system in this study

),( zxE

α

( )αcosz

( )αsinx z

x
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Recall Eq. (12), we have

 
( ) ∂∂θ

= θ −θ
∂ ∂

e
s r

S
t t

. (22)

Because =e rS K , a= gh
rK e , and a= −χ* ghh e , we 

can rewrite the above equation as

 
( )∂θ ∂

= θ −θ
∂ ∂

*

s r
h

t t
. (23)

Finally, we substitute Eqs. (17), (12), and (23) to 
Eq. (19). The linearized Richards equation can be obtained as 

 

( )a θ −θ∂ ∂ ∂
+a = a

∂ ∂∂

2 * * *

2
cosg s r

g
s

h h h
z K tz

. (24)

For simplicity, the equation can be expressed as

 
aθ θ

∂ ∂ ∂
+ a =

∂ ∂∂

2 * * *

2
cosh h hK K

z tz
, (25)

where 

 ( )θ = θ −θ
s

s r

K
K  and θ

aθ = ag

K
K . (26)

1.2. The finite difference method

The finite difference method (FDM) is adopted for the nu-
merical discretization. The reason for choosing the FDM 
is that the FDM can be easily used to integrate the for-
mulation for the discontinuities (or soil interface) which 
characterize the layers for unsaturated layered soil. In ad-
dition, several studies of numerical modeling of shallow 
landslides have been carried out using the FDM such as 
Yoshimatsu, Abe (2006), Wang et al. (2006), Singh et al. 
(2010), Sarkar et  al. (2012). The main advantage of the 
FDM is that it is probably the most straight forward nu-
merical method to formulate complicated partial different 
equations such as the Richards equation. In this study, we 
need to derive the sophisticated mathematical formulation 
for the unsaturated layered soil. Accordingly, we adopted 
the FDM as the numerical method. The linearized Rich-
ards equation based on the Gardner model is depicted 
in Eq.  (25). To apply the FDM, we have to consider the 
discretization in spatial and temporal domains. For the 
spatial discretization, we divide the domain into sections, 
each of length zD  along the z  axis and approximated 
the first and second derivatives in the linearized Richards 
equation for each grid point by the central difference for-
mulas. For the time discretization, the implicit scheme is 
adopted. Accordingly, we obtain the finite difference equa-
tion as:

* * * * *
1 1 1 1

2

* * 1

2
cos

2

,

i i i i i

n n
i i

h h h h h
K K

zz

h h
t

+ − + −
aθ θ

−

   − + −
+ a =      DD   

 −
  D 

 

(27)

where i is the nodal point and Dz is the interval. Dt is the 
time interval. Ks, ag, θs  and θr  are the same definition as 
described in the previous section. Considering the steady-
state situation, we obtain the finite difference equation of 
the linearized Richards equation as:

 

* * *
1 1

2

* *
1 1

2

cos 0,
2

i i i

i i

h h h
K

z

h h
K

z

+ −
aθ

+ −
θ

 − +
+  D 

 −
a =  D 

  (28)

Eq. (28) can be used to deal with homogenous soil. 
For unsaturated layered soil, it is necessary to account for 
the discontinuities of the parameters which characterize 
the layers. This gives rise to the so-called interface prob-
lem for the linearized Richards equation. For the inter-
face between layers, the conservation of water flux and the 
Darcy’s law have to be considered, as shown in Figure 2. 

The finite difference equation of the first term, aθ
∂
∂

2 *

2
hK
z

 
in Eq. (25), can be derived as follows:

2 *

2

* * *
1 1

2

2 2 2
,

A B
i i i

A B A B

hK
z

K K
h h h

K K K K
K

z

aθ

aθ aθ
− +

aθ aθ aθ aθ
aθ

∂
=

∂
   

− +   + +   
D

  (29)

where AKaθ  and BKaθ  represent the parameter, Kaθ , 
in layer A and layer B respectively. The finite difference 

equation of the second term, 
*hK

zθ
∂
∂

 in Eq. (25), can be 
derived as follows:

( ) ( )θ θ
− +

θ θ
θ θ

 
− + − 

∂  =
∂ D

* * * *
1 1*

2

A B
i i i i

B A

K K
h h h h

K KhK K
z z

, (30)

where θAK  and θBK  represent the parameter, θK , in 
layer A and layer B respectively. Substituting Eqs. (29) and 
(30) into Eq. (27) we obtain: 

 

( ) ( )

* * *
1 1

2

* * * *
1 1

* * 1

2 2 2

cos
2

,

n n n
A i i B i

n n n n
A i i B i i

n n
i i

h h h
K

z
h h h h

K
z

h h
t

− +
aθ

− +
θ

−

 a − + a  +
D

 β − +β − a =
D

 −
  D   

(31)

where aθ

aθ aθ
a =

+
A

A
A B

K
K K

,  aθ

aθ aθ
a =

+
B

B
A B

K
K K

, 

θ

θ
β = A

A
B

K
K

 and θ

θ
β = B

B
A

K
K

.
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In Eqs. (28) and (31), aθK  and θK  at the interface 
have to be determined. In a stratified soil deposit where 
the hydraulic conductivity for flow in a given direction 
changes from layer to layer, an equivalent hydraulic con-
ductivity can be obtained by the following equation:

 

=
    

+ +     
     

( )
1 2

1 2

eqv
n

n

HK
HH H

K K K


, (32)

where ( )eqvK  is the equivalent hydraulic conductivity, H is 
the height of the soil, Hi is the thickness of each soil layer, 
and Ki is the hydraulic conductivity of each soil layer. i is 
the number of the soil layer. Because we considered only 
two consecutive layers at the interface in the finite differ-
ence discretization. Using Eq. (32), aθK  and θK  at the 
interface can be obtained as:

    

aθ aθ
aθ

aθ aθ
=

+( )
2 A B

i
A B

K K
K

K K
 and θ θ

θ
θ θ

=
+( )

2 A B
i

A B

K K
K

K K
. (33)

Accordingly, the finite difference equations of the lin-
earized Richards equation for steady-state and transient 
conditions can be expressed as:
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+ −
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θ
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 −
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 (34)
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− +
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θ

−

 a − + a  +
D

 β − +β − a =
D

 −
  D 

   
  

(35)

Furthermore, Eqs (34) and (35) can be expressed as 
the matrix form and can be written as 

 =Ax b , (36)

where A  is a n×n square matrix, x  is a n×1 vector in 
which = * *

1[ ]Tnh hx  , and b  is a n×1 vector. n is the 
number of unknowns to be solved. Eq. (36) can then be 
simply solved by = –1x A b . 

1.3. Slope stability theory of unsaturated soil

The failure mechanism of infinite slopes primarily involves 
colluvium, weathered rock formations, or shallow failure 
and planar slides in bedrock alternations located at thin 
depth below the ground level. The sliding soil thickness 
is far less than the slope height. In most studies, infinite 
slopes are used to analyze shallow landslides. The factor of 
safety (FS) for the infinite slope theory can be expressed 
as follows:

 

2 2' ( cos cos )tan '
FS

cos sin
t w

t

c z h
z

+ γ a − γ a ϕ
=

γ a a
, (37)

where 'c  represents the effective cohesiveness, 'ϕ  rep-
resents the effective friction angle, z  represents the soil 
thickness, tγ  represents the unit weight of soil and wγ  
represents the unit weight of water. Fredlund adopted the 
perspectives of continuum mechanics and demonstrated 
that the shear strength equation can be applied to unsatu-
rated soil (Fredlund, Morgenstern 1977). The reason of 
choosing Fredlund’s approach for modeling the FS in un-
saturated condition is that its description of the stress state 
of the unsaturated soil examine the context of multiphase 
continuum mechanics. Unlike saturated condition, which 
are two-phase mixing process involved a solid phase and a 
gas phase or a liquid phase, unsaturated soil is composed 
through a three-phase mixing process that comprises of 

Fig. 2. The configuration of water flow through layered soils in 
the FDM formulation
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a gas phase, a liquid phase and a solid phase. Therefore, 
the corresponding pressure of a gas and a liquid phase in 
unsaturated condition have a direct impact on physical 
behavior of the shear strength (Lu, Likos 2004). Vanapalli 
et al. proposed the shear strength equation based on the 
SWCC, which is suitable for unsaturated zones (Vanapalli 
et al. 1996):

 

-
' tan ' tan 'r

f w
s r

c h
 θ θ

τ = +σ ϕ − γ ϕ 
θ −θ 

, (38)

where σ  represents the total stress, fτ  represents the 
shear strength. The shear strength of unsaturated soil 
was developed to describe the physical consideration to 
the air-water interphase and these stress state variables 
(Fredlund et al. 1978; Vanapalli et al. 1996). The revised 
shear strength equation was substituted into the original 
infinite slope equation to obtain the following FS equation 
for analyzing slope stability in shallow unsaturated zones:

tan '
' tan 'FS

cos sin tan cos sin

r
w

s r

t t

h
c

z z

 θ−θ
γ ϕ θ −θϕ  = + −

γ a a a γ a a
. 

  (39)

2. Verification examples

2.1. Verification example 1

The first example is a one-dimensional transient unsatu-
rated groundwater flow problem in a homogenous soil. A 
column of soil is initially dry until water begins to infil-
trate the soil. A pool of water at the ground surface is then 
maintained holding the pressure head to zero. The thick-
ness of the soil L is 10 m. The initial condition is described 
as follows:

 
( ) 5,  0 10h z t = = − . (40)

The boundary conditions of the top and bottom 
boundaries are as follows:

 
( ) 50, 10h z t= = − , (41)

 
( ), 0h z L t= = . (42)

Using Eq. (15), the suction head can be converted to 
*h  as follows:

 
( )* 0, 0h z t= = , (43)

 
( )* , 1h z L t= = . (44)

In this example, the soil is assumed to be silt which 
the ga  of the Gardner model is 410− . The saturated 
hydraulic conductivity ( sK ), saturated water content 
( sθ ), and residual water content ( rθ ) for this example 
are 59 10−×  m/s, 0.50, and 0.11, respectively, as shown 
in Table 1.  For one-dimensional transient unsaturated 
groundwater flow in a homogenous soil, Tracy proposed 
the analytical transient solution as follows (Tracy 2011):
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 a 
    λ   + − λ a m       

∑ , (45)

where /k k Lλ = π , ( ) /g s r sc K= a θ −θ , 2 2( / 4 ) /k g k cm = a +λ , 
t is time. L is the thickness of the soil. Figure 3 demon-
strates that the numerical results agreed well with the ana-
lytical solution for the one-dimensional transient unsatu-
rated groundwater flow in a homogenous soil. It is found 
that the mean absolute error (MAE) was 1.18×10–4  m. 
The above verification example demonstrates that the 
proposed numerical scheme for the Richards equation to 
solve one-dimensional flow processes in the unsaturated 
zone of soil is validated. 

Table 1.  Parameters used in the verification example 1

saturated hydraulic conductivity (m/s) 9×10–5

ag of the Gardner model 10–4

saturated water content 0.50
residual water content 0.11

2.2. Verification example 2

The second example under investigation is also a one-
dimensional, transient, unsaturated groundwater flow 
problem in homogeneous soil. A soil column is initially 
dry until water begins to infiltrate the soil. A pool of 
water at the ground surface is maintained, holding the 
infiltration rate to zero. This is known as one-dimen-
sional Green-Ampt problem (Green, Ampt 1911). The Fig. 3. Result comparison of  verification example 1 with the 

exact solution

–105 –8·104 –6·104 –4·104 –2·104 0·10 0
0

2

4

6

8

10
Exact solution
�is study

 

D
ep

th
, m

Pressure head, m

t = 2 hr t = 4 hr

t = 6 hr

t = 10 hr

t = 8 hr



Journal of Environmental Engineering and Landscape Management, 2017, 25(4): 329–341 335

thickness of the soil L is 10 m. The initial condition is 
described as follows:

 ( ),  0 100h z t = = − . (46)

The boundary conditions of the top and bottom 
boundaries are as follows.

 ( )0, 100h z t= = − , (47)

 
( ), 0h z L t= = . (48)

The soil was assumed to be sand, which has saturated 
hydraulic conductivity ( sK ) of 33 10−×  m/s. The saturated 
water content ( sθ ) and residual water content ( rθ )  are 
0.50 and 0.11, respectively. In the Gardner model, there is 
only one fitting parameter, ga . The SWCC obtained from 

Fig. 4. The fitting curve of the SWCC using the Gardner model 
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Fig. 6. Result comparison of verification example 2 with the 
numerical solution

the laboratory is shown in Figure 4. Using the Gardner 
model, ga  can be obtained by fitting the SWCC with the 
Gardner model as shown in Figure 4. It is found that the 

ga = 21.6 10−×  and the MAE was 21.78 10−× .
Using the Gardner model, the nonlinear relation-

ship between the matric suction and unsaturated hydrau-
lic conductivity can be obtained as shown in Figure 5. In 
this example, the total simulation time is one hour. Fig-
ure  6 depicted the comparison of the solution with the 
numerical solution using the Skeel and Berzins’ method 
(Skeel, Berzins 1990).  It is found that the computed re-
sults agreed well with those obtained from the Skeel and 
Berzins’ method and the MAE was 42.74 10−×  m.

2.3. Verification example 3

The governing equation for unsaturated flow in response 
to infiltration at ground surface is known as the Richards 
equation. For one-dimension, it can be written as Eq. (9). 
Iverson assumed that the Richards equation as a linear dif-
fusion equation and derived the analytical solution (Iver-
son 2000). Baum et al. revised the analytical solution and 
implemented in TRIGRS (Baum et al. 2002). The analytical 
solution proposed by Baum et al. can be written as follows:
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where / cosZ z= a , d is the depth of steady-state wa-
ter table measured in z direction, cosβ = λ a  and 

cos /z z LTI Kλ = d−    , where Iz is the long term rainfall 
flux at ground surface. Kz is the hydraulic conductivity, Inz 
is the surface flux for the nth time interval, n is the total 
number of time intervals, D1 is related to the hydraulic 
diffusivity D0, 1( )nH t t +−  is the Heaviside step function. 
The ierfc is the complementary error function and can be 
expressed as follows:

 
( ) ( ) ( )21 expierfc erfcη = −η −η η

π
. (50)

We conducted a comparison example with the con-
sideration of unsaturated flow in response to infiltration 
at ground surface. The input parameters were listed in 
Table 2. The numerical results of this example were com-
pared to those obtained from the analytical solution of 
equation. In a scenario set in this study, a soil layer thick-
ness is assumed to be 100 cm and a water table at the 
junction between the soil base and rock bed. Figure 7 and 

Fig. 7. Comparison of the results for 0 10 · sD K= (left: this study, right: TRIGRS model)

Fig. 8. Comparison of the results for 0 100 · sD K=  (left: this study, right: TRIGRS model)

Table 2.  Parameters used in the verification example 3

This study Baum et al. (2002)
Slope angle (degree) 30
Thickness (m) 1
Inflitration rate (m/hr) 0.2
Inflitration time (hr) 5
Saturated hydraulic 
conductivity (m/hr) 2.5

Other parameters
0.43sθ =

0.08rθ =

ag = 0.2

( )0 10 ~100 sD K= ×
(m/hr)

Figure 8 depict that the results from the proposed model 
and the analytical solution. It is interested that the analyti-
cal solution from the simplified linear diffusion equation 
cannot obtain the appropriate result when the value of the 
hydraulic diffusivity is large as revealed in Figure 8. The 
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results from this example demonstrate that the analytical 
solution of equation can only be applied on the problems 
within certain condition and should be used with caution. 

3. Application examples

3.1.  Application example 1

The first application example under investigation is a one-
dimensional, transient, unsaturated groundwater flow 
problem in a homogeneous soil. The thickness of the soil 
L is 150 cm and the slope angle is 31 degrees. Since the 
Richards equation is an initial value problem, an initial 
condition must be provided to solve the equation. The ini-
tial pressure head is given as follows:

 
( ) ( ), 0 coswh z t z z= = − − a , (51)

where wz  represents the height of water table. The pore 
pressure head distribution in unsaturated zones is con-
gruent with the water table function. In this example, we 
considered 50wz =  cm. The total simulation time is five 
hours. Considering that a pool of water at the ground sur-
face is maintained holding the infiltration rate, the bound-
ary condition can be defined according to Darcy’s law 

sq K H= − ∇ , and assumes that infiltration rate facilitates 
complete infiltration and fq R=  as follows:

 
f s

HR K
z

∂
= −

∂
. (52)

The definition of sK  and H are the same as defined 
in the previous section. Using Eqs. (4) and (5), the above 
equation can be written as:

 
cosf s

hR K
z
∂ = − + a ∂ 

. (53)

The above equation can then be rewritten as the fol-
lowing equation which is also known as the Neumann 
boundary condition:

 
cos f

s

Rh
z K
∂

= − a −
∂

. (54)

If the infiltration rate is greater than saturated hy-
draulic conductivity, the maximal soil infiltration equals 
the saturated hydraulic conductivity. The bottom bound-
ary may be assumed to be a no-flow boundary, and is in-
ferred as follows:

 
0 s

HK
z

∂
= −

∂
. (55)

The above equation can be written as:

 
0 coss

hK
z
∂ = − + a ∂ 

. (56)

Then, we have

 
cosh

z
∂

= − a
∂

. (57)

To solve the Richards equation, the boundary condi-
tions must be considered. We adopted  55 10fR −= × cm/hr. 
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The soil was assumed to be sand, which has saturated hy-
draulic conductivity ( sK ) of 29 10−×  cm/hr. The saturated 
water content ( sθ ) and residual water content ( rθ ) are 
0.43 and 0.08, respectively. The ga  of the Gardner model 
is 21 10−× . In this example, the total simulation time is 
five hours. The effective cohesiveness, effective friction 
angle and unit weight of soil are 4.6 kPa, 30 degrees and 
21.5 kN/m3, respectively. Figure 9 and Figure 10 indicate 
the computed results of pressure head and FS for applica-
tion example 1. 

Fig. 9. Computed pressure head of the soil profile for 
application example 1

Fig. 10. Computed FS of the soil profile for application 
example 1
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3.2. Application example 2

The second application example under investigation is a 
one-dimensional, transient, unsaturated groundwater flow 
problem in two-layered soil. The thickness of the soil L is 
150 cm. In the case of two layered soils, layer A and layer 
B have thickness of 130 cm and 20 cm, respectively, as 
shown in Figure 11. Table 3 shows the soil parameters for 
two soil layers. In this example, layer B is more permeable 
than layer A. The hillslope has a slope angle of 31 degrees. 
The initial pressure head can be described as Eq. (53). The 
boundary conditions of the top and bottom boundaries 
are showed as Eq. (56) and Eq. (59). In this example, we 
considered zw = 80 cm and 55 10fR −= × cm/hr. The to-
tal simulation time is five hours. The computed pressure 
heads versus elapsed time for this example are depicted 
in Figure 12. Figure 12 demonstrates that the fluctuation 
of pore water pressure in unsaturated layered soil domi-
nates slope stability behavior. Besides, the pressure head 
at the interface increases quickly and the lowest FS may 
occur at the interface between two consecutive soil layers 
during a rainfall even if the top soil layer has the lower 
hydraulic conductivity. Figure 13 shows the computed FS 
with respect to time. It shows that the lowest FS occurs at 
the interface between two consecutive soil layers during 
a rainfall event. Figure 14 indicates the results of the FS 
at the depth of 135 cm for this example. It is found that 
the FS is strongly affected by the rainfall with respect to 
time. Accordingly, we may conclude that the variation of 
the pressure head caused by the rainfall event is strongly 
associated with soil layers and the interface between two 
consecutive soil layers may play a crucial role for the slope 
stability. 
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Fig. 12. Computed pressure head of the soil profile for 
application example 2

Fig. 14. The computed results of FS at z = 135 cm for 
application example 2

Fig. 13. Computed FS of the soil profile for application 
example 2

Fig. 11. Schematic illustration of application example 2
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Table 3.  Parameters used in the application example 2

Soil Layer A Layer B
Hydraulic conductivity Ks (cm/hr) 1×10–2 1×10–1

Saturated water content θs 0.43 0.50

Residual water content θr 0.08 0.11

ag of the Gardner model 1×10–2 1×10–2

4. Discussions

In this paper, we carried out three verification examples 
and two application examples. From the results of verifi-
cation examples, it is found that the computed numerical 
results agreed well with the analytical transient solution 
and those from the Skeel and Berzins’ method. Compari-
son between the proposed numerical model and TRIGRS 
model (a simplified analytical-based model by assum-
ing the Richards equation as a linear diffusion equation; 
Iverson 2000; Baum et al. 2002) was also conducted. We 
conducted a comprehensive study in this example with 
the consideration of several scenarios. It is found that the 
proposed model in this study can obtain more appropriate 
results when the value of the hydraulic diffusivity is larger 
than those from the TRIGRS model.

In the application examples, we further adopted the 
proposed model to study the slope stability of a landslide 
with the consideration of the infiltration from the ground 
surface for homogenous and layered soils. Since the nu-
merical modeling of rainfall-induced shallow landslides in 
unsaturated layered soil using the variably saturated flow 
equation is still hardly found, this study demonstrates the 
advantages of using the proposed model to study the slope 
stability of landslides for layered soils. From the results of 
application examples, we also found that the fluctuation 
of pore water pressure in unsaturated layered soil domi-
nates slope stability of landslides. Accordingly, it can be 
concluded that the proposed model in this study may have 
great potential to deal with problems of rainfall-induced 
shallow landslides in unsaturated layered soil.

The nature of the Richards equation is highly non-
linear and cannot directly provide an analytical solution. 
The SWCC is a major factor that influences the nonlinear 
physical relationship. To derive the proposed numerical 
model of rainfall-induced shallow landslides in unsaturat-
ed layered soil, we adopted the Gardner model to formu-
late the linearized Richards equation. It should be noted 
that the Gardner model is based on the one-parameter 
equation with an indication of the rate of desaturation of 
a soil. Parameters used in mathematical models for the 
SWCC include fixed points and two or more fitting con-
stants that are usually selected to capture the general shape 
of the SWCC.  Nevertheless, the Gardner model has only 

one parameter which may have limitations for fitting the 
SWCC with complicated shape.

Conclusions

In this study, a numerical model of unsaturated layered 
soil for rainfall-induced shallow landslides was developed. 
The infinite slope stability analysis coupled with the hy-
drological model with the consideration of the SWCC 
proposed by Gardner was developed to model the shallow 
landslides triggered by rainfall. The fundamental concepts 
and the construct of the proposed method are clearly ad-
dressed. Findings from this study are drawn as follows:

1. The FDM for the numerical discretization of the 
variably saturated flow equation based on the Gardner 
model to deal with groundwater flow in unsaturated lay-
ered soil is derived. The proposed method can be used to 
solve slope stability problems with the appearance of lay-
ered soil.

2. The validity of the model is established for a num-
ber of test problems by comparing numerical results with 
the analytical solutions. It is found that the proposed 
method can be used to model groundwater flow in un-
saturated layered soil with high accuracy.

3. The results obtained from this study demonstrate 
that the slope stability of landslides is strongly dependent 
to the hydraulic conductivity. It is found that the variation 
of pore water pressure in unsaturated layered influences 
the stability of a slope. Besides, the pressure head at the 
interface increases quickly and the lowest FS may occur at 
the interface between two consecutive soil layers during a 
rainfall even if the top soil layer is less permeable.
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