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Abstract. Recently, scientists have been taking a great interest in Global warming issue, since the global surface tem-
perature has been significantly increased all through last century. The surface heat island (SHI) refers to an urban area
that has higher surface temperatures than its surrounding rural areas due to urbanization. In this paper, Tehran city
is used as case study area. This paper tries to employ a quantitative approach to explore the relationship between land
surface temperature and the most widespread land cover indices, and select proper (urban and vegetation) indices by
incorporating supervised feature selection procedures using Landsat 8 imageries. In this regards, genetic algorithm
is incorporated to choose best indices by employing kernel base one, support vector regression and linear regression
methods. The proposed method revealed that there is a high degree of consistency between affected information and
SHI dataset (RMSE = 0.9324, NRMSE = 0.2695 and R*= 0.9315).

Keywords: Surface heat island, Land use/cover, Support vector regression, linear regression model, Genetic algorithm.

Introduction

The surface temperature is a substantial factor in the study
of urban climatology. It changes the air temperature of the
lowest layers of the urban area. The surface temperature
is also effective in determining the internal climates of
buildings and disturbs the energy exchanges that impact
the comfort of city life (Voogt, Oke 2003). The urban
heat island (UHI) refers to an urban area that has higher
surface temperatures than its surrounding rural areas due to
urbanization (Xian, Crane 2006). The annual average air
temperature of an urban area, with almost one million
population, can be one to three degree warmer than its
surrounding areas. This phenomenon can affect societ-
ies by increasing summertime, air conditioning costs, air
pollution, heat related illness, greenhouse gas emissions
and water quality. Today, more than fifty percent of the
world’s population are living in cities (UN DESA 2015), in
this regard, urbanization has become a key factor in global
warming issue. Tehran, the capital of Iran, one of mega-
cities in the world, is the case study of this research. A
megacity is mainly defined as a residential area with a total

population in excess of ten million people (Dihkan et al.
2015). We have been encountering significant surface heat
island (SHI) effect in this area due to rapid urbanization
progress and the fact that twenty percent of population in
Iran are currently living in Tehran houses.

SHI has been usually monitored and measured by in
situ observations acquired from thermometer networks.
Recently, remotely sensed observing and monitoring of
SHIs has become accessible by incorporating thermal re-
mote sensing technology and satellite data. Satellite ther-
mal imageries, mainly high resolution imageries, have the
advantage of providing a repeatable dense grid of temper-
ature data, over a whole urban area, and even distinctive
temperatures for individual buildings.

Previous studies of land surface temperatures (LST)
and thermal remote sensing of urban and rural areas have
been primarily conducted by using AVHRR or MODIS
imageries (Streutker 2002; Imhoff et al. 2010). Now a days,
most of researchers are using high resolution satellite im-
agery to monitor thermal anomalies in urban areas (Fab-
rizi et al. 2010; Ogashawara, Bastos 2012; Liu et al. 2015).
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In this study, newly launched Landsat series (Landsat 8) is
used to monitor SHI, and retrieve the brightness tempera-
tures and land use/cover types. The Landsat 8 carries two
kind of sensors (Landsat 8 2016): The Operational Land
Imager (OLI) sensor has former Landsat bands, with three
new bands: a deep blue band for aerosol/coastal investiga-
tions (band 1), a shortwave infrared band for cirrus detec-
tion (band 9), and a Quality Assessment (AQ) band. The
Thermal Infrared Sensor (TIRS) provides two high spa-
tial resolution thirty meters thermal bands (band 10 and
11). These sensors both use corrected signal-to-noise ratio
(SNR) radiometric performance quantized over a 12-bit
dynamic range. Improved SNR performance would cause
better determination of land cover type. Details of Landsat
8 band specification is illustrated in Table 1. Furthermore,
Landsat 8 imageries incorporate two valuable thermal im-
agery bands with 10.9 um and 12.0 pm wavelength. These
two thermal bands would improve estimation of SHI by
incorporating split-window algorithms, they will also in-
crease the probability of the SHI and urban-modified cli-
mates to be monitored. Therefore, it is necessary to design
and use new procedures that are able to simultaneously
(a) handle the two new high resolution thermal bands
of Landsat 8 imagery and (b) incorporate satellite in situ
measurement into precise estimation of SHI.

Table 1. Landsat 8 OLI and TIRS bands

Bands Wavelength (um) Res (m)
Band 1 - Coastal aerosol 0.43-0.45 30
Band 2 - BLUE 0.45-0.51 30
Band 3 - GREEN 0.53-0.59 30
Band 4 - RED 0.64-0.67 30
Band 5 - Near Infrared (NIR) 0.85-0.88 30
Band 6 - SWIR 1 1.57-1.65 30
Band 7 - SWIR 2 2.11-2.29 30
Band 8 - Panchromatic 0.50-0.68 15
Band 9 - Cirrus 1.36-1.38 30
](3;;11;15;01 - Thermal Infrared 10.60-11.19 30
](3;;1;5)112_ Thermal Infrared 1150 2.51 30

The UHIs can be affected by three main factors
(Ogashawara, Bastos 2012): a) reduced evapotranspira-
tion; b) the effects of energy transformation in urban area;
and (c) anthropogenic energy production. Also, according
to (Actionbioscience 2015), there are three types of UHIs:
a) Boundary Layer Heat Island (BLHI); b) Canopy Layer
Heat Island (CLHI); and ¢) Surface Heat Island (SHI).
The main difference between BLHI and SHI is that BLHI
refers to the warmth of the urban atmosphere while SHI
refers to the warmth of the urban surface. Also, the major

difference between CLHI and SHI is the place where tem-
perature is appeared and detected. Usually, CLHI is de-
tected by specified air temperature measurement (i.e. in
situ data) in the canopy layer, while remotely sensed ther-
mal data observe the spatial patterns and models of up-
welling thermal radiance to estimate the LST (Voogt, Oke
2003) of the SHI.

Lately, quantitative algorithms for urban thermal en-
vironment and dependent factors have been studied, for
example, the relationship of UHI with land cover types
and its corresponding regression model (Xian, Crane
2006; Hasanlou, Mostofi 2015; Liu et al. 2015; Odindi et al.
2015). Similar works have been done and models of the
relation between various vegetation indices and the sur-
face temperature have been established (Chen et al. 2006;
Xiong et al. 2012). This paper tried to employ a quantita-
tive approach to track the relationship between SHI and
common land cover indices and select proper indices,
including the Normalized Difference Vegetation Index
(NDVI) (Kriegler et al. 1969), Enhanced Vegetation In-
dex (EVI) (Kriegler et al. 1969), Soil Adjusted Vegetation
Index (SAVI) (Huete 1988), Normalized Difference Water
Index (NDWTI) (Gao 1996), Normalized Difference Bare-
ness Index (NDBal) (Zhao, Chen 2005; Chen et al. 2006),
Normalized Difference Build-up Index (NDBI) (Zha
et al. 2003), Modified Normalized Difference Water In-
dex (MNDWI) (Xu 2006), Bare soil Index (BI) (Zha et al.
2003; Zhao, Chen 2005). Urban Index (UI) (Kawamura
et al. 1996), Index based Built up Index (IBI) (Xu 2008)
and Enhanced Built up and Bareness Index (EBBI) (As-
syakur et al. 2012). Behind these indices, the tasselled cap
transformation (T'CT), which is calculated for Landsat 8
imagery, is used to compact spectral data into a few bands
associated with physical scene characteristics with mini-
mal information loss (Baig et al. 2014). The three TCT
components, Brightness, Greenness and Wetness, are
computed and incorporated to predict SHI effect. There-
fore, the main objectives of this research are to develop a
non-linear and kernel base analysis model for urban ther-
mal environment area by incorporating support vector re-
gression (SVR) method (Drucker et al. 1997), and also to
compare proposed method with linear regression model
(LRM) in which linear combination of incorporated land
cover indices (features) is used. The primary aim of this
paper is to establish a framework producing an optimum
SHI by utilizing proper land cover indices form Land-
sat 8 imagery. In this regard, three scenarios have been
implemented: a) incorporating LRM with full feature set
without any feature selection; b) incorporating SVR with
full feature set without any feature selection; and c) in-
corporating genetically selected suitable features in SVR
method (GA-SVR). The results of this study can be used
to increase the output performance of the SHI estimation
in urban area using Landsat 8 imagery by adopting the
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genetically SVR method with (a) an optimal land cover
indices/feature space and (b) customized SVR parameters.

1. Material and methods

In this paper, Landsat 8 imagery is used as input imag-
ery data to estimate SHI map, and also various urban and
vegetation indices are calculated. Figure 1 shows the flow-
chart of proposed methods.

Landsat 8 Armospheric Radiometric

Satellite Images ._. Carrection > Correction -—
Feat 9 ion (Urban and Veg Indices)
tation Indi e ] |
boroimi g ) I S
Brightness Temperatares M
- S|

Tasselled Cap Transformation ml -

Scenario 1 Scenarle 2 Scenario 3 Genetically Feature Selection (F5)

FullFeatigg Set FllFeajpre Set mean Matation
Linear Regresson Model (LRM) | Support Yector Regression [SYR) Crossover J‘ | Fitness Evaluation (AMSE)|
-~-Ng_'-_| < | [ @ Generichgor Wector Regression (GA-SVR)

Fig. 1. Flowchart of proposed methods

As shown in Figure 1. atmospheric and radiometric
correction is done after importing Landsat 8 images. In
utilized procedure, the fast line-of-sight atmospheric anal-
ysis of spectral hypercubes (FLAASH) algorithm is used
to reduce atmospheric and radiometric effect on incorpo-
rated images. The next step starts by producing urban and
vegetation indices and also brightness temperature (BT)
of thermal bands of Landsat 8 imagery in 10.9 um and
12.0 pm (band 10, 11) (USGS 2015). Further, in this step,
we calculate LST data for incorporated dataset using split
window (SW) algorithm (Eq. (1)) introduced in (Jimenez-
Munoz et al. 2014):

2
LST = ¢y + Ty +C1(Tb10 _Tb11)+CI(Tb10 _Tbu) + 1)

(c3 + c40))(1 - 8) + (c5 + CG(D)AS,

where T, and T,,, are the at-sensor BTs (in kelvins),
€ is the mean emissivity, 8=0.5(8b10 +8b11), At is the
emissivity difference, Ae= (Sbw —€p1 ) , o is the total at-
mospheric water vapor content (in gxcm™2) that we set to
®=3 as mentioned in (Jimenez-Munoz et al. 2014), and
¢, to ¢, are the SW coefficients that computed in (Jimenez-
Munoz et al. 2014). In this study, to estimate g, and
€;11 » we have simultaneously incorporated MODIS prod-
uct (MOD11A2 2015) for the same area. As you know, the
MOD11A2 is the level-3 MODIS global LST and emis-
sivity, and 8-day data are composed from the daily 1-ki-
lometer LST product. Also this product comprises day
time and night time LSTs, quality assessment, observation
times, view angles, bits of clear-sky days and nights, and
emissivities estimated in bands 31 and 32 from land cover

types that are similar to Landsat 8 thermal bands (g,
and g,;, ). Then, the last step is divided in three different
scenarios, including LRM implementation (scenario 1),
SVR incorporation (scenario 2) and GA-SVR implemen-
tation that adopted genetic algorithm (GA) as supervised
feature selection (FS) procedure (scenario 3). In the next
section, procedure of computing urban and vegetation in-
dices behind utilized algorithm will be discussed.

1.1. Calculating TOA radiance/reflectance
and at-sensor BT

The OLI and TIRS bands data can be converted to top of
atmosphere (TOA) spectral radiance and planetary reflec-
tance using the reflectance/radiance rescaling parameters
provided in the product metadata file (MTL file) (USGS
2015). The following equation (Eq. (2) and Eq. (3)) is used
to convert digital number (DN) values to TOA radiance/
reflectance for OLI data as follows:

L, =M, DN + 4, ; )

P =M,DN +A,, 3)
where L, is TOA spectral radiance (watts/(m*xsradxum)),
M, and M, are band-specific multiplicative rescaling
factor extracted from MTL file, A, and A, are band-
specific additive rescaling factor extracted from MTL file,
DN is quantized and calibrated standard digital number
values and p,, is TOA planetary reflectance, without cor-
rection for solar angle. Also, we can correct TOA reflec-
tance by considering the sun angle (Eq. (4)):

pr=— 2 @

sm(@ SE )
where p, is TOA planetary reflectance and 6 is local
sun elevation angle. The scene center sun elevation angle
in degrees is extracted from MTL file. For TIRS bands
data, we use conversion from spectral radiance to BT us-
ing the thermal constants provided in MTL file which de-

rived from PlancK’s law (Eq. (5)):
BT =K, /In(1+K, /L, ), )

where BT is at-sensor BT in kelvin and K, /K, are
band-specific thermal conversion constant extracted from
MTL file for each TIRS bands (USGS 2015). By utilizing
Eq. (1) to Eq. (5), input features and land cover indices
will be produced.

1.2. Urban and vegetation indices

In this study, the most common urban and vegetation indi-
ces are used. These indices can be divided to two main type:
a) urban indices; and b) vegetation indices. The widespread
and common urban indices are shown in the Table 2. The
most of these indices would extract urbanization param-
eters related to spectral difference of near infrared, vis-
ible and short wave infrared bands of Landsat 8 Imagery
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Table 2. Extracted urban indices form Landsat 8 imagery

Name of
urban index

Formulation

Normalized
Bleference NDBap - SWIRI=TIRSL
areness SWIRIL+ TIRSI
Index
(NDBal)
Normalized
Difference
SWIR1 - NIR
ild- NDB[=""""—
Build-up SWIRL+ NIR
Index
(NDBI)
Bare Soil (SWIRL+RED)~(NIR+BLUE)
Index (BI) ~ (SWIRL+RED)+(NIR + BLUE)
Urban Uy = SWIR2—NIR
Index (UI) SWIR2+ NIR
Index- 2xSWIRL NIR  GREEN
based ;_ SWIRL+NIR { NIR+RED GREEN +SWIRI
Built-Up 2XSWIRL NIR  GREEN
Index (IBI) SWIR1+NIR |\ NIR+RED GREEN +SWIRI
Enhanced
Built-
Up and EBBI —_ SWIRL-NIR
Bareness 10+/SWIR1 + TIRS1
Index
(EBBI)

Table 3. Extracted vegetation indices form Landsat 8 imagery

Name of

.. Formulation
vegetation index
Normalized
leferer.lce NDVI = NIR - RED
Vegetation Index NIR+RED
(NDVI)
NIR—-RED

Enhanced
Vegetation Index
(EVI)

EVI=G

NIR+C,RED-C,BLUE+L
L=1C, =6;,C, =7.5:G=2.5

Soil Adjusted
Vegetation Index
(SAVT)

SAVI = NIR—-RED )

NIR+RED+L(
0<L<1I=L=0.5

Normalized

NIR-SWIR1
Difference Water NDWI = NIR—SWIRL
Index (NDWI)
Modified
Normalized MNDWI < GREEN —NIR
Difference Water GREEN + NIR
Index (MNDWT)
Tasselled Cap
Transformation Brightness
(TCT)
TCT Greenness
TCT Wetness
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(Table 1). All indices from Table 2 are calculated based on
incorporating digital number (DN) of Landsat 8 bands.

As before, in Table 3 computable vegetation indices
extracted from spectral bands like, near infrared, visible
and short wave infrared bands of incorporated dataset are
illustrated. All these indices are calculated based on incor-
porating reflectance/radiance of related Landsat 8 bands
by using procedure introduced in (USGS 2015).

1.3. Linear regression model

n

o of n statistical units, a
=

linear regression model (LRM) assumes that the relation-
ship between the dependent parameter y, and the q vec-

Given a data set {yi,xil,...,xiq}

tor of regressors x; is linear. This relationship is modeled
through a disturbance term or error parameter g, - an
unobserved random parameter that adds noise to the lin-
ear relationship between the dependent parameter (in this
study SHI data) and regressors (in this study land cover
indices) (Kutner et al. 2004). Thus the model takes the
form (Eq. (6)):
yi:Bixi1+...+[3qxiq+8i:XiTB+£i, ©)
i=L...,n
Where T defines the transpose, therefore X is the in-
ner product between vectors x; and . Often these n
equations are stacked together and written in vector form

as (Eq. (7)):
y=XB+e, (7)

Xjp> - Xjy » ATE called regressors or independent variables
(in this study land cover indices). The matrix X is some-
times called the design matrix. y,, is called the measured
variable or dependent variable (in this study SHI data).
The criteria as to which variable in a dataset is modeled as
the dependent parameter and which is modeled as the in-
dependent parameter may be based on an assumption that
the value of one of the parameters is caused by, or directly
influenced by the other variables. As an alternative, there
may be a reason to model one of the parameters in terms
of the others, in which case there would be no need for
presumption of any causes. 3, is a q dimensional vector.
Its elements are also called regression coeflicients. Statisti-
cal prediction and conclusion in linear regression focuses
on f . The elements of this parameter vector are perceived
as the partial derivatives of the dependent parameter with
respect to the various independent parameters.

1.4. Support vector regression

The SVR is a supervised learning method which emerged
in late 1970s (Drucker et al. 1997). SVR allows com-
puting a strong nonparametric model of the relation-
ship between urban/vegetation indices and SHI change.
This method is also widely used in most remote sensing
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applications like SST and LST estimation (Moser, Serpico
2009), biophysical parameter estimation and other vegeta-
tion index monitoring from multispectral satellite images
(Durbha et al. 2007). Consider a set of training points,
{(xl,zl),...,(xl,zl )} , where x; e R" is a feature vector
and z; e R! is the target output. Under given parameters
C>0 and €>0 the standard form of support vector re-
gression (Eq. (8)) (Drucker et al. 1997; Smola, Scholkopf
2004) is:

min ol o+ Czl:(é + &)

bt 2 Y

o i=1
subject to Q)T¢(xi)+b—zi <e+g;
z;—o§(x;)-b<e+&;
€,6 20, i=1..,1. (8)

By introducing Lagrange multipliers and exploiting
the optimality constraints, the decision function has the
following explicit form (Eq. (9)):

!

o +ao; JK(x,x)+b,
3 0K (5. )
0<a;<C, 0<a; <C.
Where [ is the number of support vectors (SVs) and
the kernel function (Eq. (10)):

K(x;%)=>"0;(x); () (10)

-1

-

and o are Lagrange multipliers. In order to run the
SVR method with high efficiency, some constraint must
be considered, (a) tuning the SVR parameters including
C,e and kernel parameters, (b) optimizing input space
(selecting suitable features). In this paper, we are focusing
on both constraints by utilizing search procedure to tune
the parameters and feature selection method, and to opti-
mize input space (Genetic Algorithm).

1.5. Genetic algorithm

Genetic algorithm (GA) is the most widespread technique
among evolutionary algorithms. This method allows us
to search potential solutions to optimize problems in rea-
sonable time, particularly when the search space area is
very extensive (Goldberg, Holland 1988). This method is
heuristic, based on population of individuals (e.g., chromo-
somes), that each individual performs a candidate solution
(Goldberg, Holland 1988) and can be illustrated as a bit in
string mode. Each individual is evaluated by fitness func-
tion. This function measures the quality of an individual.
In GA method, the population commences randomly, or
by different strategy based on the problem in question. The
population answers some number of evolutions. During
GA’s process individuals are evolved and reproduced using
GA’s operations such as: mutation, crossover, and selection.

Its main goal is to select and find the individual with the
best fitness value (Goldberg, Holland 1988).

We modeled the problem of feature/index selection
as follows: each individual has a size of N features/genes,
as shown in Figure 2, and each gene represents a binary
random vector number including Os and 1s, associated
with a features/indices. Bit strings of 0s and 1s are cho-
sen for coding. Since N features form one combination,
chromosome is arranged as comprised of N individual
feature sequence numbers, which are arranged in a se-
rial mode. The length of each parameter is automatically
detected according to the number of features/indices in
the data set (Fig. 2). As previously stated, the quality of
each candidate solution is evaluated according to a fit-
ness function. Our fitness function here is the root mean
square error (RMSE) of a regression performed by a SVR
or LRM method. Stochastic two-point was used as the se-
lection operator. Additionally, Gaussian mutation, as well
as uniform crossover were used as GA operators. Finally,
migration direction was set to forward mode in addition
to the elitism mechanism.

Fig. 2. Chromosome format in genetically feature selection

2. Results

In this study, Landsat 8 imagery acquired from Tehran city
is used as dataset. This dataset belongs to summer time
(June 15, 2014), which air temperature was nearly 40 °C
(Fig. 3). As mentioned in previous section, by incorporat-
ing Landsat 8 LST retrieval algorithm (Eq. 1) and contem-
porary MODIS product estimating emissivity of two ther-
mal bands (i.e. €,;, and g, ), SHI is estimated. Urban,
vegetation and TCT (Brightness, Greenness and Wetness)
indices from DN/Ref Landsat 8 images are calculated as
well. Calculated indices and information using this dataset
is shown in Figure 3.

To establish models in all three scenarios, 2400 points
of in situ data were extracted from Tehran urban region.
Then, 720 (30% of data) random points were selected
as training data and 1680 (70% of data) random points
as testing data. Also, some common criteria like, mean
square error (MSE), root mean square error (RMSE), Nor-
malized root mean square error (NRMSE) and R-squared
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(R?) were used to examine the output result of each meth-
od and scenario.

NDVI

Bnghmess -

Wetness

Greenness

EBBI

Fig. 3. Urban, vegetation and TCT indices for Tehran dataset

2.1. Scenario 1

In this scenario, we used and implemented LRM method
by using linear combination of fourteen features including
EVI, NDVI, NDWI, NDBI, NDBal, MNDWI, BI, UI, IBI,
EBBI, SAVI, Wetness, Greenness and Brightness as for-
mulized in Eq. (11). Then, by incorporating training data,
the estimation of unknown variable is possible. The output
result of LRM method is presented in Table 4.

SHI =P, +B,EVI +B,NDVI +,NDWI +
B,NDBI + B NDBal + 3, MNDWI +

By BI +BoUI + B, IBI + B, EBBI + 1)
B, SAVI +B,;Wetness + B, ,Greenness +
PB,sBrightness.

Table 4. The output result of LRM method using full fourteen
input dataset (scenario 1)

Estimate SE tStat pValue
Intercept -54.4486  13.8228 -3.939 0.00010
EVI -8.2797 1.5004 -5.5183 0.00000
NDVI -29.6874  3.9611 -7.4947 0.00000
NDWI -15.9532  5.7056 -2.7961 0.00530
NDBI -23.3553  11.5275 -2.0261 0.04310
NDBal -55.8113  0.9728 -57.3746  0.00000
MNDWI -9.0744 6.219 -1.4591 0.14500
BI 0.7867 2.0305 0.3874 0.69860
Ul 22.0356 4.4001 5.008 0.00000
IBI -0.0522 0.0991 -0.5267 0.59860
EBBI 79.4409 13.1277 6.0514 0.00000
SAVI 54911 5.6451 9.7272 0.00000
Wetness 56.0247 8.491 6.5981 0.00000
Greenness 0.6995 6.0152 0.1163 0.90750
Brightness 46.4579 3.0543 15.2106 0.00000

As shown in Table 4, estimated coeflicient value for
each feature (f,) is illustrated in first column, the second
column contains standard error (SE) of the estimation, the
third column shows t statistic (tStat) for a test in which the
coeflicient is equal to zero and the last column contains p-
value for the t statistic. We can also examine our model by
incorporating estimated coefficient and using testing data.
The result of LRM method is presented in Table 5.

Table 5. The performance of LRM method (scenario 1)

MSE RMSE NRMSE R?
Training 0.5672 0.7531 0.3483 0.8762
Testing 0.5486 0.7407 0.3419 0.8785

From Table 5, it is obvious that, there is a good de-
gree of consistency between SHI data and estimated pa-
rameters with testing RMSE around 0.74 °C and high
compatibility with R* around 0.88.
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On the other hand, a normal probability illustration
of the residuals of a fitted linear model is shown in Fig-
ure 4a and added variable plot for whole model is shown
in Figure 4b. Figure 4b illustrates the progressive effect
on the reflex of specified terms by omitting the effects of
all other terms. The slope of the estimated line is the coef-
ficient of the linear compound of the determinate terms
projected onto the best fitting direction. Also, from Fig-
ure 4b a horizontal line does not fit between the confi-
dence boundaries, but referring to result extracted from
Table 5, it is an acceptable result.

2.2. Scenario 2

As before, in this scenario, we used SVR method by using
all feature set (fourteen features), as mentioned in flow-
chart (Fig. 1), next step is performed by SVR technique to
relate extracted urban, vegetation and TCT indices to SHI
data (Eq. 12).

SHI = f(NDVI,EVI,SAVI,NDWI, MNDWI,
Brightness,Greenness, Wetness,
NDBal,NDBI,BI,UI, IBI,EBBI). (12)

In this regards, as mentioned in previous section we
adopted SVR technique. In SVR, the parameter C com-
putes the trade-off between the flatness and the degree to
which deviations larger than € are tolerated in the optimi-
zation formulation. In this manner, if C is too large, then

a) 0.9999
0.9995

0.999

0.985

0.99

0.95
0.9
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003
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00.5
0001 7

0.0005 /

00001 ‘ ) ) )

-5 0 5 10
Residuals

T T T T 1717
-~
LY

Probability

b) 25

20 - *  Adjusted data
Fit:y — 141.623x
95% conf. bounds

Adjusted StO
)

-5 1 1 1 1 1 1 1 1
036 038 040 042 044 046 048 050 052 054

Adjusted whole model

Fig. 4. a) Normal probability plot of residuals and b) Added
variable plot for whole model

the objective is to minimize the empirical risk without re-
gard to flatness part in the optimization formulation. The
bigger the ¢ is, the fewer support vectors will be included.
Therefore, more “flat” estimation is a consequence of big-
ger ¢ values. In fact, both C and ¢ values affect the flatness
(model complexity). In this paper, C value is computed by
(Eq. (13)) base on (Cherkassky, Ma 2004).

C= max(Tmining data) - min(Tmining data). (13)

Also, a Gaussian radial basis function (RBF) kernel
(Eq. (10)) is used; this function is widely used in remote
sensing algorithms (Hasanlou et al. 2013). Before the re-
gression estimating stage, simple normalizing must be ap-
plied to the training dataset. The main advantage of nor-
malizing is to avoid attributes in greater numeric ranges
dominating those in smaller numeric ranges. Another
advantage is to reduce numerical complexity during the
computation. The next step is the training procedure, dur-
ing which some critical SVR parameters, €, and in the RBF
kernel, y, must be specified.

A simple tool to check a grid of parameters is pro-
vided by cross-validation (CV) error (i.e. RMSE as fitness
function) with 5-fold. Range of grid search method for es-
timating & parameter is [0,5] and for y RBF parameter is
[27,27]. In this manner, Table 6 shows the optimum SVR
parameters estimation for Tehran Landsat 8 imagery. It is
obvious from Table 6 that the optimum SVR parameters
for Tehran scene are e=0, y=2 and C = 22.40, which
fulfils minimum RMSE.

By incorporating the optimum estimated parameters
(&y and C) with minimum validation error (RMSE),
and training dataset, the SVR model would be generated.
Then, the performance of the selected final SVR model is
computed for Tehran scene using testing data (Table 7).

Table 6. Optimum SVR parameters estimation for Landsat 8
Tehran scene with C = 22.4013

e=0 1 2 3 4 5

y=277 89248 8964 9.044 9261 9.491 9.882

26 8.1931 8302 8436 8.825 9.095  9.660

275 72267 7327 7.672 8.162  8.583 9.270

274 58522 5994 6.619 7.266 7977  8.760

273 3.9949 4453 5289 6.239 7.285  8.105

272 2372 2939 3974 5242 6397  7.409

21 1.5473 2.110 3.174 4467 5729 6.894

20 1.4013 1.801 2.843 4.050 5.457  6.598

2! 1.3833 1.683 2552 3.770 5179 6.578

22 1.5092 1.620 2.468 3.711 5203  6.759

23 1.7264 1825 2,685 3973 5360 7.122

24 1.9631 2.233  3.288 4.468 5929 7.605

25 24885 2957 4228 5561 6974  8.220

26 3.554 4100 5487 6.811 8160 9.216

27 5.1897  5.94 7131 8257 9.371 10.385
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Table 7. The performance of final SVR model (scenario2)

MSE RMSE NRMSE R?
Training 0.7507 0.8664 0.2424 0.9442
Testing 1.1155 1. 0562 0.3053 0.9100

As it is clear from Table 7, there is a high degree of
consistency between incorporated information for each
feature in kernel method and SHI data. For example, cor-
relation coefficient in training data is R?= 0.94 and in test-
ing data is R*= 0.91 and improvement of NRMSE compar-
ing to scenario 2 (NRMSE = 0.3023).

2.3. Scenario 3

In this scenario, we applied GA-SVR method to optimize
input space of SVR method. This means that by utilizing
all feature set (fourteen features) and the GA procedure as
feature selection optimizing tool, the suitable and appro-
priate features (including urban, vegetation and TCT in-
dices) are selected as input space of SVR technique. Then
reduced features would estimate SHI data. An individual’s
chromosome, i.e., the features present in an individual,
was initialized in a random way and the parameters were
set according to results of preliminary experiments. Ta-
ble 8 presents all parameters set in GA. The samples were
randomly chosen; however, the total number of samples
has an important impact on the performance. The higher
the number of samples are; the more time would be con-
sumed calculating the fitness for each individual. In order
to ensure high reliability of results, 10 runs of GA for each
dataset were performed. Then those features that appeared
more frequently were selected.

Table 8. GA’s Parameters

Parameters Value
Population size 20
Crossover rate 0.7
Elitism Ration 1
Mutation Ratio 0.05
Crossover Method Two point
Max Iterations 50
Elite count 1

Since we have decided to let GA find the optimal fea-
tures, it is also important to note that result of this sce-
nario is optimal features (including urban, vegetation and
TCT indices) with minimum RMSE validation error and
maximum R2 Figure 5 shows the best and the mean of
fitness values (RMSE) in each generation for a single run
of GA.

Five indices are selected as the optimal and best fea-
tures among fourteen features, including, NDBI, NDBal,

Best: 0.932366 Mean: 1.04051
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Fig. 5. Fitness values achieved by the proposed GA-SVR
(scenario 3)

BI, Greenness and Brightness indices and the rest of the
features are omitted from SVR input dataset (Eq. (14)).

SHI = f(NDBI,NDBal, BI,Greenness, Brightness) ~ (14)

By incorporating these selected features, procedure
of training and testing in SVR technique is commenced.
Result and performance of this scenario (GA-SVR) is
computed for Tehran Landsat 8 scene (Table 9). As it is
clear from Table 9, the minimum NRMSE (0.26) has been
achieved by this scenario. NRMSE facilitates the compari-
son between datasets or models with different scales and
it is often expressed as a percentage, where lower values
indicate less residual variance. Also, in this scenario, R-
squared coefficient for testing data is R* = 0.93, calculated
by using GA and SHI data, revealing high compatibility
between selected features.

Table 9. The performance of GA-SVR model (scenario 3)

MSE RMSE NRMSE R?
Training 0.8852 0.9409 0.2633 0.9338
Testing 0.8693 0.9324 0.2695 0.9315

2.4. Discussion

To sum up, utilizing three different scenarios with vari-
ous regression methods would enable us to evaluate our
estimation procedures better. Further, adopting NRMSE
criteria for comparing purpose, enables the evaluation of
training and testing result extracted from three scenari-
os. In this regards, scenario 3 has represented high per-
formance in relating the input space features (input indi-
ces) to SHI data. Also, incorporating genetic FS method
has some advantages comparing to previous scenarios,
a) reduced dimensionality of input space increasing reli-
ability and reducing computation complexity; and b) re-
vealed the best and proper indices that used to connect
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input space and SHI data. Using genetically FS enables
us to monitor more affective indices that influence esti-
mating SHI data (i.e. NDBI, NDBal, BI, Greenness and
Brightness indices).

Conclusions

All range of Landsat 8 spectral bands, particularly ther-
mal bands, have been used to estimate SHI of Tehran
city. In this study, urban indices including NDBal, NDBI,
BI, UL IBI and EBBI have been calculated using recent
urban parameters and factors. Further, to investigate veg-
etation factors better, more common vegetation and wa-
ter indices including NDVI, EVI, SAVI, NDWI, MNDWI
and TCT information including Brightness, Greenness
and Wetness have been used. By utilizing these informa-
tion and indices, the modeling and monitoring process
of SHI is more practical. Also as a part of this study,
three scenarios were implemented to compare the per-
formance of each scenario. In scenario one, all calcu-
lated features/indices (full features) were used as input
space of linear regression model. Result of scenario one
is illustrated in Table 5. Then, in scenario two, same as
previous scenario, full features were used as input space
but with kernel base method (i.e. support vector regres-
sion). This scenario is more complicated than scenario
one but it can handle high dimensional data and has
better performance result (Table 7). Finally, in scenario
three, we used supervised feature selection procedures
(genetic algorithm) to select proper and affective features
(indices). Estimated result (Table 9) revealed that sce-
nario three has more reliable performance using NRMSE
criteria comparing to two others (NRMSE = 0.2695 for
scenario one, NRMSE = 0.3053 for scenario two and
NRMSE = 0.3419 for scenario three). Also, incorporat-
ing genetic FS in these three scenarios indicated that,
to estimate SHI data using Landsat 8 images, it is better
to use more affective and optimum indices like NDBI,
NDBal, BI, Greenness and Brightness indices. This study
would be completed by incorporating supervised feature
extraction (FE) method to select suitable transform fea-
tures from urban and vegetation information.
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