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Abstract. Trinitrotoluene (TNT), a commonly used explosive for military and industrial applications, can cause

serious environmental pollution. 28-day laboratory pot experiment was carried out applying bioaugmentation using

laboratory selected bacterial strains as inoculum, biostimulation with molasses and cabbage leaf extract, and

phytoremediation using rye and blue fenugreek to study the effect of these treatments on TNT removal and changes

in soil microbial community responsible for contaminant degradation. Chemical analyses revealed significant

decreases in TNT concentrations, including reduction of some of the TNT to its amino derivates during the 28-day

tests. The combination of bioaugmentation-biostimulation approach coupled with rye cultivation had the most

profound effect on TNT degradation. Although plants enhanced the total microbial community abundance, blue

fenugreek cultivation did not significantly affect the TNT degradation rate. The results from molecular analyses

suggested the survival and elevation of the introduced bacterial strains throughout the experiment.
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Introduction

The nitroaromatic explosive, 2,4,6-trinitrotoluene (TNT),

has been extensively used for over 100 years, and this

persistent toxic organic compound has resulted in soil

contamination and environmental problems at many

former explosives and ammunition plants, as well as

military areas (Stenuit, Agathos 2010). TNT has been

reported to have mutagenic and carcinogenic potential

in studies with several organisms, including bacteria

(Lachance et al. 1999), which has led environmental

agencies to declare a high priority for its removal from

soils (van Dillewijn et al. 2007).

Both bacteria and fungi have been shown to

possess the capacity to degrade TNT (Kalderis et al.

2011). Bacteria may degrade TNT under aerobic or

anaerobic conditions directly (TNT is source of carbon

and/or nitrogen) or via co-metabolism where addi-

tional substrates are needed (Rylott et al. 2011). Fungi

degrade TNT via the actions of nonspecific extracel-

lular enzymes and for production of these enzymes

growth substrates (cellulose, lignin) are needed. Con-

trary to bioremediation technologies using bacteria or

bioaugmentation, fungal bioremediation requires

an ex situ approach instead of in situ treatment (i.e.

soil is excavated, homogenised and supplemented

with nutrients) (Baldrian 2008). This limits applicabil-

ity of bioremediation of TNT by fungi in situ at a field

scale.
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abstract. Agriculture and land use change has significantly increased atmospheric emissions of the non-CO2 green-
house gases (GHG) nitrous oxide (N2O) and methane (CH4). Since human nutritional and bioenergy needs continue 
to increase, at a shrinking global land area for production, novel land management strategies are required that reduce 
the GHG footprint per unit of yield. Here we review the potential of biochar to reduce N2O and CH4 emissions from 
agricultural practices including potential mechanisms behind observed effects. Furthermore, we investigate alterna-
tive uses of biochar in agricultural land management that may significantly reduce the GHG-emissions-per-unit-of-
product footprint, such as (i) pyrolysis of manures as hygienic alternative to direct soil application, (ii) using biochar 
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Introduction: Human impact on global n2o and cH4 
budgets and atmospheric concentrations

Human population now approaches 7.5 billion people 
on earth. The land area that serves human nutrition and 
bioenergy demands is not only limited, but declining due 
to soil degradation in various forms (Lal 2014; Konuma 
2016; FAO 2015). The dawning perception that “fertile 
soils” are a finite global resource is stressed by recent land 
grabbing practices where wealthier countries with large 
populations and/or a lack of soil resources buy arable land 
in poorer countries. This has mostly occurred in Africa 
(Rulli et  al. 2013), causing land use change to increase 
crop productivity, likely with consequences in terms of 
increasing GHG production. In fact, excessive human 
land use change over the past decades has contributed to the 
rapid, on-going increase in the atmospheric concentration of 
non-CO2 greenhouse gases nitrous oxide (N2O) and methane 
(CH4) from preindustrial levels of 270–280 ppbv to 324 ppbv 
(N2O) and from ~700 ppbv to 1834 ppbv (CH4) (Myhre et al. 
2013; Saunois et al. 2016).

The steep increase in atmospheric N2O concentra-
tions dominantly since the 1950s is clearly the result of 
an increasing use of the Haber-Bosch process to gener-
ate reactive N forms from atmospheric N, plus the higher 
proportion of legumes on farmland compared to natural 
ecosystems; many important crop or fodder plants are N2-
fixing legumes (e.g. soy, pea, lentils, beans, groundnuts, 
clover). Global reactive-N use is now annually more than 
double the amount introduced by natural processes (Gal-
loway et al. 2008); with increasing N fertilizer use comes 
the increasing likelihood of N2O formation and atmo-
spheric accumulation. Thus, as stated by Ravishankara 
et  al. (2009), as the impact of fluorinated halocarbons 
decreases, N2O will likely become the dominant O3-de-
pleting substance within the agricultural sector over the 
course of the 21st century. 

Methane (CH4) emissions have also increased, by 
150% since 1750 (Myhre et al. 2013) to 1834 ppb in 2015 
(Dlugokencky et  al. 1994; Saunois et  al. 2016). Human 
activities directly and indirectly contribute to the in-
creased atmospheric CH4 concentration by several path-
ways such as (i) expanding rice agriculture, ruminant 
animal husbandry and landfilling with unmanaged CH4 
emissions, (ii) thawing permafrost areas and thermocast 
lakes (Koven et al. 2011; Walter et al. 2006) and warming-
induced changes in plant community composition e.g. 
expanding aerenchymal plant cover (Christensen et  al. 
2004), and (iii) “automatic” feedback effects such as rising 

CH4 production under elevated, rising atmospheric CO2 
concentrations from wetlands and agricultural lands due 
to higher net biomass production as labile substrates for 
methanogenesis (Van Groenigen et al. 2011).  

To our knowledge, the last assessment of the human 
impact of land-use changes and fertilizer use on global 
CH4 consumption was made 20 years ago (Ojima et  al. 
1993). The authors estimated that human activities have 
already reduced the global net CH4 sink capacity by 30%. 
Hypotheses for explaining the reduction encompass hu-
man impact on (i) soil moisture changes, (ii) reduced soil 
aeration via compaction / increased bulk density (both 
impact gas diffusivity and hence CH4 and O2 supply, (Cas-
tro et al. 1994; Hiltbrunner et al. 2012), and (iii) inhibition 
by NH4

+ (N fertilization or reduced nitrification in acidic 
soils (Schnell, King 1995; Steudler et al. 1989). Also, (iv) 
shifts in the microbial community composition are hy-
pothesized, but without conclusive evidence (Gulledge 
et al. 1997).

Over the last decades, the rising use of mineral N fer-
tilizer (Galloway et al. 2008), soil degradation and forest 
clear-cutting, and a rising frequency of weather extremes 
(Hansen, Sato 2016) creating “too wet” or “too dry” soil 
conditions (Dijkstra et al. 2011) will likely further reduce 
the global methanotrophic CH4 sink, and increase CH4 
and N2O emissions. Therefore, any positive contribution 
that science and material use may provide agricultural 
soils for reducing N2O emissions per unit yield, and in 
reducing either the CH4 production and surface emis-
sions from soils or ruminant guts (see sections 3 and 4), 
or by strengthening the soil CH4 oxidation capacity (sec-
tion 3.2) and its biofilter function (section 3.1), needs to 
be explored. Agricultural practices that utilize biochar 
for meeting these needs appears promising, and should 
be explored and developed to help lower the greenhouse 
gas (GHG) footprint per unit yield or bioenergy produced 
(also termed GHG intensity) (Wollenberg et al. 2016).

A reduction of N2O and CH4 within agroecosystems 
can be achieved by either increasing the per-hectare yield 
at unchanged GHG emission rates, by lowering the per-
hectare N2O and/or CH4 emissions/increasing CH4 up-
take, or ideally by both. Currently literature suggests that 
biochar may play a role in reducing both of these GHGs; 
biochar can affect GHG emissions directly following its 
application to soils, and indirectly by adding carbonized 
instead of non-carbonised residue or manures which usu-
ally have higher emissions following application. Thus, the 
aim of this paper is to explore our current understanding 

as fertilizer carrier matrix for underfoot fertilization, biochar use (iii) as composting additive or (iv) as feed additive in 
animal husbandry or for manure treatment. We conclude that the largest future research needs lay in conducting life-
cycle GHG assessments when using biochar as an on-farm management tool for nutrient-rich biomass waste streams.

Keywords: biochar, greenhouse gases (GHG), nitrous oxide (N2O), methane (CH4), soil aeration, nitrate, soil N trans-
formations, GHG intensity.
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and knowledge gaps of biochar use as a tool to reduce N2O 
and CH4 emissions from agricultural land use. To this 
end, the biogeochemical mechanisms of formation and 
consumption of N2O and CH4 in soils and their emission 
to the atmosphere are presented and discussed. The topic 
of build-up of the soil organic carbon stocks by biochar 
amendment, or by reduced soil organic carbon decompo-
sition (negative priming) is not explored here, only some 
rough assessments are made to illustrate potentials (e.g. 
for using biochar as animal feed additive).

1. Effects of biochar application to soils on n2o 
emissions

1.1. Mechanisms of n2o formation in soils and release 
to the atmosphere

Soils are a prominent source of N2O emissions, especial-
ly when fertilised with organic or mineral N fertilisers. 
A wide range of microbial and chemical processes and 
pathways are responsible for these emissions (see Fig. 1), 
with knowledge on these pathways continuously improv-
ing. The classical view was that bacterial denitrification, 
the reduction of nitrate and nitrite in several steps to N2, 
is the main source of N2O from most soils, especially at 
intermediate water contents (Bateman, Baggs 2005). Vari-
ous bacteria that are phylogenetically unrelated are ca-
pable of denitrification, with many not having the full set 
of enzymes for the complete pathway (Zumft 1997). This 
leads to the escape of intermediates, including N2O. Un-
der certain circumstances such as low pH and high NO3/
Corg ratios, the production of N2O is favoured compared to 
the final production of N2. The reduction of N2O to N2 is 
performed by the enzyme nitrous oxide reductase, which 
is encoded by the nosZ gene in denitrifying bacteria. In a 
laboratory study, lower N2O emissions were inversely cor-
related to the nosZ gene expression (Harter et al. 2014). 

Meanwhile, we know that bacterial nitrifiers may 
dominate N2O emission from some soils, e.g. by the path-
way nitrifier denitrification (Kool et al. 2011a). Bacterial 
nitrifiers use ammonia as a substrate and reduce interme-
diately produced nitrite in a comparable way as in denitri-
fication. Nitrifiers have been found to be also able to use 
nitrite provided exogenously in incubation studies under 
aerobic conditions (Shaw et al. 2006). Fungi may play a 
dominant role for N2O production from soils, either by 
codenitrification or by fungal denitrification (Laughlin, 
Stevens 2002; Rohe et al. 2014). The role of archaea for 
N2O production from soils is still unknown, but there is 
evidence of potentially significant archaeal contributions 
(Jung et al. 2014), although the responsible pathways are 
yet unresolved (Jung et al. 2014; Stieglmeier et al. 2014). 

As these processes may take place simultaneously in 
different soil microsites, it is not straightforward to distin-
guish among them. Several methods have recently been 
developed that try to unravel the sources of N2O, including 
stable isotopes (Sutka et al. 2006; Kool et al. 2011b; Rohe 
et al. 2014; Lewicka-Szczebak et al. 2016) and molecular 
or modelling approaches (Rütting, Müller 2007; Kozlowski 
et al. 2014; Perez-Garcia et al. 2014; Snider et al. 2015). 
So far, no single method has offered a complete picture of 
the diverse N2O producing pathways and a combination of 
methods seems most promising. 

1.2. Impact of biochar on soil n2o emissions: frequent 
observations and assumed mechanisms

One of the first biochar experiments reporting reduced 
N2O emissions was presented in the 3rd USDA Symposium 
on greenhouse gases and carbon sequestration in agricul-
ture and forestry (Rondon et al. 2005). A significant de-
crease in N2O emissions was observed in pots planted with 
soybean and grass in a greenhouse experiment. However, 

Fig. 1. a) Processes and b) pathways of N conversions associated with N2O emissions in soils in relation to N transformations (A) 
and N and C substrates (B). (Figure credit: N. Wrage-Mönnig)

a) b)
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this finding went unnoticed for several years and only after 
the pioneering studies by Yanai et al. (2007), Spokas et al. 
(2009) and van Zwieten et al. (2009), the number of pub-
lications on this topic started to rise. Hence, a new field 
of research was established, exploring a potential win-win 
situation: biochar not only sequestered carbon but also 
had the potential to decrease non-CO2 GHG emissions. 

To date, the hypotheses for biochar’s impact in char-
soil mixtures on N2O emissions has been linked to bio-
char properties, the soil and the environmental conditions 
such as temperature and precipitation (Spokas, Reicoscoky 
2009; Dicke et al. 2015). Studies have mostly been carried 
out in the lab using sieved/disturbed soil samples wetted 
either to the same gravimetric moisture, or to the same 
water-filled pore space, water holding capacity or water 
potential. Other investigations in combination with plant 
growth in the greenhouse or under less controlled con-
ditions in the field have also shown that biochar may af-
fect the soil N2O emissions (e.g. Taghizadeh-Toosi et al. 
2011; Schimmelpfennig et al. 2014; Kammann et al. 2012; 
Deng et al. 2015; Hüppi et al. 2015). In the presence of 
N2O-producing earthworms (soil fauna interactions), N2O 
emissions were also reduced by biochar application (Au-
gustenborg et al. 2012; Bamminger et al. 2014). However, 
in some studies no difference between biochar and con-
trol treatments was observed (Scheer et al. 2011; Sánchez-
García et al. 2016) or N2O emissions were increased from 
biochar amended soils (e.g. Spokas, Reicoscoky 2009; 
Clough et al. 2010; Saarnio et al. 2013; Troy et al. 2013). 
However, laboratory results cannot be generalised to field 
expectations. In field trials, often no statistical differences 
are observed between biochar and control treatments fol-
lowing field application of biochar (Castaldi et al. 2011; 
Jones et  al. 2012; Karhu et  al. 2011; Scheer et  al. 2011; 
Schimmelpfennig et  al. 2014; Suddick, Six 2013; Dicke 
et al. 2015). One potential reason for no significant bio-
char effects on N2O emissions may be the application 
dose, less homogeneous particle distribution and greater 
soil (and plant) heterogeneity in fields resulting in high 
variability in N2O fluxes (large error bars, e.g. Hüppi et al. 
2015). 

Nevertheless, overall, meta-analyses confirmed that 
N2O emissions are reduced with biochar application rates 
of 1–2% by weight (van Zwieten et al. 2015; Cayuela et al. 
2014). In spite of the extensive literature published during 
the past several years on the topic, knowing if a biochar 
will be effective in mitigating N2O emissions in a certain 
agricultural field is still highly unpredictable. Thus, most 
research efforts are now directed towards achieving the 
largest N2O emission reductions (what type of biochar to 
use in what soils) by analysing the mechanisms involved. 
Many studies have shown that biochar N2O mitigation 
capacity will depend not only on the characteristics of 
the biochar, but also on the type of soil and predominant 

environmental conditions (Cayuela et al. 2013; Malghani 
et al. 2013; Nelissen et al. 2014). A remarkable finding was 
that, under identical environmental conditions, the same 
biochar could increase emissions in one soil and decrease 
emissions in another (Yoo, Kang 2012; Sánchez-García 
et al. 2014). This fact seems to be linked to diverse N2O 
formation mechanisms operating in different soils, of 
which biochar might be affecting differently. In this sense, 
knowing how biochar interacts with the key microbial 
pathways regulating N2O formation and consumption in 
soil is crucial for developing and implementing effective 
mitigation strategies. However, the number of studies 
looking at specific N2O formation pathways is still very 
limited and the mechanisms mediating N2O suppression 
are still unresolved.

To date, most N2O-biochar studies selected certain 
environmental conditions and assumed or speculated the 
predominant N2O formation mechanisms. For instance, 
studies at high water-filled pore space anticipated that the 
main N2O formation pathway would be heterotrophic de-
nitrification. However, this reasoning has frequently been 
shown to be incorrect. In complex soil environments, 
ammonia oxidation and nitrifier denitrification generally 
coexist with heterotrophic denitrification (Hu et al. 2015) 
and the proportion of N2O produced in each pathway de-
pends on many factors, not just water-filled pore space 
(Wrage et al. 2001; Butterbach-Bahl et al. 2013). There-
fore, studies that really differentiate among N2O produced 
by different sources after addition of biochars are still ur-
gently needed.

1.2.1. What do we know about the impact of biochar on 
denitrification N2O?

Denitrification is classically the most well-known mecha-
nism leading to N2O emissions and to date, also the most 
investigated in biochar studies. Biochar might interact with 
denitrification in different ways. Biochar might directly 
stimulate or suppress total denitrification, i.e. the amount 
of N that goes to gaseous form (N2 + N2O + NO). The 
impact of biochar on total denitrification has been barely 
studied and the results are inconclusive. For instance, us-
ing stable isotope enrichment, Cayuela et al. (2013) ana-
lyzed the flux of total N denitrified (N2 + N2O) at the peak 
of N2O emissions and found that biochar decreased the 
total denitrificatory N efflux in 9 out of 15 soils, but sig-
nificantly increased the flux in two soils. Obia et al. (2015) 
measured NO, N2O and N2 by high resolution gas kinet-
ics under strictly anaerobic conditions and calculated the 
maximum induced denitrification rate, which was found 
to increase with one type of biochar (cacao shell), but not 
with another biochar (rice husk) in an acidic soil. By using 
the acetylene inhibition technique, Ameloot et al. (2016) 
found a general decrease in total denitrified N (N2 + N2O) 
with biochar in a neutral soil. Biochar might therefore 
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decrease or increase total denitrification depending on the 
type of soil. More studies are needed to understand the 
mechanisms behind these observations.

A decrease in total denitrification was initially at-
tributed to improved soil aeration following biochar ad-
dition (Zhang et  al. 2010), a hypothesis that has been 
rebutted by Case et  al. (2012) who demonstrated that 
soil aeration played a minimal role in N2O mitigation. 
Furthermore, several studies used adjusted water con-
tents to account for increased water holding capacities 
that often arise when biochar is mixed into the soil (e.g. 
light-weight porous biochars in sandy soils), to render 
simple aeration effects unlikely (e.g. Kammann et  al. 
2012); still these studies observed significant N2O emis-
sion reductions. Another hypothesis suggested a gen-
eral decrease in soil microbial activity as a consequence 
of toxic compounds present in biochar. For example, 
phenolic compounds and PAHs have been observed to 
contribute to the reduction in N2O release from agricul-
tural soils (Wang et al. 2013a). However, Alburquerque 
et al. (2015) demonstrated that this hypothesis was un-
founded, since the presence of PAHs at typical biochar 
concentrations did stimulate, rather than inhibit, N2O 
emissions. Moreover, even if PAH containing biochars 
would reduce N2O emissions, they will definitely never 
be used in soils under any countries’ soil and fertilizer 
regulations. In addition, numerous studies used clean 
biochars with hardly detectable traces of even the most 
abundant PAH (naphthalene) and these studies still 
showed reduced N2O emissions (study compilations in 
Cayuela et al. (2014) and van Zwieten et al. (2015)).

Several studies pointed out that microbial or 
physical or plant immobilization of NO3

– in soil fol-
lowing biochar addition could significantly contribute 
to the reduction of soil N2O emissions (compilation of 
N2O-biochar studies in van Zwieten et  al. 2015). This 
hypothesis is reinforced by recent research showing 
that biochar is able to capture considerable amounts of 
nitrate, which is only partly detectable with standard 
methods and largely protected against leaching (Kam-
mann et  al. 2015; Haider et  al. 2016). Nitrate capture 
may physically separate nitrate from denitrifiers and 
thus reduce nitrate availability.

On the other hand, biochar might interact with the 
denitrification process by modifying the ratio of denitri-
fication products (N2O/N2). Thus, biochar may decrease 
the N2O/N2 ratio (Cayuela et al. 2013; Harter et al. 2014; 
Obia et  al. 2015), but many questions arise from this 
finding. For instance, Obia et al. (2015) related this phe-
nomenon to the alkalinizing effect of biochar in soil. 
However, the decrease in the N2O/N2 ratio has also been 
found in alkaline soils (Cayuela et al. 2013), where an 
increase in pH did not occur after biochar amendment. 

Harter et al. (2016) found that biochar addition led to 
the development of functional traits capable of N2O 
reduction, containing typical and atypical nosZ genes. 
Following a different line of research, several recent ar-
ticles highlight the importance of biochar redox prop-
erties, which may have a bigger impact on soil biogeo-
chemical processes than previously thought (Prévoteau 
et  al. 2016). In this line, Quin et  al. (2015) measured 
N2O reduction by injecting 15N-N2O in sterilized soil 
columns and demonstrated that biochar took part in 
abiotic redox reactions reducing N2O to dinitrogen (N2), 
in addition to adsorption of N2O. Despite the current 
knowledge about the impact of biochar on denitrifica-
tion, additional studies are highly needed to explore the 
detailed response mechanisms of denitrifiers to biochar 
amendment.

1.2.2. What do we know about the impact of biochar on 
N2O from nitrification and other processes?

It has been described that gross nitrification rates could 
be increased after biochar amendment because of high-
er substrate availability for nitrifying bacteria (Nelissen 
et al. 2012), and several studies have analysed the impact 
of biochar on gross and net nitrification (Prommer et al. 
2014). There is also a potential that biochar addition may 
increase nitrification (and with it, N2O formation via ni-
trification pathways; Figure 1 in systems (such as needle-
rich raw humus soils) due to the sorption of phenolic 
compounds; the latter can block or reduce nitrification. A 
significant increase in nitrification was seen in boreal for-
ests after biochar addition (DeLuca et al. 2006; Ball et al. 
2010) where sorption of phenols on biochar was respon-
sible for increased nitrification rates. However, only a cou-
ple of studies distinguished among N2O emissions from 
nitrification pathways (via ammonia oxidation or nitrifier 
denitrification) and other sources by using isotopic signa-
tures of N2O, inhibition techniques or molecular methods. 
In a laboratory incubation, Sánchez-García et al. (2014) 
found that the addition of biochar increased N2O emis-
sions from a calcareous soil and concluded that the N2O 
formation pathway operating in the soil was nitrification 
(probably nitrifier-denitrification). In another study, Wells 
and Baggs (2014) showed that the biochar influence came 
primarily via ammonia oxidation, not N2O reduction or 
production by denitrifiers, and increased N2O emissions 
by 27%. 

Dedicated studies of biochar effects on other soil 
sources of N2O are largely missing. At low soil pH values, 
it has been observed that fungi produced N2O instead of 
N2 through codenitrification in presence of other nitro-
gen compounds, such as azide, salicylhydroxamic acid, 
nitrite and ammonium (Liiri et al. 2002). Since biochar 
can contain azide as well as other compounds, biochar 
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additions could theoretically enhance these fungal code-
nitrification processes. There are limited studies examin-
ing the functionality of the N2O suppression through use 
of selective microbial inhibitors, and data did support 
the role of a particular microbial group in the N2O sup-
pression (bacteria or fungal, Lin et al. 2014). However, a 
soil pH increase caused by biochar addition could also 
reduce N2O production from fungal codenitrification, 
thus the net outcome is unknown. Microbial community 
composition will likely play a role: Using an identical 
biochar in laboratory incubations across a series of 10 
different soils, Thomazini et al. (2015) observed a trend 
for the biochar suppression that could be correlated to 
the total soil microbial biomass in the original soil. The 
knowledge of effects of biochar additions on various 
microbial sources of N2O are still little understood and 
partly contradictory. Clearly, more research is needed 
to be able to design biochars for the purpose of N2O 
emission reduction not only in soils, but also when us-
ing biochar in the management of N-rich agricultural 
(fertilizer) materials such as manures or composts (see 
sections 3.1 and 3.3).

1.2.3. Long-term effects of biochar addition and in old 
charcoal-rich soils: what do we know?

It is also still unclear how long N2O emission reductions 
may persist following biochar addition to soil; or if old, 
black-carbon rich soils that undergo a change in their 
physico-chemical properties (such as Amazonian or Af-
rican Dark Earths) will have a lower or higher potential 
for mitigating N2O emissions compared to soils without 
biochar. While a lab study reported that aged biochar 
particles increased N2O emissions (Spokas 2013), the op-
posite was observed in an experiment with >100 year-old 
charcoal particles from a kiln site (Kömpf 2013). Hage-
mann et al. (2016) reported that biochar still significantly 
suppressed N2O emissions in the third season in the field 
compared to the corresponding control field site without 
biochar. More data are slowly emerging on old charcoal-
rich soils (e.g. from historic kiln sites, Borchard et  al. 
2014a; Hardy et  al. 2016, 2017), and more Dark Earth 
sites besides those in the Amazon basin have now been 
identified (e.g. in Liberia and Ghana, Solomon et al. 2016). 
However, to our knowledge no experiments on N2O emis-
sions and soil N transformations have yet been carried out 
on these long-term analogues compared to their adjacent 
native, non-black-carbon soils. For the overall question if 
using biochar does offer long-term benefits regarding N2O 
emission suppression, exploring long-term effects is likely 
of great importance, since reducing peak emissions in the 
first years will only be a small part over the long-term. 
Particularly, these longer- and long-term effects are com-
pletely underexplored, and deserve much more research 
attention in the near future.

2. Effects of biochar application on soil cH4 fluxes

2.1. Mechanisms of cH4 fluxes: production and 
consumption in soils and net release to the atmosphere

The two biotic processes that determine the net methane 
(CH4) exchange between soils/ecosystems and the at-
mosphere are methane production by strictly anaerobic 
methanogenic Archaea (Methanogens) and methane con-
sumption by methanotrophic bacteria (Methanothrophs). 
Methane production takes place in all anoxic environ-
ments where organic carbon is microbially degraded 
(Conrad 2007a, 2007b; Whalen 2005), for example in 
peatlands, lake sediments, flooded rice fields, in landfills, 
in the guts of ruminant animals, termites or Scarabaeidae 
larvae (Hackstein, Stumm 1994; Kammann et al. 2009). 
Methanogens derive their energy from H2 and carbon di-
oxide (CO2) or acetate, formate, methanol or other pri-
mary and secondary alcohols and methylated compounds 
(Brasseur, Chatfield 1991; Conrad 1999). Methanogenesis 
is thermodynamically the least efficient process i.e. other 
reduction processes outcompete CH4 production, if the 
concentration of alternative electron acceptors, such as 
nitrate (NO3

-), sulphate (SO4
2-), iron (Fe(III)) and manga-

nese (Mn(IV)), is high in relation to the input of organic 
substrates (Lovley, Phillips 1987; Oremland 1988; Conrad 
1989). Spatial and temporal variation in CH4 can be large 
(e.g. Saarnio et al. 1997; Juutinen et al. 2003): Spatial vari-
ation in CH4 flux within different microsites of the same 
ecosystem (e.g. Saarnio et al. 1997) and between differ-
ent ecosystem types (e.g. Saarnio et al. 2009). Water table 
and temperature are dominant controls on CH4 efflux in 
bogs and swamps whereas the effect of aquatic vascular 
plants (aerenchyma “ventilation”) was the most important 
in fens or rice paddies (Turetsky et al. 2014). Besides the 
aerenchyma transport, CH4 can also be transported with 
the transpiration water stream in swamp tree species as 
shown by Terazawa et al. (2007). Many 14CO2 experiments 
have shown that recently fixed C is rapidly delivered from 
plants to methanogens (e.g. Megonigal et al. 1999) but the 
amount of exuded carbon is many times lower than that 
delivered via litter formation (Saarnio et al. 2004).

Methane consumption in soils is also ubiquitous in 
all terrestrial environments (Hütsch 2001; Seiler et  al. 
1984), and human land-use changes such as deforesta-
tion, ploughing and N fertilization reduce the soil CH4 
sink (Powlson et al. 1997). Net CH4 consumption is due 
to the activity of methanotrophic α- and γ-proteobacteria. 
Most methanotrophs use CH4 as the sole carbon source 
and need oxygen to be active (Conrad 2007a). In upland 
soils, methane oxidation is largely determined by the soil 
diffusivity for CH4 and O2 (Castro et al. 1994, 1995). Ac-
cording to their CH4-oxidation kinetics, categories of 
“high-affinity” and “low-affinity” methanotrophs are 
often defined (Dunfield 2007). The first group occurs 
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dominantly in upland soils and can consume atmospheric 
and sub-atmospheric CH4 concentrations (<1800 ppb), 
while low-affinity groups are found in anoxic environ-
ments (e.g. rice paddy soils) in the aerobic centimeters or 
millimeters of topsoil or in the oxygenated plant rhizo-
spheres; these methanotrophs need higher CH4 concentra-
tions. CH4 consumption can provide a “biofilter function” 
for environments with high CH4 production (rice paddies, 
landfill cover soils etc.). 

2.2. Biochar effects on cH4 production and release in 
net cH4-source soils

The interactions between biochar application to soil and 
CH4 fluxes are not well understood, with disparate litera-
ture results (Jeffery et al. 2016; Song et al. 2016). Biochar 
application to paddy or flooded soils have been shown to 
increase (Yu et al. 2013; Zhang et al. 2012), decrease (Feng 
et al. 2012; Khan et al. 2013b; Lin et al. 2015; Qian et al. 
2014), or have no significant effect on CH4 emissions (Xie 
et al. 2013). In anaerobic environments, the labile C pool 
of biochar may theoretically function as methanogenic 
substrate, promoting CH4 production (Zhang et al. 2010). 
However, the labile C pool of root exudates and root lit-
ter is by far larger, thus labile biochar C may only play a 
role (i) initially, (ii) when the biochar has been produced 
at low temperature (i.e., greater labile C fraction), (iii) 
in bare/fallow soils without root carbon supply, and (iv) 
when the biochar amount added is great (>40 t/ha) (Saar-
nio 2016). As an example, Zhang et al. (2012) did not ob-
serve increased soil CO2 efflux over two consecutive rice 
cropping years with 10–40 t ha-1 biochar amendments, 
but significantly reduced N2O emissions at increased CH4 
emissions; thus labile biochar-C is an unlikely explanation. 
Biochar was reported to also promote methanotrophic 
CH4 consumption at oxic/anoxic interfaces in anoxic envi-
ronments. This lowered the net CH4 emissions by the “bio-
filter” function of bacterial (low-affinity) CH4 oxidation 
before it escaped to the atmosphere. When methanotro-
phic organisms increasingly oxidise CH4 in the presence 
of biochar at the oxic/anoxic root interface, they lower the 
amount of CH4 that can enter into the plants’ aerenchyma 
to escape (Feng et al. 2012). 

In a greenhouse mesocosm study with sewage sludge 
biochar (high application rates of 5% and 10%), rice yield 
increased while the paddy soil turned from a net CH4 
source to a net CH4 sink; this occurred in both rice-plant-
ed and bare paddy soil. These results may have been due 
to the addition of electron-accepting ash substances or ni-
trate with the sewage sludge biochar. In biochar-amended 
landfill cover soil, an increased CH4 oxidation activity was 
responsible for decreasing CH4 efflux from greater landfill 
depths (Sadasivam, Reddy 2015; Reddy et al. 2014). Here, 
the physico-chemical properties including air conductivity 

were considerably increased by biochar, i.e. the biochar ef-
fect might have been to improve the O2 supply to meth-
ane oxidizers. A recent meta-analysis (Song et al. 2016) of 
CH4 emissions reported that biochar application caused 
no pronounced change in CH4 emissions overall but 
that there was significant increase in methane emissions 
(+19%). In another recent meta-study including papers 
up to December 2015, Jeffery et al. (2016) reported that 
biochar amendment to flooded and/or acidic soils had the 
potential to significantly reduce CH4 emissions. These two 
meta-studies differ in their conclusions, which may be due 
to a different database and meta-analytical approach.

Biochar impacts on natural net-methanogenic en-
vironments such as salt flats and wetlands are even less 
well understood. Owing to the longevity of biochar and its 
potential mobility and migration from anthropogenic sys-
tems, it will likely migrate to coastal areas over the long-
term (as recently shown for dissolved pyrogenic organic 
carbon, Jaffé et al. 2013). Lin et al. (2015) investigated bio-
char application to saline costal soils where soybean and 
wheat was grown. They did not find any significant effect 
of biochar application to such soils on the (overall low) 
CH4 emissions, but they observed a yield increase of 24 
and 28% in soy and wheat, respectively. In rice field stud-
ies, reductions in CH4 and/or N2O emissions were also of-
ten accompanied with increases in crop yields by between 
10 and 20% (Dong et al. 2015; Khan et al. 2013a; Zhang 
et al. 2012), resulting in a reduced greenhouse gas inten-
sity per kg of rice grain. 

Biochar implementation may also reduce the GHG 
intensity per unit of agricultural product by reducing 
N-fertilizer and labile-C inputs at unaltered or increased 
yields. Qian et al. (2014) reported that the use of 4 dif-
ferent biochar-compound fertilizers made of chemical 
fertilizers, biochar and bentonite, at rates of well below 
1 t biochar ha–1, significantly improved the GHG intensity 
of a rice crop (by 36–56%) by: 1) the biochar-compound 
fertilizer increasing grain yields by 10–31%; and 2) re-
ducing CH4 emissions by 25–50% and N2O emissions by 
17–39%. These results coincided with a reduced overall 
N fertilizer input, from 210 kg N to 168 kg N ha–1, and 
without taking the CO2-equivalents of reduced fertilizer 
production and use into account (Qian et al. 2014). Thus, 
there is a considerable potential for reducing the GHG 
intensity of rice crop production, particularly in acidic 
soils (Jeffery et al. 2016), and that this potential extends 
beyond the C-sequestration potential. Large amounts of 
biochar do not need to be used at once since improve-
ments were found at biochar rates <1 t ha–1 (Qian et al. 
2014). Therefore, three central research topics emerge 
here: (1) More research is needed on mechanisms of CH4 
(and N2O) emission reductions with biochar use from 
paddy and anaerobic soils including the effects on the 
“methanotrophic biofilter”; (2) Dedicated research on 
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biochar-effect-mechanism systematics to design biochars 
with desired properties (Thomazini et al. 2015); and per-
haps most importantly (3) Research on biochar compound 
fertilizers or underfoot fertilizers (Schmidt et al. 2015), to 
achieve higher yields at reduced GHG emissions and re-
duced N fertilizer use.

2.3. Biochar effects on net cH4 consumption in oxic 
upland soils

Well-aerated upland soils are characterised by CH4 con-
sumption, mediated by methanotrophic bacteria. Forest, 
grassland and arable land have been described as CH4 
sinks with flux rates of up to 65 µg CH4 m

–2 hr–1 (Dalal 
et al. 2008; Kern et al. 2012; Wang et al. 2005). As out-
lined above, in oxic/anoxic soil interfaces with a consid-
erable CH4 source strength, where the methane oxidiser 
community is dominated by low-affinity methanotrophs, 
significant increases in methanotrophic abundance and/or 
activity have been reported following biochar amendment 
(Feng et  al. 2012; Reddy et  al. 2014; Sadasivam, Reddy 
2015). However, upland soils mostly host high-affinity 
methanotrophs, capable of consuming atmospheric meth-
ane. Species composition and biology is different to that 
from anoxic soils (Dunfield 2007), and the CH4-consum-
ing activity is quite easily hampered by human “activities” 
such as land conversion (particularly deforestation), N 
fertilization and ploughing. The number of studies using 
upland soils and measuring CH4 consumption with/with-
out biochar is currently not large. Kollah et al. (2015) ob-
served significantly increased CH4 consumption rates in a 
lab study with tropical soil amended with biochar (with or 
without organic amendments), as did Karhu et al. (2011) 
in in-field boreal, ploughed grassland soil. Karhu et  al. 
(2011) assumed that the observed doubling of the CH4 
consumption in the ploughed grassland soil was due to 
altered gas diffusivity and water holding capacity (which 
increased by 11%). However, the effects may also be con-
nected to increased N mineralization which usually occurs 
after ploughing, and where biochar may have prevented 
N (NH4

+) inhibition by sorbing NH4
+ (Taghizadeh-Toosi 

et al. 2012). Schimmelpfennig et al. (2014) observed in-
creased CH4 consumption in clay loam soil under labora-
tory condition; however, in the field this was only present 
in tendency. Similarly, Scheer et al. (2011) did not observe 
increased soil CH4 consumption in a subtropical pasture 
that had been amended by 10 t ha–1 manure biochar in 
Australia.

In their meta-analysis, Song et  al. (2016) reported 
high levels of uncertainty for CH4 oxidation in upland 
soils, while Jeffery et  al. (2016) concluded that biochar 
addition may reduce the CH4 sink in neutral to alkaline 
upland soils. Over all data sets, biochar had a CH4 sink-
increasing (or source-decreasing) effect in soils fertilized 
at rates <120 kg N ha–1. Translated to upland soils this 

indicates that, when true high-affinity methanotrophic 
activity is present, it may be increased by biochar applica-
tion. However, when high N application rates are used this 
was not the case (Jeffery et al. 2016); with high N fertiliza-
tion the CH4-oxidising activity of an agricultural soil is of-
ten considerably reduced or completely shut down, likely 
due to nitrifiers replacing methanotrophs. In this case, the 
methanotrophic population would not be supported or 
improved. Taken together, the effects of biochar amend-
ment on soil CH4 consumption are not well understood. 
Here, mechanistic studies are missing in particular, and 
thus should be a focus for future research. 

3. GHG emission reduction in animal husbandry and 
waste management using biochar

After nearly a decade of research where biochar was 
solely added to soil to assess GHG fluxes, there is a shift-
ing perception, that biochar may also be used as a tool 
to achieve GHG emission reductions during the handling 
and management of organic nutrient-rich materials such 
as manures. This section focuses on the use of biochar in 
animal husbandry and in composting or plant-substrate 
production (the topic of peat replacement is addressed 
by Kern et al. 2017, this issue). In Germany, Austria and 
Switzerland about 90% of the traded biochar is used in 
animal husbandry, mainly as feed additive (in the way ac-
tivated carbon is used). However, to date, this topic has 
been nearly neglected in biochar research.

3.1. Biochar as additive for feed and manure treatment 
in animal farming to reduce the emission of GHG 

Charcoal has been used to treat digestive disorder in 
animals for several thousand years. Cato the Elder 
(234–149 BC) mentioned it in his classic On Agriculture: 
“If you have reason to fear sickness, give the oxen before 
they get sick the following remedy: 3 grains of salt, 3 lau-
rel leaves, […], 3 pieces of charcoal, and 3 pints of wine.” 
(Cato 1935, §70; O’Toole et al. 2016). At the end of 19th to 
beginning of the 20th century, charcoal was increasingly 
used on a regular base to increase animal performance and 
health (PSAC 1905; Day 1906; Savage 1917; Totusek, Bee-
son 1953; Volkmann 1935). Later during the last century, 
veterinarian research focused on activated charcoal trials 
mostly in the form of time-restricted medications against 
intoxication and bacteriological as well as viral diseases 
(Toth, Dou 2016; Schmidt et al. 2016). Only since about 
2010 has biochar increasingly been used as regular feed 
additive in animal farming (O’Toole et al. 2016), usually 
mixed with standard feed at approximately 1% of the daily 
feed intake. While scientists and farmers gained most of 
the results and experience in cattle and chicken farming, 
biochar is also administered to sheep, goats, pigs, horses, 
rabbits, cats, dogs and extensively in fish farming (Toth, 
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Dou 2016; Schmidt et al. 2016). In a German review pa-
per, Schmidt et al. (2016) evaluated more than 100 scien-
tific papers on feeding biochar to various animal groups. 
Most of the studies showed for all investigated livestock 
species, positive (but not always significant) effects on pa-
rameters such as toxin adsorption, digestion, blood val-
ues, feed-use efficiency, cell numbers in milk and livestock 
weight gain; the latter may result from the pH-increasing 
effect of various biochars since these are mostly alkaline 
in nature (see 3.3). Buffering the pH in the rumen could 
likely prevent acidosis which is known to impact livestock 
weight gain. However, only a small number of researchers 
measured GHG emissions. 

While chicken, pigs, fish and other omnivore ani-
mals provoke GHG emissions (mainly CH4, N2O; and 
NH3) when their liquid and solid excretions decompose 
anaerobically, ruminants cause direct methane emissions 
through flatulence and burps (eructation). This is espe-
cially the case for cattle that emit daily 500 to 600 l gas 
with an average methane content between 6 and 8%. The 
earliest evidence that feeding of biochar might reduce 
cattle methane emissions came in a 2012 Vietnam study 
(Leng et  al. 2012a). In-vitro studies revealed significant 
methane reductions of 10 to 12.7% when biochar was fed 
at rates between 0.5 and 1%. If biochar was blended with 
nitrate, methane emissions were reduced by up to 49%. 
Nitrate becomes a strong electron acceptor in the anaero-
bic rumen, keeping the hydrogen potential low, and thus 
replacing a function of methane producing microorgan-
isms. Vongsamphanh et al. (2015) also found in in-vitro 
tests with 1% biochar, while using cassava in rumen fluid, 
a 7% reduction of methane emissions within 24 h. In-vivo 
trials of Leng et al. (2012b) revealed a reduction of enteric 
methane of cattle by 20% with feeding 0.6% biochar and 
by 40% with feeding 0.6% biochar blended to 6% potas-
sium nitrate, leading to a highly significant animal weight 
increase of 25% over 98 days. This is by far the most spec-
tacular result in reducing enteric cattle methane, but it has 
unfortunately not yet been supported by other in-vivo or 
in-vitro trials. Hansen et al. (2012) published the results of 
an in-vitro trial with various non-characterized biochars 
and their effect on methane production in rumen liq-
uids. All tested biochars showed a trend to reduce meth-
ane emissions between 11% and 17%. Other groups have 
not repeated Leng and colleagues’ promising results. The 
reason could be that Leng and colleagues used high tem-
perature gasifier biochars made from rice husk, resulting 
usually in carbonaceous materials with high electric con-
ductivity and electron buffering capacity (Yu et al. 2015) 
which may have had a stronger influence on the digestion 
reactions electrochemically than woody biochar. Using 
biochar feeding to reduce ruminant methane emissions is 
currently only an interesting perspective that needs more 
systematic research.

Methane adsorption capacity by biochar is typically 
the most investigated pathway for explaining effects when 
fed to animals, but adsorption cannot explain all observa-
tions. Another decisive complementary function of bio-
char is its electro-biochemical interaction with biological 
active systems, with research only recently beginning. Bio-
chars that are produced at temperatures above 700 °C are 
not only good electrical conductors (Yu et al. 2015; Mo-
chidzuki et al. 2003) but can take part in biotic and abiotic 
redox-reactions as an electron mediator (Husson 2013; 
Kluepfel et al. 2014; Joseph et al. 2015a; Liu et al. 2012; 
Shi et  al. 2016; Van der Zee, Cervantes 2009; Yu et  al. 
2015; Kappler et al. 2014). A well balanced animal feed 
regime contains multiple electron mediating substances, 
however, in the high energetic diets of intensive livestock 
farming these compounds are often not contained in suf-
ficient amounts (Sophal et al. 2013). If in these cases inert 
or other non-toxic electron mediators like biochar, wood 
vinegar or humic substances are added to the feed, many 
redox reactions may take place more smoothly and effi-
ciently which could increase energy conversion efficiency 
and thus feed efficiency (Liu et al. 2012; Leng et al. 2013), 
and eventually decrease enteric and post digestive GHG 
production. Particularly, lowering CH4 emissions (which 
are always a sign of energy loss) may be aided by the elec-
tron shuttling abilities of biochar. Moreover, it might be 
assumed that the buffering of the redox-potential as well 
as the effect of electron shuttling between various micro-
bial species has a selective, milieu forming effect which 
facilitates and accelerates the formation of functional mi-
crobial consortia and syntrophic species (Kalachniuk et al. 
1994). The latter could explain why several studies found 
a strong increase of Lactobacilli or a decrease of gram-
negative bacteria (Naka et al. 2001; Choi et al. 2009) which 
seems to improve animal health. Thus, it may be hypoth-
esized that direct electron transfers between different spe-
cies of bacteria or microbial consortia (Chen et al. 2014) 
via a biochar mediator may aid in a more energy efficient 
digestion and thus higher feed efficiency and eventually 
result in lower GHG emissions (Leng et al. 2012a, 2012b).

When animals receive charcoal feed additives com-
bined with Lactobacilli spraying (i.e. microbial milieu 
management in the stable), it is interesting to note that 
antibiotic use may be reduced and in some cases down 
to zero. Farmers in Germany who use this practice fre-
quently report reduced veterinarian costs (Kammann, 
pers. comm.) that “pay” for the use of biochar and Lacto-
bacilli solution. Reduced antibiotics may also reduce CH4 
emissions from ruminant husbandry. Recently, Hammer 
et al. (2016) showed that application of broad-spectrum 
antibiotics enhanced CH4 emissions from cattle manure, 
and altered the gut microflora from dung beetles feeding 
on the manure from cows treated with broad-spectrum 
antibiotics. As Choi et al. (2009) and Islam et al. (2014) 
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showed that feeding 0.3 to 1% biochar could replace anti-
biotic treatment in chicken and ducks, respectively, feed-
ing biochar plus administering Lactobacilli could have 
an indirect effect on GHG emissions when it is able to 
replace regular antibiotic “feeding”. Furthermore, Joseph 
et al. (2015b) demonstrated that feeding biochar to graz-
ing cows had positive secondary effects on soil fertility 
and fertilizer efficiency, reducing mineral N-fertilizing re-
quirements which could be construed as another indirect 
biochar GHG mitigation effect. Thus, enabling farmers to 
stop or reduce administering antibiotics by using biochar 
and Lactobacilli may be promising, not only for animal 
health, but also for reducing methane emissions from ani-
mal husbandry operations (Hammer et al. 2016).

3.2. calculating co2-equivalent balances of biochar 
use in animal husbandry: first considerations

Besides the possible effects of biochar feeding on ruminant 
CH4 emissions, it is not unlikely that microbial decom-
position of manure containing digested biochar produces 
less ammonia, less CH4 and thus retains more nitrogen. 
This has been observed between manure composted with 
and without biochar (section 3.3; e.g., Sonoki et al. 2013; 
Steiner et al. 2010; Troy et al. 2013; Wang et al. 2013b) and 
may also occur when biochar is used as bedding or ma-
nure treatment additive. Ghezzehei et al. (2014) estimated 
that using biochar for liquid manure treatment could save 
57,000 t NH4 and 4,600 t P2O5 fertilizer per year in Califor-
nia alone, though this estimate is only based on laboratory 
adsorption tests and not on field trials. However, it cannot 
be excluded that digested biochar will not have the same 
effect on microbial decomposition, GHG emissions and 
plant nutrient retention as when production-fresh biochar 
is applied to the bedding or manure pit. To our knowl-
edge, there are no published data on GHG-emissions in 

animal housing and of manure pits after feeding animals 
with biochar. 

Easier to calculate is the C-sequestration potential of 
biochar that is first fed to livestock and eventually applied 
to soil with the manure. Assuming an average C-content 
of fed biochar of 80%, as required by the EBC feed certifi-
cate (EBC 2012) and produced at recommended tempera-
tures above 500 °C resulting in H/Corg ratios below 0.4, at 
least 56% of the dry weight of the fed and manure-applied 
biochar will persist as stable carbon in soil for at least 
100  years (Lehmann et  al. 2015). If the global livestock 
would, just theoretically and for the sake of a “back-of-the 
envelope” assessment to explore magnitudes, receive 1% 
of their feed in form of such a biochar, about 400 Mio. t 
of CO2eq or 1.2% of the global CO2 emissions could be 
compensated (Table 1).

While the feeding of “vegetal carbon” (biochar) is 
permitted in the EU (EU 2011), it certainly cannot be 
recommended yet as in a generalized biochar-livestock 
feeding regime, since feed-grade certification of biochar 
is currently not established in most countries and since 
long-term effects are not sufficiently investigated. How-
ever, the potential for improving animal health and nu-
trient efficiency, for reducing enteric methane emissions 
as well as GHG emissions from manure management, 
and for sequestering carbon while improving soil fertility 
improvements, calls for increasing the scientific effort to 
investigate, measure and optimize the GHG reduction po-
tential of biochar use in animal farming systems. The use 
of biochar in animal husbandry is one of the largest unex-
plored research topics within the biochar research realm. 
Although many unknowns and open questions exist, bio-
char use in animal operations appears promising from a 
GHG reduction standpoint and thus future research could 
focus efforts towards this area.

Table 1. Carbon sequestration potential of biochar fed to livestock (globally) with subsequent manure application to soil. Numbers 
of total livestock follow FAO statistics obtained for 2014 (FAO 2016). An intake dosage of 1% of the daily feed weight was assumed. 
The C sequestration potential was calculated with the assumption of 80% C in biochar, and 70% C persistence over 100 years 
(Lehmann et al. 2015; Camps-Arbestain et al. 2015)

Animal Global number of 
individual animals

Daily intake dosage* 
(g bc animal–1 d–1)

Annual intake dosage 
(kg bc animal–1 yr–1)

Total biochar 
(Mio. t yr–1)

Total C seq. 
(Mio. t yr–1)

Total CO2eq  
(Mio. t yr–1)

Cattle 1,482,144,415 120 43.8 64.9 36.4 133.3
Buffaloes 195,098,316 120 43.8 8.5 4.8 17.5
Sheep 1,209,908,142 50 18.25 22.1 12.4 45.3
Goats 1,006,785,725 50 18.25 18.4 10.3 37.7
Pigs 986,648,755 80 29.2 28.8 16.1 59.2
Horses 58,913,957 120 43.8 2.6 1.4 5.3
Chickens 21,321,834,000 6 2.19 46.7 26.1 95.9
Turkeys 461,453,000 6 2.19 1.0 0.6 2.1
Total       193.0 108.1 396.3
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3.3. Biochar as composting additive 

Composting is the aerobic biotic oxidation of organic res-
idue, manure and waste for producing organic fertilizer 
and occasionally waste management. Labile organic car-
bon is transformed into humic like substances and CO2, 
with N2O and CH4 as non-desired by-products. Emission 
rates of N2O and CH4 depend on compost management, 
and increase with increasing degrees of anoxia during 
composting. During a perfect aerobic quality compost-
ing procedure, N2O and CH4 emissions are usually low 
(Amlinger et al. 2003, 2008; Bernal et al. 2009). However, 
aerobic conditions cannot always be perfectly maintained, 
particularly when manure-rich waste is composted; here 
larger N2O and CH4 emissions are common (Li et al. 2016; 
Wang et al. 2013b). Thus, it is desirable to develop strate-
gies to reduce GHG emissions during composting, par-
ticularly of nutrient-rich wet materials. 

With regard to biochar, “co-composting” refers to the 
addition of biochar to the initial composting feedstock. 
During co-composting, biochar can sorb compost liquids 
rich in nutrients, particularly nitrate (Prost et  al. 2013; 
Kammann et al. 2015). Furthermore, some studies report 
an accelerated thermophilic phase with higher compost 
temperatures (Kammann et al. 2016; Vandecasteele et al. 
2016). CO2 emissions are an obligate result of compost-
ing due to the decomposition of labile organic matter. This 
loss during composting ranges from ~40% (Vandecasteele 
et al. 2016) to ~80% (Sánchez-García et al. 2015) depend-
ing on the compost feedstock and composting conditions. 
Some studies show no effect of biochar on CO2 emissions 
or increases of emission rates (Steiner et al. 2011; López-
Cano et  al. 2016). However, Malinska et  al. (2014) and 
Vandecasteele et al. (2016) reported a reduction of CO2 
emissions. Vandecasteele et al. (2016) argue that pristine 

biochar used in their experiments might have physically 
adsorbed CO2 (Creamer et al. 2014; Fornes et al. 2015) 
and thus reduced CO2 emissions, although actual CO2 
production probably increased (e.g., increase of decom-
position, higher temperatures). However, a faster rate of 
C loss does not necessarily mean that, overall, biochar will 
reduce the long-term storage of non-pyrolyzed feedstock 
in soils; it just means that a process that happens other-
wise over longer periods is accelerated. 

CH4 and N2O emissions from compost are non-de-
sired side effects and can be reduced by adequate man-
agement of the composting process with regard to oxygen 
supply, including windrows not exceeding certain sizes, 
optimized water content and forced or mechanical aera-
tion (Fukumoto et al. 2003; Amlinger et al. 2008). Howev-
er, these management strategies can be costly. Recent stud-
ies indicate that biochar addition during the composting 
process can indeed reduce emissions of both CH4 and N2O 
probably due to enhanced access of oxygen mediated by 
biochar. Methane emissions are often drastically reduced 
by biochar addition, with reported reduction rates of 55% 
for chicken manure compost with biochar added at 20% 
w/w (Jia et al. 2016), >70% for organic waste compost with 
biochar added at 10% rate (Sonoki et al. 2011), and >80% 
for municipal solid waste compost with biochar added at 
10% w/w (Vandecasteele et al. 2016). However, at low bio-
char additions (e.g. 3%), Sánchez-García et al. (2015) ob-
served no significant effect on CH4 emissions during the 
composting process, suggesting that a certain biochar rate 
during composting is necessary to reach desired reduc-
tions in CH4 emissions. 

Gaseous N losses also often decrease when biochar is 
used as an additive during the composting process since 
the pH of composts does usually stay below or around 

Fig. 2. Mean GHG flux rates of compost (comp), biochar-compost (BC-comp) and compost with later addition of fresh biochar 
(comp + BC), n = 5 + standard deviation; GHG flux measurements with 400 g substrate per 1-L Weck® jar as described in 
Kammann et al. (2012); Material properties and composting procedure described in Schmidt et al. (2014) and Kammann et al. 
(2015). Substrates were adjusted to 60% of their respective water-holding capacity one week before measurement. Letters indicate 
significant differences by one-way ANOVA (n = 5, p < 0.05)
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pH 7.5. However, care has to be taken to prevent a strong 
pH increase due to (large amounts of) biochar addition 
in composting, with animal bedding, manure treatment 
or elsewhere. If values above a pH of 8 are reached, NH3 
losses may result which was systematically investigated 
by Chen et al. (2013) with biochar additions up to 20% 
by weight to bauxite processing sands in a pH-adjusted 
set-up of pH values ranging from 5 to 9. The authors re-
ported that at low and high pH values, NH3 losses were 
increased by biochar additions (at low pH when the ad-
dition of biochar was sufficiently large to provoke a pH 
increase), while at a high pH NH3 losses were high any-
way. However at a more neutral pH, the NH4

+ adsorption 
capacity of biochar dominated which decreased N losses 
(Chen et al. 2013). However, the first available results are 
contradictory: While Schimmelpfennig et al. (2014) found 
a reduction of NH3 emissions when slurry was added to a 
loam soil (pH 6.0) amended with biochar when compared 
to the same soil amended with (less alkaline) straw, Subedi 
et al. (2015) reported an increase in the NH3 emissions 
from slurry when both, an alkaline biochar and an acidic 
hydrochar were added to the slurry. It is possible that the 
overall “evaporation surface” which may increase by add-
ing a bulky material to soil or slurry may also play a role 
for increasing NH3 losses. Nevertheless, the biochar-dose-
to-pH-increase relationship should always be taken into 
account.

Studies conducted with relatively low dosages of bio-
char (e.g. 3–4%) showed either a reduction in N2O emission 
(Wang et al. 2013a; Li et al. 2016) or no effect (Sánchez-Gar-
cía et al. 2015; López-Cano et al. 2016). When reductions in 
N2O emissions were observed, they were pronounced but 
happened only during a portion of the composting process. 
For example, Li et al. (2016) reported that 3% biochar ad-
dition during composting reduced N2O emission by 54%, 
which was entirely attributable to N2O-peak suppression for 
only one of the eight measurement dates. This effect was 
further attributed to a marked reduction in the abundance 
of the nirK gene of denitrifying bacteria when biochar was 
co-composted (Li et al. 2016). 

Ammonia (NH3) is not a greenhouse gas, but a rele-
vant atmospheric precursor of N2O (shown in section 1.2), 
and its volatilization during composting is a relevant path-
way for N loss. Biochar amendment was shown to reduce 
NH3 volatilization particularly in N-rich materials such as 
sludge or manures, probably due to NH4

+ sorption (Chen 
et al. 2010; Hua et al. 2009; Steiner et al. 2010; Malins-
ka et  al. 2014). Increased N content in the compost, in 
the form of NH4

+, is a desired property for compost use 
as an organic fertilizer. When applied to soil, the larger 
quantity of N and labile C retained in the composted bio-
char particles (or in the biochar-compost product) may 
theoretically lead to higher N2O emissions as compared to 
pure, non-composted biochar (Prost et al. 2013; Borchard 

et al. 2014b). This was, however, not observed in a plant-
ing study using co-composted (nitrate-enriched) biochar 
as soil amendment (Kammann et al. 2015), or when the 
compost itself was tested (Fig. 2).

At the moment, results are just snapshots of first 
composting experiments with biochar, and studies in-
clude a wide range of experiments from 150 g mixtures in 
jars (Jia et al. 2016), 45 L composting reactors (Malinska 
et al. 2014), 1 m³ gardening compost boxes (Prost et al. 
2013) to 60×3×2 m windrows with forced aeration and 
automated mechanical turning (Vandecasteele et al. 2016) 
or daily machine turning (Schmidt et al. 2014; Kammann 
et  al. 2015) at varying time scales (few weeks to sev-
eral months). Generally, the value of composting studies 
would be increased if the resulting compost quality is sub-
sequently evaluated by plant germination and growth tests 
(e.g. Hua et al. 2012, soil faunal tests, e.g. Fig. 3) and field 
application trials. 

Biochar is a promising tool to optimize composting, 
improve compost quality and charge biochar with plant-
available nutrients and reduce non-CO2 GHG emissions 
during composting. However, the longer-term effects of 
biochar-composts in soils are largely unexplored. More 
systematic studies with different combinations of N-rich 
and N-poor feedstock and different well-characterized 
biochars under comparable, praxis-relevant conditions are 
needed, and subsequently product quality and its effects 
on soil GHG emissions after soil amendment should be 
investigated.

Fig. 3. Results of earthworm avoidance tests (method: ISO 
17512-1:2008; Busch et al. 2012) with the compost (comp), 
biochar-compost (bc-comp) and compost with later addition of 
fresh biochar (comp+bc), material properties and composting 
described in Schmidt et al. (2014) and Kammann et al. (2015). 
“Comp vs. comp” is the control and did not result in an effect 
(as needed); boric acid (BA) was the “positive control” where 
avoidance behaviour confirmed that the test was valid. Bars 
give means of n = 5 repetitions per treatment (50 worms), 
shown as preference or avoidance of the respective substrate 
(Fishers exact test, (*) p < 0.1, * p < 0.05, ** p < 0.01, n.s. not 
significant)
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4. novel approaches of using biochar for GHG 
emission reductions in agriculture

GHG emission reductions with biochar use may not nec-
essarily be direct; rather, reductions may result from al-
ternative waste stream management involving pyrolysis. 
Another option is to use biochar as a fertilizer carrier to 
match plant demands more closely, enabling the reduced 
use of common mineral fertilizers and hence associated 
N2O emissions (see 3.1, Qian et al. 2014). This section ad-
dresses novel biochar concepts for reducing the overall 
GHG intensity of agricultural production, including those 
from unwanted NO3

- and NH3 losses and deposition, caus-
ing N2O emissions elsewhere (Turner et al. 2015).

4.1. Biochar as carrier for (organic) underfoot 
fertilizers

The use of large biochar amounts (e.g. 10–20 tons) being 
ploughed into soils does usually not increase crop yields 
sufficiently to justify the costs (Jeffery et al. 2015; Bieder-
man, Harpole 2013; Ruysschaert et  al. 2016). Here, the 
economy of biochar use may be better for special crops 
as long as yield increases without negative effects on crop 
quality can be realized, as observed by Baronti et al. (2014) 
and Genesio et al. (2015) for grapevine cultures. However, 
grapevines are low-N cultures with low N2O emissions 
(Marras et al. 2015) compared to higher N-fertilizer de-
manding vegetable crops such as radish, carrot, spinach 
or potato. These receive much higher N fertilizer amounts, 
often with several cropping cycles per year, resulting in 
high N2O emissions (Ruser et al. 1998; Min et al. 2016). In 
highly fertilized vegetable crops, biochar amendment may 
play a role in significantly reducing the greenhouse gas in-
tensity per unit of crop, likely by reducing N2O emissions 
and partly by yield increases (Jia et al. 2012; Li et al. 2015). 
However, use of biochar in these situations, as with others, 
comes with a cost.

In order to reduce costs, it is desirable to maximize 
the effect of biochar per unit applied, suggesting that op-
timum application rates might be fairly low especially if 
the product can be concentrated around the root zone. 
Indeed, root zone application of only 2–4 t ha–1, together 
with fertilizer in conservation farming systems, has been 
reported to improve yields in acidic sandy soils (Cornelis-
sen et al. 2013). In addition, using biochar as an ingredi-
ent of, or carrier matrix for, mineral or organic fertilizer 
blends (“fertichars”) has recently been investigated as a 
promising strategy to reduce the need for large biochar 
amounts while improving crop yields and/or reduce N 
use (Joseph et al. 2013). Supporting this contention, Qian 
et al. (2014) showed that biochar organo-mineral fertil-
izer blends reduced the GHG-intensity of rice crop pro-
duction even at reduced N fertilization rates and at very 
low amounts of biochar (<1 t ha–1). 

In practice, the on-farm availability of clean, inex-
pensive, and amounts required will decide whether bio-
char will be used, particularly in rural areas in developing 
countries (Cornelissen et al. 2013). In Nepal, a self-made 
organic “fertichar” was used as underfoot fertilizer in 8 
different farmer sites (fertile loamy soils) and compared 
to the same nutrient additions without biochar. Here, 
pumpkin yields were consistently increased by 400% with 
the urine-loaded biochar applied as underfoot fertilizer, 
and multiple field trials on different soils, crops and bio-
char consistently showed a growth-promoting effect of 
the organic biochar-root zone fertilizer (Schmidt et  al. 
2015). It has not yet been tested if these biochar-fertil-
izer blends will reduce GHG emissions compared to an 
equal or greater amount of standard fertilizer. However, 
we argue that GHG emission reductions (namely those 
of N2O) per unit of crop yield may be achieved for the 
following reasons: (1) The fertichar blends mean a com-
paratively high amount of biochar concentrated together 
with the nutrients, i.e. within the “biochar concentration 
range” found to reduce N2O emissions in soils consider-
ably in meta-studies (Cayuela et al. 2014); (2) By stimu-
lating plant growth, N uptake increases, which reduces 
the availability of N for nitrification / denitrification and 
hence N2O formation; (3) When applied underfoot, the 
total land area that receives N fertilizer and is able to pro-
duce N2O emissions is smaller; (4) By using root-zone fer-
tichars, the overall amount of N fertilizer that needs to be 
applied, per unit of crop produced, can likely be reduced 
(Joseph et al. 2013; Qian et al. 2014). This may automati-
cally reduce the GHG emissions (as a percentage of the 
applied fertilizer); and (5) Biochar will reduce the soil bulk 
density (e.g. Obia et al. 2016) and increase soil air capac-
ity, which has been shown to reduce N2O production due 
to improved oxygen supply in upland soils. However, it is 
simply unknown if this type of application will reduce the 
GHG intensity of crop production and if this will occur on 
different soils and climatic zones alike. Further research 
is needed on fertilizer-biochars, either as broadcast gran-
ules (Qian et al. 2014) or as underfoot fertilizers (Schmidt 
et al. 2015), since these techniques may offer a win-win 
in terms of reducing GHG emissions concomitantly with 
improved yields. 

4.2. pyrolysis as alternative waste stream management 
technique

Over the past twenty years, localization of confined ani-
mal feeding operations (CAFOs) in the USA has brought 
about a massive production of animal manures (Gollehon 
et al. 2001). Traditional management practices have ap-
plied manure to crops as a fertilizer, yet long-term manure 
applications have caused nutrient imbalances in soils far 
in excess of what crops can assimilate (Barker, Zublena 
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1995; Kellogg et al. 2000). The situation is so severe that 
CAFO producers must have nutrient management plans 
(e.g., MDE 2016; ISDA 2016) or manure application can 
be restricted if soils contain excess N and/or P. A clear 
need exists for alternate animal waste management and 
recycling methods.

Thermal processing of animal manures using gasifi-
cation and pyrolysis technology is gaining considerable 
interest as an alternate treatment option because of the 
energy quantity generated (Cantrell et  al. 2007, 2008). 
Manure gasification is a popular conversion process, yet 
the higher temperatures (>900 °C) required for conver-
sion into gases, along with impurities in the feedstocks 
(e.g. salts, silicates, etc.), oftentimes limits the conversion 
efficiency (Lv et  al. 2010) and can corrode downstream 
metal surfaces (Demirbas 2005). Thus, pyrolysis is more 
often regarded as the effective method of processing bio-
mass to produce a combination of non-condensable gases, 
bio-oil, and biochar (Antal, Grønli 2003). Manures can be 
pyrolyzed at various temperatures (e.g. 300 to 750 °C) to 
create biochars. Afterwards, the energy content (as MJ/kg) 
contained within biochar identifies the quantity of energy 
generated per equivalent dry weight and serves as a con-
venient energy index relative to coal (Table 2). Globally, 
animal waste pyrolysis is performed to create a thermal 
energy source, to generate heat for animal confinement 
stables, for the production of bio-oil, and to produce bio-
char, a nutrient-enriched end-product to be used as a soil 
amendment (Laird et al. 2009; Lee et al. 2013) or fertilizer 
replacement.

Table 2. Net thermal energy in various manures, and their 
biochars pyrolyzed at various temperatures, as compared to 
hard/soft coals, gasoline and methane. na = not available

Feedstock
Thermal 
tempe ra-
ture (°C)

Energy 
content 
(MJ/kg)

Source

Poultry litter
0 15 Novak et al. (2013)

700 14.2 Novak et al. (2013)

Dairy manure
0 17.6 Cantrell et al. 

(2012)

350–700 19.0–20.9 Cantrell et al. 
(2012)

Swine Solids
0 19.4 Cantrell et al. 

(2012)

350–700 15.1–21.1 Cantrell et al. 
(2012)

Human Feces 300–750 13.8–25.6 Ward et al. (2014)
Hard/soft coal na 29.3–33.5 Euronuclear (2016)

Gasoline na 43–47 Energynumbers 
(2005)

Methane na 55.5 Energynumbers 
(2005)

Following manure pyrolysis, it has been shown by 
Gaskin et al. (2008) that nutrient availability may be de-
creased in the biochar, which may make manure-based 
biochar use attractive in terms of land areas where nu-
trient management plans are necessary; biochars may 
be able to supply a more balanced quantity of essential 
plant nutrients without degradation in environmental 
quality due to nutrient over-application. Furthermore, 
an additional benefit similar to previously mentioned 
underfoot fertilizer-biochars, manure-based biochar 
may significantly reduce overall farm-management 
based GHG emissions simply by reducing mineral fer-
tilizer use (Cayuela et al. 2014; Nguyen et al. 2014). 

The production of animal manure biochar via py-
rolysis, and the subsequent partial or complete replace-
ment of standard mineral NPK fertilization by manure-
biochar, offers the following pathways to N2O emissions 
reduction: (1) Reduced N use which reduces the overall 
environmental burden by limiting N2O formation both 
from direct manure application as well as emissions 
originating from off-site N pollution (e.g. NH3 emis-
sions, N export via overland flow, N leaching to ground-
water, Turner et al. (2015); (2) The use of manure-based 
biochar may reduce N2O emissions compared to using 
the same amount of N in the mineral or manure form. 
Cayuela et  al. (2014) examined 107 articles related to 
manure-based biochar land application, showing a –46 
to +39% change in N2O emissions, with average N2O 
emission changes close to 0%. Thus, changes or reduc-
tions in N2O emissions is likely process dependent, 
something that was not examined by Cayuela et  al. 
(2014). However, Subedi et al. (2016) added poultry lit-
ter or swine manure biochar to two different soils. The 
authors showed that poultry litter or swine manure bio-
chars pyrolyzed at 400 °C produced the same N2O emis-
sion factor (i.e., N2O emitted as a percentage of the total 
N supplied) as control soils. When pyrolyzed at 600 °C, 
the N2O emission factor decreased for both biochars as 
compared to controls. Higher temperatures during pro-
duction will result in manure-based biochars containing 
lesser quantities of easily degradable C compounds (e.g., 
volatile compounds) that are available for denitrifiers, 
leading to less likelihood of anaerobic soil conditions 
(e.g., Liu et al. 2014) and thus lower N2O emissions. Ob-
viously, in order to reduce N2O emissions when apply-
ing manure-based biochars, easily degradable C sources 
needs to be at a minimum; and (3) The use of pyrolysis 
for heat generation in animal housing, and/or the use of 
manure biochar for energy production, can be imple-
mented to reduce GHG emissions when it replaces the 
use of fossil fuels for the same purpose (see energy con-
tent comparison in Table 2). 
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conclusions: promising options for GHG emission 
reduction and future research needs

After a decade of intense biochar research, it has be-
come clear that biochar soil amendments are able to 
reduce N2O emissions (i.e. emission peaks). Biochar 
can also reduce CH4 emissions, particularly in flooded 
soils, and when N fertilization rates are not too high. 
However, great uncertainty still exists with respect to 
biochar use and its GHG reducing effect as associated 
with different biochars and soil types/conditions. This 
is due to the lack of understanding of mechanistic bio-
char effects. Good “candidate” mechanisms that might 
explain N2O emission reductions are pH increases (lim-
ing effect) and changes in microbial community com-
position, particularly changes in the denitrifier gene 
expression and abundance, and N (mostly nitrate) cap-
ture in biochar particles. It is likely that these mecha-
nisms work in concert under field conditions. Good 
“candidate” mechanisms that might explain CH4 emis-
sion reductions are the stimulation of methanotrophic 
low-affinity communities at the anoxic/oxic interface in 
reduced environments as well as the electron shuttling 
and redox activity of biochars (e.g. rice paddies and ru-
minant guts).

Biochar use in animal husbandry is economically 
promising and the dominant route of biochar use in 
central Europe; however, research on GHG emission 
reductions is largely lacking. Studies dealing with the 
medical use of charcoal/biochar in animal feeding near-
ly never characterize char properties. Biochar shows a 
strong potential for reducing GHG and NH3 emissions 
in the composting of wet nutrient-rich materials, par-
ticularly when composts are not so frequently turned 
(aerated, i.e. “lazy composting”). Yet, more detailed 
studies on the dynamics of this effect along the com-
posting process are needed, as well as a cost-benefit 
evaluation for potential implementation.

One new promising option of using biochar for 
improving the GHG-intensity (yield-to-GHG emission 
ratio), via both increasing yields plus reduced GHG 
emissions, may be the use of designed (organic) “Fer-
tiChars” (biochar as fertilizer carrier) administered as 
concentrated root zone fertilizers. Here the biochar-
to-N ratio may certainly be in the range where biochar 
should have an effect as well as effectively and envi-
ronmentally deliver optimal nutrient concentrations to 
plants. However, to date, GHG flux measurements of 
this implementation pathway are lacking and strongly 
call for future research. We conclude that the use of 
biochar in agriculture provides a unique opportunity to 
reduce the non-CO2 greenhouse gas “cost” per unit of 
yield produced, yet future research is required to maxi-
mize its benefits. 
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