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and cosmetics. Other common uses of zinc for economic 
activities include metal plating, plastic production, electri-
cal components and battery manufacturing. The ambient 
natural background concentration of zinc in freshwater 
bodies is less than 50 μg/liter. However, concentrations 
up to 4 mg/liter in water and 100 mg/kg dry weight in 
sediments have been reported in anthropogenically con-
taminated freshwater habitats (World Health Organization 
[WHO], 2001; Mondal et  al., 2017; Sarkar et  al., 2017). 
Heavy metals are toxic to living organisms. But; unlike 
other heavy metals such as copper, cadmium, mercury, 
lead and the metalloid arsenic; zinc has always been 
considered an underestimated risk factor for aquatic or-
ganisms. There are studies, though limited in number, 
suggesting that aquatic organisms exposed to higher 
concentrations of zinc could exhibit significant adverse 
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Highlights

	X ZnCl2 produced concentration dependent mortality to F. limnocharis tadpoles. 
	X Sub-lethal ZnCl2 altered metamorphosis time of tadpoles. 
	X ZnCl2 induced DNA strand breaks and micronucleus in tadpoles.

Abstract. Aquatic environments are often contaminated with zinc. Amphibian tadpoles are likely to be exposed to high 
concentrations of zinc present in these environments. We determined the acute and sub-chronic toxicity of ZnCl2 on 
Fejervarya limnocharis tadpoles under laboratory conditions. The LC50 values of ZnCl2 were found to be 5.81, 4.32, 3.79 
and 3.61 mg/L at 24, 48, 72 and 96 h of exposure respectively. Long-term exposure to sub-lethal concentrations of ZnCl2 
induced significant mortality in concentration and time dependent manner. Sub-lethal ZnCl2 exposure significantly altered 
survival, body length and body weight at metamorphosis. Micronucleus test and comet assay indicated the genotoxic po-
tential of ZnCl2. Significant increase in DNA strand break was observed following ZnCl2 exposure equivalent to 1% of the 
of 24 h LC50 value. The findings indicate possible adverse to tadpoles inhabiting aquatic environments contaminated with 
zinc. In addition, the findings may be extrapolated to aquatic organisms of similar torphic status. 
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Introduction

Heavy metal contamination of aquatic environment is one 
of the common and persistent forms of pollution. Heavy 
metals have been identified as one of the significant causa-
tive factors of ecological degradation in aquatic habitats 
(Baldantoni et al., 2004). Aquatic environments are pol-
luted by heavy metals due to natural processes through 
weathering and leaching of mineral deposits (Purushotha-
man & Chakrapani, 2007; Adamu et  al., 2015; Skordas 
et al., 2015) as well as human economic activities (Mohi-
uddin et al., 2011; Wei & Yang, 2010). 

Zinc is an essential element required for normal meta-
bolic process (Vladimirov, 1969; Frieden, 1972). Besides, 
zinc is widely used in industry for manufacture of a broad 
range of products ranging from paints to pharmaceuticals 
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physiological effects (Sinley et  al., 1974; Benoit & Hol-
combe, 1978; Holcombe et al., 1979; Leland, 1983; WHO, 
2001; Brinkman & Woodling, 2005; Bringolf et al., 2006).

Amphibians are an important group of vertebrates oc-
cupying critical positions in many food chains. In fact, in 
wetland ecosystems, these are often regarded as key stone 
species. A global assessment has revealed that amphibians 
are declining rapidly and up to 40% of the species have been 
affected in this process (Stuart et al., 2004). Environmental 
pollution has been identified as one of the major factors 
of such decline in amphibian species and polulation. The 
larval stages of amphibians are spent in aquatic habitats 
especially in shallow ephemeral ponds. Due to shorter wa-
ter columns in these habitats, the tadpoles of amphibians 
spent a significant period in the bottom sediments to avoid 
daytime increase in water temperature. Therefore, they are 
vulnerable to contaminants present in the water column as 
well as the pollutant rich bottom sediments.

The worldwide decline in amphibian population has at-
tracted increasing attention from scientists in recent years 
(Beebee & Griffiths, 2005). Several studies have shown that 
heavy metals adversely produce lethal and sub-lethal toxic-
ity in amphibians. Surprisingly, little or no information is 
available on the possible toxic effects of zinc in anuran am-
phibians. In the present study, we have examined the effects 
of zinc on the tadpoles of F. limnocharis. The systematic 
analysis of multiple toxicological endpoints covering acute 
toxicity, changes in life history traits and genotoxicity pro-
vides important toxicological insights into this otherwise 
lesser-known heavy metal in amphibians.

1. Materials and methods

1.1. Collection, rearing and maintenance of study 
animal

F. limnocharis tadpoles were collected from an artificial 
captive breeding pond near the Assam University, Silchar 
campus which is not contaminated by any source of con-
taminant exposure. Tadpole rearing was done as described 
earlier (Giri et al., 2012). Prior to experiments, the tad-
poles were subjected to acclimation in the laboratory in 
aerated medium for 48-h. These were screened to identify 
and separate the tadpoles belonging to different Gosner 
stages (Gosner, 1960). The experiments were performed 
at 26±1 °C and 12-h light and dark cycles. Grinded fish 
food were used to feed the tadpoles without any restric-
tion. Chemically pure salts of ZnCl2 dissolved in distilled 
water was used as the test agent. ZnCl2 (mol wt. 136.30; 
>95% pure, CAS Registry No. 7646-85-7) were purchased 
from Merck Specialities Private Limited, Mumbai, India. 
The study has ethical clearance of the Assam University 
through approval letter AUS/IAEC/2017/PC/02. 

1.2. Acute toxicity studies and determination of 
LC50

Acute toxicity experiments were performed in polypro-
pylene tubs containing 2 L of aged well water. Each tub 

housed 10 tadpoles. The tadpoles belonging to Gosner 
stage 22–25 were subjected to either no treatment or ex-
posed to four different concentrations (3, 4, 5 and 6 mg/L) 
of ZnCl2. The five treatment conditions were replicated 
thrice for a total of 15 experimental units. At 24 h inter-
vals, for the next 96 h, experimental tubs were monitored 
and any dead individuals were carefully removed keep-
ing record for each. The tadpole survival data was used 
to calculate the LC50 values at different time points using 
probit analysis.

1.3. Chronic exposure and toxicity studies 

Chronic toxicity evaluations were also made in polypro-
pelyne tubs following sub-lethal ZnCl2 concentrations 
over longer period of time. The tadpoles of Gosner de-
velopmental stage 22–25 were exposed to four different 
sub-lethal concentrations (0.5, 1.0, 1.5 and 2.0 mg/L) of 
ZnCl2 approximately ranging between 10% and 35% of the 
24 h LC50 values. The control groups were not exposed to 
any kind of treatment. The five treatment conditions were 
replicated thrice for a total of 15 experimental units. The 
tub water was changed every alternate day and ZnCl2 was 
reapplied in to the respective tubs. The experiments were 
terminated following either death or metamorphosis of all 
individuals in the experimental groups. Survival status of 
the tadpoles recorded on daily basis and deceased ones 
were removed. On day 23, the first metamorphosis oc-
curred. Therefore, the tadpole survival data for the first 
23 days of the exposure period among various treatment 
groups were compared. In addition, survival percentage at 
metamorphosis as well as average time to metamorpho-
sis in each group was determined. In addition, the aver-
age body weight as well as snout to vent length (SVL) of 
the newly metamorphosed froglets were measure in each 
treatment group. The metamorphosed froglets were ex-
amined for major morphological defects if any and noted. 
The water parameters were regularly monitored during the 
course of the experiments. Dissolved oxygen content was 
always >8.4 mg/L and pH varied between 7.4 and 7.6. 

Kaplan–Meier test was used to compare the survival 
percentage among the treatment groups. Time to meta-
morphosis as well as morphometric parameters such as 
SVL and body weight of the metamorphosed individuals 
were analyzed using ANOVA. Post hoc analysis (Tukey’s–
HSD) was also performed to compare among the treat-
ment groups. Statistical analyses were performed at 95% 
confidence interval using the 18.0 version of SPSS statisti-
cal software.

1.4. Micronucleus test

Amphibian erythrocytes are nucleated and multiply in the 
circulation during larval stages (Duellman & Trueb, 1986). 
Therefore, erythrocytes cells are suitable for micronuclei 
(MN) detection which can be readily counted in blood 
smears (Campana et al., 2003; Giri et al., 2012). The MN 
assay was performed in peripheral blood erythrocytes as 
described previously (Giri et  al., 2012). The tadpoles of 
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Gosner stage 26–28 were selected. During this develop-
mental period, intense hematopoiesis takes place which 
is suitable for genotoxicity studies. This experiment was 
performed in polypropylene tubs containing 2 L of aged 
well water as described earlier. The tadpoles were exposed 
to four different concentrations of ZnCl2 (0.5, 1.0, 1.5 and 
2.0 mg/L). Negative (no treatment) and positive (cyclo-
phosphamide 2 mg/L) control groups were included with 
the exposure groups. The six treatment conditions were 
replicated thrice for a total of 18 experimental units. Af-
ter 24, 48, 72 and 96-h of the treatments, 5 live tadpoles 
from each group were anesthetized in 4% buffered MS222. 
At least 2 smears per tadpole were made with peripheral 
blood. The blood smears were fixed in absolute methanol 
for 3 min and air-dried. A day later the slides were coded 
and stained in buffered Giemsa (10%). Analysis of MN 
was carried out in 1000 cells per tadpole under the micro-
scope at a final magnification of 1000X. The scoring cri-
teria was similar to those described by Lajmanovich et al. 
(2005). ANOVA was used to analyze change in MN fre-
quency at different concentration levels and time points. 
Treatment effects on MN frequency was assessed using 
linear regression analysis.

1.5. Comet assay

This experiment was performed for the investigation of 
DNA damage (single-, double-strand breakage) under al-
kaline condition at the individual cell level by following 
the protocol of Singh et al. (1988) with subsequent modi-
fications of Tice et  al. (2000). In brief, tadpoles Gosner 
stage 26–28 were exposed to 58.08 µg/L (1% of 24-h LC50 
value) of ZnCl2.The use of this concentration is intended 
to determine the genotoxic potential of ZnCl2 at environ-
mentally relevant concentration which otherwise may not 
be detected by the MN test. There were 6 tadpoles in each 
treatment group (3 in each experiment repeated twice).

Cardiac blood collected following 24-h of exposure was 
mixed with calcium and magnesium free PBS (pH 7.4). 
An aliquot of cell suspension containing 106 cells/ml was 
diluted in low melting agarose in a ratio of 1:10. Aliquots 
of 85 µl of the mixture were rapidly spread on precoated 
frosted slides and allowed to polymerize in dark. Then, 
the slides were immersed in freshly prepared ice-cold lys-
ing solution (pH 10) containing 10 mM Trizma base, 10% 
DMSO, 100 mM Na2EDTA, 2.5 M NaCl, 1% TritonX100. 
DNA unwinding process was allowed to take place for 
20 minutes at pH 13.5 in fresh electrophoresis buffer con-
sisting of 300 mM NaOH in 1 mM Na2EDTA in the elec-
trophoresis chamber. Electrophoresis was carried out at a 
constant voltage of 24 V and 300 mA at 4 °C for 20 min. 
Then the slides were transferred to the neutralizing buffer 
(Tris-HCl, pH 7.5) and kept in dark. The neutralizing so-
lution was changed at 5 minutes intervals for thrice. The 
slides were stained in 20 µg/ml EtBr followed by rinsing 
in double distilled water to remove the unbound EtBr. Ki-
netic imaging image analysis system (Komet 5.5, Andor 
Technology, Nottingham, UK) was used for quantitative 

analysis of DNA damage in the cells. A charge coupled 
device (CCD) camera as part of Leica fluorescence micro-
scope (Wetzlar, Germany) was used to acquire the images 
for analysis by the software. The final magnification was 
400×. Comet data was analyzed using 2-tailed Student’s 
t-test.

2. Results

2.1. Acute toxicity studies and determination of 
LC50

The acute LC50 values of ZnCl2 in F. limnocharis were 
found to be 5.81, 4.32, 3.79 and 3.61  mg/L respectively 
at 24, 48, 72 and 96 h (Table 1). None of the animals in 
the control group died. As the exposure period increased, 
the LC50 values decreased in a linear manner. Linear re-
gression analysis of the mean lethal concentration showed 
significant (R2 = 0.851, p < 0.05) concentration and time 
effect.

Table 1. LC50 values of ZnCl2 in F. limnocharis tadpoles

Duration of exposure LC50 value (mg/L)

24 hour 5.81
48 hour 4.32
72 hour 3.79
96 hour 3.61

2.2. Chronic toxicity studies on tadpole survival, 
growth and development

Tadpoles of F. limnocharis exposed to sublethal con-
centrations of ZnCl2 caused increased rate of mortality 
which was both concentration and time dependent (Fig-
ure 1). In the overall comparison of the 23-days tadpole 
survival data, ZnCl2 had significant (p < 0.001) effect as 
revealed by Kaplan–Meier product limit estimate. ZnCl2 
at highest concentration (2 mg/L) used in the present 
study could exhibit only 33% survival up to day 23 fol-
lowing the exposure.

In comparison to the control, the metamorphosis 
time in the groups exposed to sub-lethal concentrations 

Figure 1. Survival of tadpoles of F. limnocharis after 23d of 
exposure to different sub-lethal concentrations of ZnCl2. Values 

are mean + SE
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of ZnCl2 was significantly delayed (Figure 2). The meta-
morphosis pattern was monitored up to 50 days till all of 
the tadpoles either metamorphosed or died due to toxic-
ity. Tadpoles exposed to the lowest concentration of 0.05 
mg/L of ZnCl2 took significantly more time to metamor-
phose. However, those exposed to 2 mg/L was failed to 
metamorphose and caused 100% mortality within 28 days 
of the exposure (Figure  2). The average metamorphosis 
time in the exposed group receiving 0.5 mg/L of ZnCl2 
was significantly higher (p < 0.05) as compared to control 

group. Tadpoles in the control group took an average time 
of 28.87±1.42 days for metamorphosis. 

Tadpoles exposed to highest concentrations of 
ZnCl2 such as 2 mg/L did not survive till metamorpho-
sis (Figure 3). The number of tadpoles which survived till 
metamorphosis was dependent on the concentration of 
ZnCl2 (one-way ANOVA, F4, 70= 390.026, p < 0.001). 

The average body weight of the metamorphosed 
froglets in the ZnCl2 exposed groups was found to be 
apparently higher than in the control group (Figure 4A). 
However, these were not statistically significant. The snout 
to vent length of the metamorphosed froglets is often used 
as standard measure of body length indicative of skeletal 
growth. In contrast to body weight, Tukey’s pair wise com-
parison test indicated that at lower concentrations, zinc 
chloride caused significant (p < 0.05) increased in snout 
vent length of metamorphosed froglets at metamorpho-
sis (Figre  4B). ZnCl2 in the concentration ranges tested 
did not cause any other apparent malformations in any of 
the exposed groups. However, a few cases of abdominal 
edema were observed in the groups exposed higher con-
centrations of ZnCl2. 

Table 2. Incidence of micronucleated erythrocytes induced by 
ZnCl2 in tadpoles a,b,c

Concen-
tration

Exposure period

24 h 48 h 72 h 96 h

Control 0.30±0.06 0.25±0.13 0.33±0.06 0.25±0.13
CP 2 
mg/L 11.67±0.66 13.93±0.42 13.47±0.49 13.13±0.53

Zinc chloride

0.5 mg/L 0.33±0.10 0.45±0.10 0.56±0.06* 0.45±0.10
1.0 mg/L 0.40±0.06 0.80±0.13* 0.93±0.13** 1.00±0.16***

1.5 mg/L 0.60±0.06* 1.18±0.19*** 1.20±0.13*** 1.33±0.06***

2.0 mg/L 1.00±0.13*** 1.45±0.06*** 1.50±0.13*** 1.53±0.10***

Note: a Control: no treatment was given; CP: cyclophosphamide 
(positive control); b Values are frequency of micronucleated 
erythrocytes (%) expressed as means ± SE based on 1000 cells 
per animal (n = 15); c Level of significance from respective con-
trol values: *= p < 0.05: **= p < 0.01: ***= p < 0.001. Statistical 
analysis: ANOVA.

Figure 2. Time taken by tadpoles to metamorphose following 
exposure to different concentrations of ZnCl2. Data are 

significantly different from control (ANOVA). (*) = p < 0.05

Figure 4. ZnCl2 induced changes body weight (A) and snout to vent length (B) of froglets at metamorphosis.  
Data are significantly different from the control group at p < 0.05 (*)

Figure 4. ZnCl2 induced changes body weight (A) and snout 
to vent length (B) of froglets at metamorphosis. Data are 

significantly different from the control group at p < 0.05 (*)
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2.3. Micronucleus test

ZnCl2 exposure induced MN in the erythrocytes of F. lim-
nocharis tadpoles (Table 2) at 24 h (F4, 70 = 9.82, p < 0.05), 
48 h (F4, 70 = 33.78, p < 0.01), 72 h (F4, 70 = 42.46, p < 0.001), 
and 96 h (F4, 70 = 47.53, p < 0.01). There were significant 
positive correlations between the concentrations of ZnCl2 
and micronucleus frequency (Figure  5). The correlation 
coefficients at 24 h, 48 h, 72 h and 96 h were 0.9117 (p < 
0.01), 0.9955 (p < 0.001), 0.9981 (p < 0.001) and 0.9864 
(p < 0.001) respectively. In the time response study, except 
for 0.5 mg/L of ZnCl2 (r = 0.6361) all the other treatments 

tested showed time dependent increase in the frequency 
of MN all through the 96h study period. Moreover, it was 
found that that the overall time effect on micronucleus 
induction (ANOVA) was statistically significant (F4, 295 = 
4.82, p < 0.05).

2.4. Comet analysis

Erythrocytes of F. limnocharis tadpoles showed significant 
change in the degree of DNA damage following ZnCl2 ex-
posure as evidenced by changes in comet parameters (Fig-
ure 6). Quantitative analysis revealed that amount of DNA 

Figure 5. Regression plot and R2 of micronucleated erythrocytes at 24 h, 48 h, 72 h and 96 h of zinc chloride treatment

Figure 6. Comparison of comet parameters (fold change) between control and ZnCl2 exposed groups. OTM: olive tail moment; 
TEM: tail extent moment. Values are significantly different from control: p < 0.05 (*) and p < 0.001 (**)
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present in comet head region significantly decreased (p < 
0.05) with concurrent increase in the tail region (p < 0.05) 
compared to the control group. Olive tail moment (OTM) 
in a comet represents the product of the amount of DNA 
in the tail region as well as the average distance they mi-
grate in the gel. In the present study, the OTM in the 
ZnCl2 exposed cells was significantly higher (p < 0.05) 
compared to the control cells.

3. Discussion

The present study evaluated acute and subchronic toxicity 
of ZnCl2 in tadpoles of F. limnocharis. It was found that 
tadpole mortality rate was positively correlated with expo-
sure to ZnCl2 concentration. The calculated 96 h LC50 val-
ue of ZnCl2 in the current study was found to be 3.61 mg/L 
(Table 1). Similar LC50 value was also found in the earlier 
studies by Svecevičius (1999). Bagdonas and Vosylienė 
(2006) reported that the 96 h LC50 value of zinc in Rain-
bow trout (Oncorhynchus mykiss) was 3.79 mg/L. The LC50 
values for ZnCl2 found in the present study are similar to 
those previously reported in tadpoles by Khangarot and 
Ray (1987) and Shuhaimi-Othman et al. (2012). The LC50 
values for zinc have been shown to vary over a wide range 
depending upon the species and developmental stages. For 
example, the 96 h LC50 values was reported to be 2.1 mg/L 
for Rana hexadactyla and 28.38 mg/L for Rana luteiven-
tris (Khangarot et al., 1985; Lefcort et al., 1998). However, 
available literature also reported that the most published 
LC50 values for other amphibian tadpoles are greater than 
19 mg/L (Linder & Grillitsch, 2000). One possible reason 
for this wide range of LC50 data is due to the fact that 
toxicity of Zn ions is highly dependent on water hard-
ness; the highest LC50 value available in the literature was 
observed when concentration of calcium ions are at their 
highest (Skidmore, 1964). Moreover, other possible reason 
for this is due to the experimental methods conducted in 
each study such as body size or body length/developmen-
tal stage, body masses of tadpoles and temperature etc. 

In the present study, long term exposure at sublethal 
concentrations (0.5–2.0 mg/L) of ZnCl2 to F.limnocharis 
tadpoles demonstrate that the percentage of tadpole sur-
vival decreased significantly with increasing metal concen-
trations (Figure 1). Interestingly, there was a significant in-
teraction between increasing ZnCl2 concentration and the 
duration of exposure of the tadpoles. Tadpoles exposed 
to highest sub-lethal concentration of ZnCl2 (2 mg/L) 
did not survive till metamorphosis which suggests that 
tadpole survival was dependent on metal treatment (Fig-
ure 2). This may be due to the fact that the reduced growth 
rates of tadpoles at high metal concentrations are caused 
by increased metabolic costs, which leaves little energy for 
growth (Rowe et al., 1998). Studies extending for longer 
periods have shown that metal exposure reduces tadpole 
survival to metamorphosis (Lefcort et al., 1998). Our re-
sults demonstrate that sub-lethal concentrations of ZnCl2 
significantly delayed the time to metamorphosis process 

(Figure 3). Similar findings have been reported in earlier 
studies with zinc and copper metal ion exposure on the 
germination of frogs spawn and on growth of tadpole 
(Dilling & Healey, 1926). Lefcort et  al. (1998) reported 
that low levels of lead, zinc and cadmium did not signifi-
cantly delay time to metamorphosis, but the low lead and 
low zinc exposed animals underwent metamorphosis at a 
lower mass than control tadpoles. In fishes such as fathead 
minnow (Brungs, 1969), zebrafish (Dave et al., 1987) and 
the flounder Paralichthys olivaceus (Yulin et al., 1990), zinc 
has been reported to delay the time-to-hatch. 

The standard measurement of body length is an im-
portant parameter to determine the skeletal growth of 
metamorphosed froglets at metamorphosis. Our study 
demonstrate that at low concentrations (0.5 and 1.0 mg/L) 
of ZnCl2 significantly increased body length of metamor-
phosed froglets (Figure  4B). Contrary to our findings, 
some reports suggest that body length of metamorphosed 
froglets is not influenced by exposure to lower concentra-
tions of zinc. However, as metal concentrations increased, 
tadpole body length decreased significantly (Lefcort et al., 
1998; Haywood et al., 2004). Therefore, it is evident that 
there exists species specific sensitivity among different an-
uran species to a given toxicant. Morphological and physi-
ological abnormalities in amphibians exposed to toxicants 
have been well-studied (Stebler et al., 1988; Bantle et al., 
1989; Hopkins et al., 2000). However, the mechanisms by 
which zinc influences amphibian metamorphosis remain 
unclear. 

The micronucleus test in erythrocytes of anuran tad-
poles is widely used in experimental models for the bio-
monitoring studies as a sensitive biomarker of environ-
ment contaminant induced genotoxicity in aquatic organ-
isms. MN test has served as an index of cytogenetic dam-
age for over 30 years (Fenech et al., 2003). In the present 
study, ZnCl2 was found to be genotoxic in the micronu-
cleus test in tadpoles of F. limnocharis. It was observed that 
the frequency of micronucleus increased with increasing 
exposure concentration of ZnCl2 (Table 2). Similar find-
ings have been reported in earlier studies (Wei et al., 2015) 
in Rana zhenhaiensis tadpoles exposed to Zn+2. Earlier 
studies by Bagdonas and Vosylienė (2006) reported geno-
toxicity of Cu, Zn in MN test in rainbow trout erythro-
cytes; but there were no dose-dependent changes in mi-
cronucleated erythrocytes. Similar result has been found 
in our previous studies with cadmium chloride exposure 
on Rana limnocharis tadpoles (Patar et al., 2016). The pre-
sent findings are in agreement with majority of previously 
reported studies with pesticides and heavy metals in X. 
laevis larvae, R. limnocharis, E. cyanophlyctis and Bullfrog 
tadpoles (Mouchet et  al., 2006; Giri et  al., 2012; Yadav 
et  al., 2013; Montalvão & Malafaia, 2017). Apart from 
amphibian tadpoles, MN test in experimental fish models 
have been well documented. Obiakor et  al. (2010) con-
ducted MN test on Synodontis clarias and Tilapia nilotica 
species and reported that zinc exposure caused significant 
increase in the frequency of micronucleated erythrocytes 
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produced in both the species. Bakar et al. (2014) demon-
strated that zinc exposure to Oreochromis niloticus spe-
cies produced significant increased induction of MN and 
erythrocytes with nuclear abnormalities compared with 
the control group. 

MN induction is an indicator of altered cytogenetic 
effects reflecting changes in chromosome number and/
or structure. These lost chromosome(s) or chromosomal 
fragment(s) fail to participate in the anaphasic move-
ment, thus fail to be part of the main nucleus (Muranli 
& Güner, 2011). On the other hand, comet assay (CA) 
is used to detect double or single DNA strand breaks in 
the interphase nuclei. CA is widely used in field moni-
toring and in laboratory experiments to demonstrate 
the sensitivity of aquatic organisms to genotoxic agents 
(Clements et  al., 1997; Mouchet, 2002; Mouchet et  al., 
2005, 2007; Frenzilli et  al., 2009; Singha et  al., 2014; 
Patar et al., 2016). In the present study, ZnCl2 exposed 
groups clearly demonstrate that zinc induces a consider-
able amount of DNA strands breaks in F. limnocharis at 
very low concentration. The DNA damage is indicated by 
significant alterations in various comet parameters (Fig-
ure 6). Compared to other heavy metals namely Cd and 
Cu; studies on the genotoxic potential of zinc in amphib-
ian tadpoles using comet assays are infrequent. However, 
using this sensitive tool, genotoxic potential of zinc have 
been shown in various model organisms such as fish and 
mice as well as in human cells  (Banu et al., 2001; Ho & 
Ames, 2002; Ho et al., 2003; Zhang et al., 2008; Sliwinski 
et al., 2009). All in all, the present findings on genotoxic-
ity analysis suggest the genotoxic potential of ZnCl2 in F. 
limnocharis tadpoles.

Several studies have assessed the genotoxicity of zinc 
chloride following oral or parental exposure in various 
multicellular organisms. In vitro studies have shown that 
zinc exposure to induce DNA damage. Using comet as-
say Banu et  al. (2001) have shown that zinc produces 
DNA single strand breaks in vivo. In human lung cells, 
it has been shown that DNA double strand breaks as well 
as chromosomal instability occur following exposure to 
higher concentrations of zinc (Xie et al., 2009). Similar 
effects have been shown in bone marrow cells following 
zinc exposure in vivo (Vilkina et  al., 1978). Kowalska-
Wochna et al. (1988) reported that zinc chlorate given to 
rats in drinking water at a dose rate of 14.8 mg/kg/day 
caused significant damage to the gentic material. Gen-
otoxic effects of zinc administered either intraperito-
neally (Gupta et al., 1991) or by inhalation (Voroshilin 
et al., 1978) have also been reported in mice test system. 
However, the Agency for Toxic Substances and Disease 
Registry [ATSDR] (1990) report provides indication of 
zinc to be a weak clastogenic agent. Several studies also 
have reported that high zinc concentrations can interfere 
with ROS detoxification processes and thus contributes 
to ROS accumulation (Nzengue et al., 2011). However, 
the underlying molecular mechanism of zinc-induced 
genotoxicity is poorly understood and requires further 
investigations. 

Conclusions

In conclusion, this present study provides important in-
formation regarding acute and sub-chronic toxicity of 
ZnCl2 to larval amphibians adding to the present scientific 
knowledge. But; there is a paucity of information about 
sub-lethal effects of zinc on the early stages of amphib-
ian development. Therefore, further investigations are es-
sential using more different sub-lethal concentrations of 
ZnCl2 in aquatic organisms especially in amphibian. All 
in all, this study suggests the possible role of heavy metal 
pollution such as zinc towards amphibian population de-
cline and could have similar effects in other aquatic or-
ganisms. 
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