
MICROBIAL COMMUNITY CHANGES IN TNT SPIKED SOIL BIOREMEDIATION
TRIAL USING BIOSTIMULATION, PHYTOREMEDIATION AND

BIOAUGMENTATION
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Abstract. Trinitrotoluene (TNT), a commonly used explosive for military and industrial applications, can cause

serious environmental pollution. 28-day laboratory pot experiment was carried out applying bioaugmentation using

laboratory selected bacterial strains as inoculum, biostimulation with molasses and cabbage leaf extract, and

phytoremediation using rye and blue fenugreek to study the effect of these treatments on TNT removal and changes

in soil microbial community responsible for contaminant degradation. Chemical analyses revealed significant

decreases in TNT concentrations, including reduction of some of the TNT to its amino derivates during the 28-day

tests. The combination of bioaugmentation-biostimulation approach coupled with rye cultivation had the most

profound effect on TNT degradation. Although plants enhanced the total microbial community abundance, blue

fenugreek cultivation did not significantly affect the TNT degradation rate. The results from molecular analyses

suggested the survival and elevation of the introduced bacterial strains throughout the experiment.
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Introduction

The nitroaromatic explosive, 2,4,6-trinitrotoluene (TNT),

has been extensively used for over 100 years, and this

persistent toxic organic compound has resulted in soil

contamination and environmental problems at many

former explosives and ammunition plants, as well as

military areas (Stenuit, Agathos 2010). TNT has been

reported to have mutagenic and carcinogenic potential

in studies with several organisms, including bacteria

(Lachance et al. 1999), which has led environmental

agencies to declare a high priority for its removal from

soils (van Dillewijn et al. 2007).

Both bacteria and fungi have been shown to

possess the capacity to degrade TNT (Kalderis et al.

2011). Bacteria may degrade TNT under aerobic or

anaerobic conditions directly (TNT is source of carbon

and/or nitrogen) or via co-metabolism where addi-

tional substrates are needed (Rylott et al. 2011). Fungi

degrade TNT via the actions of nonspecific extracel-

lular enzymes and for production of these enzymes

growth substrates (cellulose, lignin) are needed. Con-

trary to bioremediation technologies using bacteria or

bioaugmentation, fungal bioremediation requires

an ex situ approach instead of in situ treatment (i.e.

soil is excavated, homogenised and supplemented

with nutrients) (Baldrian 2008). This limits applicabil-

ity of bioremediation of TNT by fungi in situ at a field

scale.
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Modeling of the urban growth process is an important 
technique to provide a better understanding of causes and 
mechanisms governing urban growth; to analyze alternative 
urban growth consequences, therefore, to support the ap-
propriate urban planning and decision making responses to 
urban growth (Berling-wolff, Wu 2004). Cellular automata 
(CA) models are among the most popular ways to simulate 
the evolution of urban growth. They are able to handle large 
amounts of data and many fields of studies, such as popu-
lation, land use, socioeconomic activity (Batty 2005). CA 
models are a powerful tool for representing and simulat-
ing spatial processes underlying the spatial decisions due to 
their simplicity, flexibility, and intuitiveness (Munshi et al. 
2014; Santé et al. 2010). Temporal and spatial complexity of 
urban growth process can also be well modelled using CA 
based models (Barredo et al. 2003). Additionally, CA mod-
els have become an experimental tool for urban planning by 
producing different scenarios under various urban planning 
policies (Fuglsang et al. 2013). 

Calibration and validation are the basis of their suc-
cessful implementation because they provide a tool to 
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abstract. Understanding and predicting of the urban growth process and its impact have become increasingly im-
portant for decision making toward sustainable development. In this paper, we presented a cellular automata model 
to assess the consequence of future urban growth. The hybrid calibration method combining logistic regression with 
trial-and-error was applied to estimate the parameters. The study proposed the integration method of Multi-Criteria 
Evaluation and Analytic Hierarchy Process that can be utilized to effectively translate the qualitative descriptions of 
scenarios into quantitative spatial analysis. Finally, the comparison of the different scenarios provided an insight into 
the impacts of different urban development strategies on landscape patterns. The result indicates that CA model can 
be effectively connected with the urban decision making processes. The moderate development scenario could be 
considered as the best one in achieving the objectives of compact urban form, good residential environment, as well 
as environmentally and economically efficient development.

Keywords: cellular automata model, urban growth, calibration, scenario, landscape metrics, landscape pattern.

Introduction

In recent decades, urbanization, the most extreme anthro-
pogenic land cover/use transformation has been a univer-
sal and important socioeconomic phenomenon around 
the world. Urban growth has been accelerating with the 
significant increase in urban population. The world urban 
population was only about 3% of the global population in 
the 1800s, but increased to nearly 30% in 1950. Currently, 
over half of the world population live in urban areas, and 
the figure is projected to reach 67.1% (6.25 billion) by 
2050 (United Nations 2012). Although urban areas cover 
a very small percentage of the world’s land surface in com-
parison with other land cover types, their rapid expansion 
has marked effects on environment and socio-economy, 
such as loss of natural vegetation and farmland (Tan et al. 
2005), local and regional climate change (Kaufmann et al. 
2007), decline in biodiversity (Zimmermann et al. 2010), 
hydrological circle alternation (Barron et  al. 2013), etc. 
Without effective planning, there is no doubt that the 
pressure for sustainable development will continue to in-
crease (Dewan, Yamaguchi 2009; Lambin et al. 2001).

mailto:cheng.li@cumt.edu.cn


C. Li, J. Zhao. Assessment of future urban growth impact on landscape pattern using cellular automata model...24

ensure that models can conduct accurate and reasonable 
simulation regarding current and future urban growth 
scenarios (Wu 2002). Various calibration methods have 
been developed to generate more precise parameters, 
such as logistic regression (Sui, Zeng 2001), multicrite-
ria evaluation (Wu 1998), support vector machine (Yang 
et al. 2008), artificial neural networks (Li, Yeh 2002), ge-
netic algorithm (Li et al. 2008), kernel-function (Liu et al. 
2008), etc. Although many methods have been explored 
for calibration, there is not general method to calibrate 
urban CA models because the objectives and structure 
of these models are different. Wu (2002) argued that the 
calibration is dependent on the objective of the simula-
tion. For validation, the cell by cell comparison method is 
the most commonly used for measuring goodness-of-fit 
between simulated results and observed one. This assess-
ment, however, cannot consider the urban growth patterns 
which are important in analyzing the impact of the vari-
ables on landscape patterns. Therefore, the pattern simi-
larity should also be involved to evaluate the performance 
of a CA model.

The integration of CA model and GIS has a potential 
to explore different urban development scenarios under 
various policies. The simulation serves as not only a mat-
ter of visualization but also a bridge between urban growth 
patterns and decision making (Wu 1998). Many studies 
have investigated different aspects of scenarios which are 
designed under the consideration of different urban de-
velopment policies in specific areas (He et al. 2006; Shen 
et  al. 2009; Zhang et  al. 2011). Furthermore many re-
searchers argued that scenario evaluation should be a key 
aspect of land use modeling in order to test and compare 
different land-use planning policies (Thapa, Murayama 
2012; Zhang et al. 2011). Various landscape metrics have 

been widely used to evaluate and compare the scenarios, 
such as edge density, number of patches, area weighted 
mean shape index, etc (Aguilera et al. 2011; Mitsova et al. 
2011; Petrov et al. 2009; Zhang et al. 2011). This can be 
attributed to their usefulness for quantification and inter-
pretation of land use patterns. They make the processes 
and patterns of urban development more prominent. Be-
sides this general analysis, only a few researches have been 
done on the evaluation of scenarios by other more detailed 
analysis, such as those that use landscape metrics at local 
scales to better localize changes in land occupation pat-
terns (Aguilera et al. 2011; Thapa, Murayama 2012).

This study aims at enhancing the understanding of 
urban growth process by simulating future scenarios us-
ing CA model, with a case study of Xuzhou city in China. 
The CA model is developed to simulate the urban growth 
by integrating various factors. In order to provide support 
for decision making process, the future development sce-
narios are designed. According to the qualitative descrip-
tion of each scenario and the objective of development 
strategies, the parameters in CA model are quantitatively 
identified. Furthermore, a set of landscape metrics are ap-
plied to quantitatively compare the urban growth patterns 
of different scenarios.

1. Material and methods

1.1. study area and data 

Xuzhou city is situated in the plains of the Yellow River 
and the Huaihe River. It has a total administrative area 
of approximately 11,258 km2, with 1,160 km2 as the city 
proper area. It is regarded as a medium-sized metropolitan 
area in comparison to other cities in China. Xuzhou city 
is composed of ten county-level divisions, five counties 

Fig. 1. Location of study area (Xuzhou) and its topography
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(Peixian, Fengxian, Suining, Pizhou, and Xinyi), and five 
municipal districts (Quanshan, Gulou, Yunlong, Jiawang, 
and Tongshan). As shown in Figure 1, the five municipal 
districts are identified as the study area. Traditionally, 
they are viewed as the central city, in which Quanshan, 
Gulou and Yunlong are composed of city proper area. 
Jiawang and Tongshan are composed of fringe and rural 
areas. Mining and industrial manufacturing have been the 
source of the strong economic activity of the region. 

In this research, Landsat images from the years of 
1990, 2001, 2005 and 2010, were used to obtain multi-
temporal land cover data for Xuzhou city. The land cover 
classification data was produced through the interpreta-
tion from Landsat data (Li, Thinh 2013). Figure 2 shows 
the multiple temporal land cover maps at the extent of the 
study area with the overall accuracy of more than 85%. 

The urban growth is a complex process which in-
volves the interaction influence of various factors (Li et al. 
2014). Some variables need to be incorporated into the 
model, which include: (1) global suitability factors, in-
cluding Distance to central business district (Dis2CBD), 
Distance to district centers (Dis2Cen), distance to major 
roads (Dis2MajR), distance to minor roads (Dis2MinR), 
slope, and population density (PopDen); (2) neighbor-
hood variable; (3) Spatial policy factor, including con-
servation zones, construction restriction, master plan 
2010–2020, layout of potential subsidence areas (Sub-
sidence), layout of environmental protection areas (En-
vironment). However the estimated coefficients of these 
variables could be misleading in analysis of urbanization 
process when the variables are measured in different units. 
Therefore, all variables should be standardized into the 
range from 0 to 1 prior to the modelling. For global suit-
ability factors, linear transformation method was applied 
to conduct the standardization. For spatial policy factors, 
the area where urban development is limited was assigned 
0 and area that is designated for urban development was 
assigned 1. All the spatial data were registered to the same 
Universal Transverse Mercator (UTM) coordinate system 
and sampled to the same cell size of 100×100 m, which 
was sufficient to capture the detailed information about 
urban dynamics while keeping the volume of computation 
manageable.

1.2. development of ca model

The definition of transition rule plays an important role 
in CA models. The key element of transition rule is the 
transition potential which determines the probability of 
a cell changing to a specific land use (Wu, Webster 1998). 
This involves a number of spatial variables that contrib-
ute to urban growth. In this study, the transition potential 
Pij  can be practically defined as a function of the global 
suitability value Sij, neighborhood effects Nij, constraints 

CONSij and stochastic perturbation Vij. It can be expressed 
as follows:
 ij ij ij ij ijP S N CONS V= × × × . (1)

The global suitability value represents the intrinsic 
suitability of urban development. It was calculated as a 
function of global spatial variables:

 ,( , )ij l ij lS f x w= , (2)

where xl,ij (l = 0, 1, 2, …, n) represents the values of global 
factors for the cell (i, j), wl represents the corresponding 
weight of the global factor. 

Neighborhood effect was introduced by many studies 
to consider the effects of spatial interaction and neighbor-
hood characteristics on urban growth. In this study, this 
neighborhood score was calculated according to following 
equation:
 ij mn mncN W I= ×∑ , (3)

where Nij is the effect of neighborhood cells on the cen-
tral cell (i, j) within the neighborhood space c; Wmn rep-
resents the weight indicating the impact of the interac-
tion between the central cell and cell (m, n) within the 
neighborhood (Barredo et  al. 2003). Following the first 
law of geography (Tobler 1970), a distance decay function 
was applied, so that cells closer to the central cell carry 
larger weight. Imn represents the state of the cell (m, n) 
using binary value. Imn= 1, when the cell is urban land, 
otherwise Imn= 0. The neighborhood size, neighborhood 
type and weighting function have significant effects on the 
CA model results (Kocabas, Dragicevic 2006). As shown 
in Figure 3, three different neighborhood types (Moore, 
Moore Circular, and Von Neumann Circular) with differ-
ent neighborhood size (radius of 1 to 6) were involved. In 
addition, three different weighting functions (Eq. 4) were 

Fig. 2. Classified land cover maps of Xuzhou city from 1990 to 
2010
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applied to define the weights Wmn for cells within neigh-
borhood:
 exp( )mn mnW D= −β× , (4)

where Dmn is the distance between cell (m, n) to the cen-
tral cell within a neighborhood. β is the exponent of the 
function. The higher of the value, the more abrupt is the 
function curve. In this study, β was assigned 0, 0.2 and 0.5, 
respectively.

The total constraint score was calculated as:

 ,1
n

ij ij ffCONS con
=

= ∏ , (5)

where CONSij is the total evaluated constraint score rep-
resenting natural constraints to urban expansion. If 
CONSij = 0, cell (i, j) is constrained by some constraint 
factors, and the cell cannot be converted to urban land 
use. Otherwise, CONSij = 1. Conij,f  represents the binary 
value of constraint factor f for the cell (i, j). 

From a practical point of view, the related complex-
ity of urban systems could be modeled as some degree of 
stochasticity (Barredo et al. 2003). Thus, a stochastic dis-
turbance parameter was introduced into the model. It was 
calculated with Eq. (6):

 1 ( ln( ))V rand a= + − , (6)

where rand is a random value within the range from 0 
to 1, and a is random variable which is used to control 
the degree of stochasticity. A higher value of a represents 
more random degree involved in this model. 

Once the transition potential is calculated, decision 
rules need to be identified to spatially allocate the new 
urban area in order to simulate the historical and future 
urban growth process. At each iteration, the new urban 
pixels are allocated by selecting the non-urban pixels with 
the higher transition potential values. The non-urban 
pixels with lower values remain unchanged. The iteration 
continued until the total urban expansion area is reached.

1.3. calibration and validation of ca model

In this study, the weights of global suitability variables, 
neighborhood size, neighborhood types, weighting 

function, and random variables need to be calibrated. An 
advantage of the logistic regression is its ability to estimate 
the weights of various spatial factors by developing sta-
tistical relationships between historical urban growth and 
spatial factors (Arsanjani et al. 2013; Ward et al. 2000). It 
can avoid subjectivity in determining the weights involved 
in transition rules of the CA model. However, it does not 
include all the relevant variables and cannot explain tem-
poral dynamics of relationships (Hu, Lo 2007). The global 
factors which keep constant during each simulation pe-
riod are involved into the logistic regression model. While 
the neighborhood effect and the random variable change 
with the running of the CA model. It is impossible to esti-
mate these parameters using the logistic regression model. 
The trial and error method is a more rigorous calibration 
method. But its time cost for calibrating all parameters is 
not acceptable because trial and error method is imple-
mented by running CA model many times with different 
parameter values. In this study, the hybrid method con-
sisting of logistic regression and trial and error was used 
for the calibration in this study. 

Validation is conducted by comparing the simulated 
results generated from calibrated CA models with ob-
served maps in order to assess the simulation ability of 
CA models for different periods. With the consideration 
of the simulation purpose which is to make the simulated 
urban growth as close as the actual one in terms of loca-
tion and pattern, a mixed measure based on the cell by cell 
and landscape pattern analysis was chosen in this study. 
The figure of merit (Eq. 7) (Pontius et al. 2007), and the 
relative difference of landscape metrics (Eq. 8) were com-
puted to evaluate the fit of goodness between simulated 
and observed maps. 

The figure of merit is the ratio of the intersection of 
the observed developed and simulated developed to the 
union of the observed developed and predicted developed 
(Pontius et al. 2008). The figure of merit can range from 
0% to 100%. A higher value of figure of merit indicates a 
higher agreement in terms of cell by cell comparison. The 
figure of merit is calculated using the following equation 

Fig. 3. Neighborhood types and sizes
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(Pontius et al. 2008):

 
BFm

A B C D
=

+ + +
, (7)

where A is the area of error due to observed developed 
and simulated as persistence, B is the area of correct due 
to observed developed and simulated as developed, C rep-
resents the area of error due to observed developed and 
simulated as incorrect gaining category, and D is the area 
of error due to observed persistence and simulated as de-
veloped. Because the CA model only simulates the change 
of states from non-urban to urban, the value of C should 
be equal to 0.

The pattern similarity was incorporated, which was 
estimated through the comparison of landscape metrics 
between simulated patterns and observed ones. A total 
of four landscape metrics were selected to represent the 
landscape pattern from different aspects. These metrics 
are: number of patches (NP), largest patch index (LPI), 
Area Weighted mean shape index (SHAPE_AM) and 
Area Weighted mean Euclidean nearest neighbor distance 
(ENN_AM). The relative difference Rd can be calculated 
as follows:

 , ,

,

1(%) 100
4

s i o i
i

o i

M M
Rd

M
−

= × ×∑ , (8)

where Ms,i and Mo,i are the values of landscape metric i 
calculated from the simulated and observed urban land 
use maps, respectively. A smaller absolute value of Rd in-
dicates that the simulated landscape pattern is closer to 
the observable pattern. 

1.4. simulation of future scenarios

In recent years, there has been an increasing interest for 
developing sustainable urban form. A compact develop-
ment is necessary in order to improve sustainability. Al-
though there is a strong agreement on this statement, a 
debate between compact city and dispersed city has never 
stopped. Both of positive and negative effects of each type 
of city have been reported. In order to provide an insight 
into the different urban development strategies, five urban 
growth scenarios were designed towards 2020 and were 
named according to the main themes that result from the 
scenarios (Fig.  4). The land demand during this period 
was estimated according to the urban plan of Xuzhou.

The business as usual scenario (BUS) assumes that the 
future urban growth follows historical trend without any ad-
justment when environmental and developmental conditions 
are similar to the ones observed from the historical data. 

The planning-strengthened scenario (PSS) assumes 
that the future urban growth strictly follows the master plan 
of Xuzhou city. The plan influences new developed urban al-
location, as it establishes the legal regulatory framework for 
future land use. This scenario provides a better understand-
ing of the impact of planning on urban growth. 

Considering the urban development challenges, we 
established the compact development scenario (CDS) that 
aims to prevent sprawl-like development and to create a 
more compact city. The development is mainly concen-
trated around the existing city center, providing a more 
compact urban form. Second, in order to increase land use 
efficiency, a major development policy is implemented to 
increase the development of high-density residential and to 
decrease the development of low-density residential, which 
can reduce the per capita demand for the occupied land. 

Contrary, the dispersed development scenario (DDS) 
was developed to simulate the future urban pattern with 
an increase of urban sprawl but without any effective ur-
ban planning against this trend. Due to the rapid econom-
ic growth and widespread of private vehicles, people desire 
to move to the low density settlements in order to avoid 
the congestion and large pollution in the city center, as 
well as to pursue a better living environment. In addition, 
the cost of housing outside the city center could be lower. 
Hence, the aim of the scenario is to encourage develop-
ments of new urban patches and urban infrastructure out-
side the city center. This scenario reflects a lesser degree of 
environmental protection.

The debate concerning sustainable urban form could 
move towards more moderate position where agreements 
are easier to achieve. Closer link between the former city 
center and several developed regions in fringe area is es-
tablished. In addition, due to the fact that the rural settle-
ments in Xuzhou are small in size but numerous and scat-
tered, coordinating urban and rural development is also 
involved in this scenario not only for intensive land use 
but also for economic growth in rural areas. Therefore, 
the scenario aims to promote the endogenous potential of 
city center, suburban center, and rural area and the coop-
eration between them in order to achieve a physically and 
functionally connected region.

Multi-Criteria Evaluation (MCE) is an important 
means of analysis in spatial decision support systems, as it 
allows weighted value to be assigned to spatial layers, and 
the sum of these values produces a final suitability map. 
However, determining factor weights is a complicated task 

Fig. 4. Different development scenarios
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in MCE. Analytic Hierarchy Process (AHP) originally de-
veloped by Saaty (1980) is one of the most commonly used 
approaches when analyzing complex decision problems. It 
can be used to derive behavior-oriented transition rules 
(Wu 1998). Basically, the pair-wise comparison of the rela-
tive importance is conducted to arrive at a scale of prefer-
ence among a set of alternatives (Malczewski 1999). 

By using AHP, the weights of global factors are iden-
tified and imported into the CA model for calculating 
global suitability value. AHP provides a comprehensive 
and rational framework for structural conceptualization of 
decision making, in which the relative importance of sev-
eral variables can be compared (Vaz et al. 2012). Hence, 
the integration of MCE and AHP benefited this study in 
that it has capability to link scenario simulation with de-
cision making processes and to translate the qualitative 
descriptions of scenarios into quantitative spatial analysis. 

However, the weight of each global factor in AHP is 
usually identified by direct subjective assessment because 
preferences of decision makers determine the relative im-
portance of each factor. In order to incorporate more re-
alistic behavior into the simulation, the historical urban 
growth trend needs to be considered in decision making 
process. Therefore, the logistic regression coefficients for 
the period of 2005–2010 in CA model were used to iden-
tify the relative importance of each global factor in AHP 
for further modification. In addition, the discussion with 
five experts provided insights into the determination of 
the weights.

2. results

2.1. Historical urban growth simulation

The specific procedure of calibration followed three steps. 
Take the period of 1990–2001 as an example:

 – The historical urban growth (1 = changed and 0 = 
no change) was set as a dependent variable, and 
the global factors after standardization were set as 
independent variables. Based on the historical ur-
ban development trends, the weights for the global 
factors were accurately determined using a binary 
logistic regression model. The correlation analysis 
indicates that Dis2CBD and Dis2Cens are signifi-
cantly correlated variables with the Pearson cor-
relation coefficients of 0.680, 0.702 and 0.654 for 
three time points, respectively. In order to exclude 
redundant variable and select optimum set of va-
riables, logistic regression was estimated for two 
possible variables sets, which considered all varia-
bles excluding Dis2CBD or Dis2Cens. The optimal 
set was determined using Relative Operating Cha-
racteristic (ROC) measure;

 – The neighborhood configurations were calibrated 
through the trial and error method by running the 
model many times with different neighborhood 
configurations, while the random variable was set 
as 0, and held constant. The figure of merit value 
was calculated for each simulated result to measure 
the overall performance of the model (Fig. 5). The 

Fig. 5. Variation of figure of merit value response to neighborhood configuration variation. (a) The figure of merit value calculated 
for different exponent values and sizes using Moore type, (b) The figure of merit value calculated for different exponent values and 
sizes using Moore Circular type, (c) The figure of merit value calculated for different exponent values and sizes using Von Neumann 
Circular type and (d) The figure of merit value calculated for different neighborhood types and sizes when exponent is set as –0.5
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results show that the model with neighborhood 
type of Von Neumann Circular and exponent va-
lue of –0.5 generated the simulation result with the 
highest value. Therefore, they were used for further 
simulation;

 – Various simulations were performed using random 
variables in the range 0–3 with 0.1 increment and 
different neighborhood sizes. Figure of merit va-
lue was calculated at each neighborhood size and 
random variable (Fig. 6(a)). Because of the invol-
vement of random variable, each simulation gene-
rated different result with different value of figure 
of merit. However, the stochastic CA can maintain 
stability in landscape pattern (Yeh, Li, 2006). A 
range of random variables (0.8–2.0) were selec-
ted to ensure that CA model can generate relati-
vely high figure of merit values. Focusing on this 
range, Rd value was calculated for each simulation 
result (Fig. 6(b)). The result indicates that random 
variable and neighborhood size should be set with 
values of 1.8 and 1 respectively so as to fit the ob-
served urban land use map in terms of location 
and pattern.

The same procedure was used to calibrate the CA 
models for other periods. The estimated parameters for 
the periods of 1990–2001, 2001–2005 and 2005–2010 are 
listed in Table 1. The calibrated CA model was then used 
to simulate urban growth in Xuzhou during the periods of 
1990–2001, 2001–2005, and 2005–2010, respectively.

As shown in Figure 7, the observed urban develop-
ment map was overlaid with simulated map to identify 
the four groups of cells (observed change simulated as 
persistence, observed persistence simulated as change, 
observed change simulated as change, observed persis-
tence simulated as persistence). Owing to the transition 
rules of CA models, such rules can in effect evenly locate 
new urban cells mainly in the city core and around the 
edge of initial urban patches. As a result, some of simu-
lated urban cells in the city core were located where no 

Fig. 6. Variation of figure of merit and Rd values response to neighborhood size and random variable variation:  
a) – the figure of merit value calculated for different neighborhood sizes and random variables and b) – the Rd value 
calculated for different neighborhood sizes and random variables

Table 1. Calibration results of the CA model during 1990–2001, 
2001–2005 and 2005–2010

Parameters 1990–2001 2001–2005 2005–2010

Factors

Dis2CBD –1.422 – –
Dis2Cen – –1.697 –1.964
Dis2MajR –1.295 –1.114 –1.470
Dis2MinR –0.975 –1.002 –0.843
Slope –1.636 –1.392 –0.375
Popden 0.846 0.254 –0.310
Subsidence 0.413 0.435 0.343
Envi ron-
ment 0.363 0.328 0.239

Neigh-
bor hood 
confi gura-
tions

Type
Von Neu-
mann 
Cir cular

Von Neu-
mann 
Cir cular

Von Neu-
mann 
Cir cular

Function exp(–0.5*D) exp(–0.5*D) exp(–0.5*D)

Size 1 2 2
Stochastic 
distur-
bance

Variable 1.8 2.0 2.1

Fig. 7. Spatial distribution of corrects and errors of the 
simulation results
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changes from non-urban to urban land uses took place. 
While some real developed cells in fringe and rural ar-
eas were underestimated by models. The errors found in 
simulation results also reveal that some errors are caused 
by issues not related to the model, such as the complex-
ity of urban growth. Urban growth processes usually have 
some unpredictable features because of the complexity of 
nature. Although the uncertainty of urban growth can be 
represented by incorporating random variable, as demon-
strated by Yeh and Li (2006), each simulation will gener-
ate different result when the inputs are the same because 
of the involvement of random variable. However, major 
uncertainties caused by random variable only existed in 
the fringe and rural areas, which can partly explain the 
errors in simulating new isolated urban cells outside the 
city core. Furthermore, some errors are observed due to 
the difficulties in considering all driving factors. The use 
of more or less number of variables will affect the out-
come of CA simulation (Poelmans, Van Rompaey 2010). 
For example, the urban simulated as non-urban in the 
city core was mainly located in the southern and eastern 
part, where the development policies acted an accelerating 
factor to promote more new development. However, it was 
not involved into the transition rules, which made the ac-
curate simulation of urban growth more difficult.

In addition to the description of visual compari-
son, the quantitative validation methods are required to 
quantify the degree of error of the simulation results. Fig-
ure 8 presents a summary of the error analysis according 
to Figure 7. The value represents the number of cells at 
the resolution of 100 m. The union sections of observed 
change simulated as persistence and observed change sim-
ulated as change represent the area of change according 
to the observed maps, and the union sections of observed 
change simulated as change and observed persistence 
simulated as change are the area of change according to 
the simulation maps. Table 2 presents the simulation accu-
racy at cell level. The figure of merit was calculated based 
on the quantitative error analysis. It enables to assess the 
cell to cell coincidence between simulated and actual maps 
in a more realistic way (Santé et al. 2010). The values of 
figure of merit are 30.6%, 33.2%, and 27.7%, respectively. 
The model for 2010 is the one that produced less match-
es. New development areas were promoted by planning 

policies, which cannot be involved in the transition rules. 
In addition, the increase in stochasticity of development 
indicated by random variables also influenced the perfor-
mance of the CA model. The Kappa value was calculated 
to measure the overall performance of the model using 
the entire area with fixed land use. The kappa value for the 
simulated results of 2001, 2005 and 2010 are 0.82, 0.86 and 
0.81, respectively.

Table 2. Quantitative assessment of accuracy based on cell by 
cell comparison

Year Figure of merit Kappa
2001 30.6% 0.82
2005 33.2% 0.86
2010 27.7% 0.81

Besides the matching the exact location of urban land 
use change, the generating urban patterns similar to actual 
urban spatial patterns is also an important objective of CA 
models. Spatial metrics were used to objectively character-
ize the spatial pattern observed in the visual analysis in 
order to make quantitative comparison and to determine 
whether simulated patterns are similar to the actual pat-
terns. Table  3 shows the comparison between observed 
and simulated landscape metrics values for 2001, 2005, 
and 2010. According to the landscape metrics, the models 
produced the landscape patterns substantially close to the 
observed ones. When looking at the relative error value 
calculated for the different landscape metrics, however, 
the models had relatively larger error in the simulated 
NP. The CA models generated lower number of patches, 
which were larger and more clustered than those in ob-
served patterns. The isolated cells can be developed only 
by involving the random variables in this model, such that 
some of small new patches cannot be generated. Although 

Fig. 8. Quantities of correct and errors values in the model 
validation

Table 3. Comparison between observed and simulated 
landscape metrics values for 2001, 2005, and 2010

NP LPI SHAPE_
AM

ENN_
AM Rd(%)

2001

Observed 2412 3.78 5.21 275.01

5.29Simulated 2195 3.93 5.53 280.63
Relative 
error (%) 9.00 3.97 6.14 2.04

2005

Observed 2489 4.63 5.73 261.87

4.39Simulated 2307 4.89 5.72 273.57
Relative 
error (%) 7.31 5.62 0.17 4.47

2010

Observed 2509 7.07 8.46 246.36

3.28Simulated 2354 7.36 8.56 250.48
Relative 
error (%) 6.18 4.10 1.18 1.67



Journal of Environmental Engineering and Landscape Management, 2017, 25(1): 23–38 31

fewer patches generated by CA models, the lower relative 
error values of SHAPE_AM and ENN_AM indicate that 
the compaction and isolation were similar to the observed 
ones. The Rd values for the three simulated results are 
5.29%, 4.39%, and 3.28%, respectively. 

Overall, the validation results shown above reveal 
that the CA models for three time points have the ability 
to produce the multi-temporal simulation results which 
can be considered to be in line with the observed maps in 
terms of location and pattern similarity.

2.2. future development scenarios

The parameters of CA model were modified according 
to the story-line of each scenario and the weights of BUS 
scenario. As illustrated in Figure  9, the elements of the 
story-line of each urban growth scenario were defined 
through the AHP process, in which the value represents 
the relative importance of global factors used for each sce-
nario. Under the CDS scenario, Dis2CBD was considered 
to represent the distance to socioeconomic centers, while 
Dis2Cen was used for other scenarios instead of the Dis-
2CBD. A summary of the neighborhood configurations 
and random variables, and constraints for each scenario 
is given in Table 4. Using the modeling configuration, the 
input map of 2010, we performed simulations under the 
five scenarios aiming to project alternative spatio-tempo-
ral patterns of urban growth in 2020. Figure 10 shows the 
simulated landscape patterns of urban land use in 2020. 
Although all scenarios have the same urban land area as 
that of the 2010–2020 urban planning, the urban growth 
patterns differed.

To further evaluate and compare these scenarios, 
NP, LPI, SHAPE_AM and ENN_AM were used to fur-
ther clarify the differences between the five scenarios by 
quantifying the landscape pattern under each scenario. 
When looking at these comparison results in Figure 11, we 
can gain the insight into the differences of the landscape 
patterns among different scenarios at global levels. The 
landscape patterns of scenarios differed from that of the 
observed urban pattern in 2010 due to the urbanization. 
If we look at the binary comparisons (Figs 12–16) between 

Table 4. The configurations of CA model for each scenario

BUS PSS CDS DDS MDS

Neighborhood 
configurations

Type Von Neumann 
Circular

Von Neumann 
Circular

Von Neumann 
Circular

Von Neumann 
Circular

Von Neumann 
Circular

Size 2 2 1 3 1

Exponent value –0.5 –0.5 – –1.114 –

Stochastic 
perturbation Random variable 2.1 2.1 1.5 3.0 1.5

Constraint
Nature water water water water water

Policy – Master planning – – Master planning

Fig. 9. Relative importance of the factors for each scenario

Fig. 10. The alternative urban maps of Xuzhou city for 2020 
under different scenarios: (a) BUS, (b) PSS, (c) CDS, (d) DDS, 
and (e) MDS 
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scenarios in 2020 and observed landscape pattern in 2010 
at local level, the urban growth pattern under each sce-
nario can be discovered and located. In addition, the role 
of the transition rule can be better understood.

Under the BUS scenario, the increases in NP and LPI 
values are observed, which illustrate that urban growth 
in Xuzhou is focused on the development of new urban 
patches, as well as the expansion of the existing urban 
patches. The urban pattern becomes compact as reflected 
by the slight decrease in SHAPE_AM. As evidenced by the 
decrease in ENN_AM value, the individual urban patches 
get close to each other, becoming more connected with 
the city core. This is also reflected by the binary compari-
son in Figure 12, Xuzhou city expends outside its histori-
cal core. Furthermore, urban growth is constantly moving 

toward the urban fringe in the eastern part of Xuzhou city. 
Some of new urban land is situated adjacent to or near 
major roads with scattered and irregular patches.

In contrast to the historical urban growth trend, the 
PSS, CDS, and MDS scenarios have fewer urban patches 
compared to historical urban landscape pattern in 2010. 
Under these scenarios, the individual patches tend to be 
aggregated with increasing connection with previous in-
dividual urban patches already close to the city center and 
district centers, which is indicated by the decreases in NP 
and the increases in LPI values. The SHAPE_AM values 
decline suggests that urban pattern become more compact 
by locating continued growth in diffuse sprawl urban ar-
eas. Among these scenarios, the PSS scenario has highest 
NP, lowest LPI, highest SHAPE_AM and ENN_AM values, 

Fig. 11. Landscape metrics values of urban land use under different scenarios and observed urban landscape pattern 
in 2010: (a) NP value, (b) LPI value, (c) SHAPEAM value, and (d) ENN_AM value

Fig. 12. Binary comparison between BUS scenario and observed urban landscape pattern 2010 in Class Area, NP, and 
SHAPE_MN values
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which are more similar to the BUS scenario compared to 
other scenarios. It is also confirmed by the small number 
of blocks with significant increase in NP and SHAPE_MN 
values in Figure  13. By 2020, some of the sprawl areas 
develop into compact urban land by infill of vacant land 
between the existing urban patches. It is clear that in 
this scenario, some areas would become more attractive, 
since they are enforced as hotspots in fringe and rural ar-
eas that are potential for future urban development and 
the evolution of compact centers. Around the hotspots, 
the fragmentation and diffuse urban development slows 
down as evidenced by the significant decreases in NP and 
SHAPE_MN values. Despite the strict implementation of 
master plan of Xuzhou city leads to the slowing down of 
the urban diffuse sprawl around the hotspots, it does not 
change the landscape pattern significantly, which could 
be explained by the fact that only master plan is involved 
without considering other factors that have significant im-
pacts on urban growth pattern.

With regard to the CDS, the compact urban pattern 
is observed which can be attributed to the considerable 
edge growth of historical urban patches. In specific, the 
highest LPI value in CDS scenario indicates that urban 
growth under this scenario has a preference to occur 
around the city center that is more attractive for devel-
opment. Hence, the urban patches around the city center 

grow together to form larger patches, which is described 
as “dense-onion” model by Herold et al. (2003). The lowest 
value of SHAPE_AM suggests the urban areas are grow-
ing more compact. It can be seen from Figure 14 that al-
most all the vacant land suitable for development in the 
city core is used by 2020. The blocks in the city core have 
NP and SHAPE_MN values lower than 0. This indicates 
that the urban patches grow together to former larger and 
more compact urban patches. However, most of distant 
fringe and rural areas still remain unchanged or grow at a 
slow rate under CDS.

The significant increases in NP and SHAPE_AM val-
ues indicate the increasing fragmentation and irregular-
ity of the landscape pattern with continued urbanization 
under DDS scenario. In concert with the increase in NP, 
the corresponding decrease in ENN_AM suggests that 
distance between urban patches dramatically declines. The 
intensive urban sprawl speeds up during the 2010–2020. 
The development centers appear to be less attractive for 
development compared to other scenario, which is re-
flected by the slight increase in LPI since 2010. Figure 15 
shows that the urban areas spread outward from the city 
core and along the major road. Many blocks have high 
NP and SHAPE_MN values, which indicate that the new 
development creates many smaller and more fragmented 
patches in 2020. While the central urban area changes 

Fig. 13. Binary comparison between PSS scenario and observed  landscape pattern 2010 in Class Area, NP, and 
SHAPE_MN values

Fig. 14. Binary comparison between CDS scenario and observed landscape pattern 2010 in Class Area, NP, and 
SHAPE_MN values
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slowly, there is a rapid increase in the new urban patches. 
The open spaces surrounded by developed urban land are 
created under this scenario.

Although the smallest number of urban patches 
is observed under MDS scenario, the LPI value is not 
the highest due to the development of several hotspots 
with relatively large size. Like the PSS scenario, the ur-
ban growth under MDS shows that the dominant trend 
of urban growth is the emergence of new development 
hotspots as shown in Figure  16. Most of land develop-
ment is focused on the regions, where a large numbers 
of non-urban patches are encroached into urban land to 
form compact patches. Subsequently, the areas of diffuse 
sprawl are connected to the hotspots. Concomitant with 
the urbanization trend, however, spaces between the frag-
mented patches are further urbanized and enveloped on 
each other, which is similar to the CDS scenario.

3. discussion 

By involving natural and socioeconomic variables, the 
developed CA model has proved to be able to reproduce 
the historical urban growth process and assess the con-
sequence of future urban growth. The hybrid calibration 
method combining logistic regression with trial and er-
ror was designed to calibrate the CA model, which can 
capture the complex interaction of various variables and 

promote the computational efficiency of the calibration. 
The existing validation method was improved by consid-
ering both the location and landscape pattern similarity 
to ensure that the CA model can produce more accurate 
result. Furthermore, five scenarios for 2020 were designed 
with focusing on specific urban development strategies. 
The study proposed the integration method of MCE and 
AHP that can be utilized to effectively translate the quali-
tative descriptions for scenarios into quantitative spatial 
analysis. Finally, the evaluation and comparison of the dif-
ferent scenarios presented in this paper provide an effec-
tive method for analyzing the impacts of different urban 
development strategies on landscape patterns at global 
and local scale and for supporting urban planning.

3.1. Methodology implication

The model can simulate the past urban growth and a wide 
variety of future scenarios based on the parameter values. 
Consequently, the method of parameter estimation is an 
important task. Furthermore, the calibration of CA mod-
els is difficult, particularly when there are many param-
eters to be considered in understanding spatial and tem-
poral processes of urban growth (Cheng, Masser 2004). 
Therefore, selecting an appropriate method for the study is 
a challenge. Different from other calibration method used 
in previous studies, a hybrid calibration method consisting 

Fig. 15. Binary comparison between DDS scenario and observed landscape pattern 2010 in Class Area, NP, and 
SHAPE_MN values

Fig. 16. Binary comparison between MDS scenario and observed landscape pattern 2010 in Class Area, NP, and 
SHAPE_MN values
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of the logistic regression and the trial and error has proved 
an effective and quick approach for calibrating the CA 
model in this study. The presented approach potentially 
captures the complex interaction of various environmental 
and socio-economic variables and promotes the compu-
tational efficiency of calibration. Moreover, it allows for 
sensitive analysis which demonstrates that the results of 
the CA model are sensitive to the parameter values, for 
example the neighborhood configurations and random 
variable. This is an important issue in CA models for un-
derstanding the urbanization process and its uncertainty. 

Our study agrees well with the previously reported 
the usefulness of figure of merit and landscape metrics in 
the validation of CA model (García et al. 2012; Wang et al. 
2013). While the study differed in that is the study focused 
on the effectiveness of combination of the two indicators 
in quantifying the agreement between simulated and ob-
served urban land use maps. Firstly, figure of merit value 
was used to quantify the agreement using pixel by pixel 
comparison. It is a simple but promising way to measure 
location errors (Pontius et al. 2007). Secondly, the relative 
difference of landscape metric was utilized to objectively 
assess the goodness-of-fit of the outcomes with the actual 
urban patterns. For analyzing urbanization process, the 
landscape patterns are likely to be more important than 
the absolute locations of new urban pixels (Jenerette, Wu 
2001). That is why landscape metrics were used to analyze 
the landscape patterns of model results. The rapid urban-
ization process may lead to the variation in the landscape 
patterns, which can be captured by a set of landscape met-
rics. Furthermore, each simulation will generate different 
results due to the involvement of random variables, but 
the stochastic CA can maintain stability in landscape pat-
tern (Yeh, Li 2006). Consequently, the integration of figure 
of merit with landscape metrics can provide an effective 
way to identify the suitable random variables. 

The establishment of connection between CA models 
and the urban decision making process needs to be con-
sidered as an important aspect of urban spatial models 
when such models are applied in the context of realistic 
cities. In this study, the efforts were made to illustrate a 
way in which CA models can be better linked with the de-
cision making process. The challenge for a scenario simu-
lation is to correctly define the relative importance of the 
global factors in qualitative terms, and then to translate 
the qualitative process description into quantitative sce-
narios of urban land use. This study proposed a combined 
methodology of translating the alternative futures into 
quantitative scenarios by integrating AHP, MCE and CA 
models. The pairwise function of different options quanti-
fied by AHP enables the decision makers to express their 
insights into the growth of Xuzhou city. The main advan-
tage of this method is related to the structural conceptu-
alization of decision making, in which several parameters 

may be compared, thus, bridging the gap between qualita-
tive analysis and quantitative outputs. 

The combination of scenario simulation and the 
landscape metrics has proved to be capable of making the 
processes and patterns of urban growth more prominent 
than using simulation on its own, and the landscape met-
rics also serves as a comparative platform to other cities. 
One important problem that has been often ignored by 
previous studies is the effects of scale on scenario evalu-
ation. Scale effect refers to the variation in the results of 
statistical analysis caused by the variation of scale (Buyan-
tuyev et al. 2010). In this study, two different scales were 
adopted to evaluate and compare the scenarios. The land-
scape metrics were calculated based on the block which 
makes it possible to discover and locate the patterns in 
different urban areas. Moreover, the local scale with a 
multi-temporal perspective enables us to better evaluate 
small-scale urbanization process, which cannot be detect-
ed at the global scale. The study presented here allows the 
integration of global and local scales and is able to high-
light the consequences of urbanization at different scales.

3.2. future development scenarios

The scenarios represent alternative policy, and the ways 
in which each policy could potentially unfold into the 
future. The scenarios may be of use for planners to bet-
ter understand the consequences of drivers on urbaniza-
tion (Aguilera et al. 2011; Fuglsang et al. 2013; Song et al. 
2006). BUS scenario suggests that urban development will 
continue through both expansion of existing urban areas 
and outward diffuse sprawl in the future. If it continues as 
indicated by the BUS scenario, the conflict between rapid 
urban growth demand and the limitation of scarce land 
resources will intensify. The polycentric development was 
promoted as the development strategy since 2001. Accord-
ing to the historical growth trend, however, the polycen-
tric development pattern is not significant by 2020. The 
development still focuses in the city core with rapid urban 
growth rate. A shift away from BUS might lead to signifi-
cant alteration for Xuzhou city. There are still possibilities 
to enforce the polycentric development if the master plan 
is strictly implemented as shown in PSS scenario. The im-
plementation of master plan leads to generation of new 
hotspots in fringe and rural areas for future development. 
Consequently, the closer linkage between the former city 
core and new development hotspots is established, which 
is necessary for solving the imbalance of development 
among the city core, fringe and rural areas. However, the 
development is also scattered across the study area when 
other factors are not considered. In the compact develop-
ment scenario, the development continues through infill 
in the existing city core and edge-expansion growth. The 
compact urban pattern is generally considered to be more 
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efficient in the use of natural resources. Therefore, it is 
regarded as a sustainable urban pattern (Li et al. 2008). 
However, the compact development within the city core 
makes it denser because the constraints within city core 
are not involved in the CA model. The densification of city 
core results in its limitless expansion and the loss of green 
open space, which influence the quality of urban life and 
urban environment. Concerning this shortcoming, DDS 
was simulated with the consideration of the demands of 
residents. As described in the storyline of dispersed sce-
nario, the economy growth would result in increasing resi-
dents living in the fringe and rural areas and the develop-
ment of new residential areas would be stimulated. DDS 
assumes the loss of agricultural and natural areas. The in-
creasing residents would also encourage a large increase in 
road construction, and infrastructures. The economically 
oriented scenario presents more diffuse patterns (Regin-
ster, Rounsevell 2006). The study also confirms that the 
DSS scenario presents a more diffuse sprawl pattern which 
is recognized to have a negative impact on environment 
and sustainable development. Considering this fact and 
urban development policy, in addition to the implementa-
tion of compact development, the scientific urban plan-
ning policies should also be required in order to avoid the 
limitless expansion of city core and to balance the conflicts 
among the inter-administrative regions. The demand of 
people for better residential environment also needs to be 
satisfied. This development strategy in MDS scenario op-
timizes the growth allocation in an environmentally and 
economically efficient way, which can support sustainable 
urban development in Xuzhou city.

conclusions

The methodology framework proposed for this study has 
demonstrated to be useful in monitoring and analyzing 
urban growth in Xuzhou city and in providing a support 
for decision making processes towards a sustainable de-
velopment. Some valuable results provide a better under-
standing of impact of urbanization process on landscape 
pattern. 

Besides the factors involved in this study, urban 
growth is also strongly affected by political, cultural and 
other factors, which are difficult to incorporate into spa-
tial model due to their aspatial characteristics and the lack 
of data. It is recommended that more potential variables 
should be included in the future studies to improve the 
performance of spatial models and to evaluate the effects 
of the factors on urban growth. The study only focused 
on the simulation of urban development without consid-
eration of the detailed land use categories (commercial, 
industrial, and settlement land) due to the lack of detailed 
land use data. With taking into account the interactions 
among them, it would be interesting and valuable to 

simulate the change of several detailed land use categories 
within urban areas to provide a better understanding of 
the urban land use development.
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