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temperature (LST) than the suburbs. This phenomenon 
is mainly caused by the conversion of surface thermal 
properties and the heat generated by energy consump-
tion (Li & Zhao, 2012; Solecki et  al., 2005). Given the 
fact that the impacts and hazards of UHI have been 
widespread around the world, such as accelerating en-
ergy consumption (Santamouris et al., 2015; Zhou et al., 
2019a), reducing biodiversity (Ceplova et al., 2017), in-
creasing the frequency of extreme climate events (Zhao 
et  al., 2019), and affecting the health and life comfort 
of urban residents (Fu et al., 2019; Mallen et al., 2019; 
Wang et al., 2019a). Moreover, the enhancement of the 
global greenhouse effect has also exacerbated the im-
pact of UHI on human settlements. Therefore, for the 
environmental sustainability of global urbanization and 
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Highlights

	X The study explores relationships between landscape complexity and cooling effect.
	X GI provides a stronger cooling effect in the densely built-up area than green belt.
	X GI with a simple form and aggregated configuration had a better cooling intensity.
	X The TVoE of forest and grass are different in the two regions.

Abstract. The cooling effect of green infrastructure (GI) is becoming a hot topic on mitigating the urban heat island (UHI) 
effect. Alterations to the green space are a viable solution for reducing land surface temperature (LST), yet few studies 
provide specific guidance for landscape planning adapted to the different regions. This paper proposed and defined the 
landscape complexity and the threshold value of cooling effect (TVoE). Results find that: (1) GI provides a better cooling 
effect in the densely built-up area than the green belt; (2) GI with a simple form, aggregated configuration, and low patch 
density had a better cooling intensity; (3) In the densely built-up area, TVoE of the forest area is 4.5 ha, while in the green 
belt, TVoE of the forest and grassland area is 9 ha and 2.25 ha. These conclusions will help the planners to reduce LST ef-
fectively, and employ environmentally sustainable planning.
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Introduction

As the population shifts from rural to urban areas, the 
proportion of the urban population is gradually in-
creasing. It is estimated that by 2050, approximately 
64% of developing countries and 86% of developed 
countries will achieve urbanization, most of which will 
appear in Africa and Asia (John et  al., 2014; United 
Nations [UN], 2014). Urbanization transforms natu-
ral habitats  into a manmade environment by changing 
the flow of material and energy, which inevitably af-
fects the ecosystem in various ways. One of the most 
well-known phenomena should belong to the urban 
heat island (UHI) (Voogt & Oke, 2003), which refers 
to the densely  built-up area has a higher land surface 
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human welfare, a deeper analysis of mitigating the UHI 
effect is being an emergency task than ever before.

Green infrastructure (GI) as a complex system is in-
fluenced by both the natural environment and human 
behavior (Berardi et  al., 2014; Wang et  al., 2018; Weng 
et al., 2008). It mainly contains tree canopy, green open 
spaces, green roofs, and vertical greenery systems (Rouse 
& Bunster-Ossa, 2013). This sort of land cover has a sig-
nificant cooling effect on regional temperatures, which 
has been confirmed by numerous studies (Bartesaghi Koc 
et al., 2018; Chui et al., 2018; Demuzere et al., 2014). For 
example, in London, the mean temperature reduction of 
GI was 1.1 °C, with a maximum of 4 °C cooling observed 
on some nights (Doick et al., 2014). In Copenhagen, blue-
green space provides a higher cooling-effect in summer, 
and the mean cooling extent and intensity are 150 m and 
2.47 °C (Yang et al., 2020). At the same time, studies have 
found that more complex green infrastructure (i.e., more 
semi-natural or natural land cover) can accommodate 
more rich and diverse biomes, providing better ecosys-
tem services to the city (Koc et al., 2017). In particular, the 
cooling effect was also enhanced as an important compo-
nent of ecosystem services.

In the existing literature, Fivos Papadimitriou reviews 
the different objects of complexity research, summarizes 
and classifies landscape complexity into three main cat-
egories: structural landscape complexity, functional/hier-
archical landscape complexity, and qualitative landscape 
complexity (Papadimitriou, 2010). Among them, structur-
al landscape complexity is calculated in a raster or vector 
map as quantifying the cooling effect of green space, cell 
by cell, pixel by pixel. It characterizes the spatial feature 
complexity of all landscapes and serves as the theoretical 
basis for the research on the cooling effect of GI complex-
ity in this study. 

Although diversity, heterogeneity, and connectivity 
are the key features of complex systems, the concept of 
complexity can accept different approaches and defini-
tions, and they are not unique (Ode et al., 2010). There-
fore, in current cooling studies of GI complexity, there is 
no fixed system of quantification of complexity, and the 
indicators of distribution, morphology, and area of green 
space are usually chosen, such as the urban cooling island 
(UCI) effect is affected by forest vegetation area, spatial 
distribution, cooling island composition, and surrounding 
thermal environment in a large metropolitan area (Kong 
et al., 2014b). The study based on the neighborhood envi-
ronments in Austin concluded that the larger and better-
connected landscape spatial pattern is positively correlated 
with the lower LST, while the isolated landscape pattern 
is negatively (Kim et al., 2016). And Peng et al. (2016) re-
ported that when GI coverage exceeded 70% (25 km2) of 
the total land area, the cooling effect of this landscape type 
was relatively obvious, which meant landscape composi-
tion affected the LST more than did spatial configuration 
(Peng et al., 2016).

Until now, most studies have been analyzed using 
a combination of known landscape-ecology indices, 

which leaves the disciplines of landscape ecology, geog-
raphy, and urban planning still lacking interconnections 
at the landscape level. Meanwhile, studies on the rela-
tionship between the cooling effect and complexity of 
GI have focused on the size, form, and spatial structure 
of GI, as well as comparing the differences in cooling 
effects across time series. Therefore, there is a shortage 
of forming a framework of indicators based on struc-
tural landscape complexity, containing multiple spatial 
dimensions, and detailed quantitative analysis of cooling 
effects for GI types.

Furthermore, there are still some research gaps in the 
quantification of the cooling effect. In terms of methods 
to quantify the cooling effect, existing studies on the cal-
culation of the GI cooling effect mainly take the inter-
polation of the regional average LST and the study cell 
average LST as a reference (Zhang et  al., 2017c; Zhou 
et al., 2019a). But based on the object of the cooling ef-
fect of GI, few studies investigate the GI located in the 
space with low urban density surrounding the densely 
built-up area. The cooling effect provided by these green 
spaces, called the “green belt”, is also one part of the 
important ecosystem service, which has different space 
and cooling features from the densely built-up area 
(Hernandez-Moreno & Reyes-Paecke, 2018; Imran et al., 
2019). Thus, consolidating multiple regions as a whole 
zone will limit the city planners to do the right decisions 
from a comprehensive perspective, and restricts the abil-
ity to make specific suggestions for different regions of 
the city (Ngulani & Shackleton, 2020; Rubiano, 2019; 
Wu et  al., 2019). And the specific impact degree and 
cooling intensity of GI planning in different regions on 
the urban thermal environment are well unknown, such 
as which are the key factors to provide cooling, consid-
ering the respective spatial characteristics of GI in the 
densely built-up area and its surrounding area? Is there 
an optimal threshold of landscape complexity index for 
cooling? Which GI types being parts of the urban eco-
system have the strongest cooling intensity in terms of 
landscape complexity index? What is the difference in 
the cooling threshold between the regions?

To answer these questions and improve the ability 
of urban planning to achieve the goals that build an in-
tegrated temperature regulation mechanism at the re-
gional scale and study the cold island effect of GI in 
the built-up area and its surrounding spaces, this study 
calculates and discusses the quantitative roles between 
GI and its cooling intensity in different regions by build-
ing a landscape complexity index framework in terms of 
the mature indicators. The metropolitan area of Taiyuan 
with arid climate in China was taken as the study area, 
and was divided into two regions, the densely built-up 
area with urban buildings and impervious surfaces as 
the main land use types, and the green belt around the 
densely built-up area with forests, grasslands and vil-
lages. Six indicators and LST were used to calculate the 
cooling effect of UCI between the two regions. The main 
aims are to (1) quantify the cooling intensity of GI in 
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the two regions, and compare the difference of LST with 
the trend of two directions between them; (2) identify 
the optimal landscape complexity, according to the cool-
ing intensity and efficiency of UCI; (3) determine and ver-
ify the specific cooling threshold regarding the landscape 
complexity index; (4) propose suggestions for sustainable 
development of GI planning in arid cities.

1. Materials and methods 

1.1. Study area and data preprocessing

Taiyuan is the capital of Shanxi Province, located in cen-
tral China (111° 30′– 113° 09′ E, 37° 27′– 38° 25′ N), host-
ing 4.42 million inhabitants in 2019. The city is located 
in the eastern part of the Loess Plateau, with a typical 
continental monsoon climate characteristic of the north-
ern temperate zone (Estes et al., 2016). The humid air is 
blocked by the mountains surrounding the cities, causing 
low precipitation, hot and dry environmental characteris-
tics, which is similar to most highly urbanized cities at the 
same latitude zone (Esau et al., 2019; Geletič et al., 2019). 
Its average annual rainfall is 456mm, mainly in July and 
August. Recently, the rapid development of heavy indus-
tries such as coal mining and metal smelting has led to a 
significant increase in extreme weather events, especially 
in the periphery of the built-up area (Zhao et al., 2021). 
In addition, the limited land resources of the river val-
ley plain lead to the expansion of construction land into 
the surroundings, which deteriorates the health of the 
regional environment, and threatens the stability of the 
entire ecological pattern. Taiyuan is becoming one of the 
hottest cities in central China. For example, in July 2017, 
the city broke its highest temperature record in a century, 
exceeding 40.8 °C. And in 2018, the maximum tempera-
ture exceeded 35  °C lasted twenty days. Therefore, the 
government has planned the Taiyuan metropolitan area 
including the built-up area and its surrounding areas to 
rationalize the development of the city and improve the 
cooling effect provided by the GI.

This study takes Taiyuan metropolitan area as the 
study area, covering 1,460 km2, with a population of 2.75 
million and an urbanization rate of 84.7%. By the end of 
2019, the city’s GDP had reached 55.48 billion US dol-
lars, and GDP per capita was 13,147 US dollars, with a 
steady annual growth rate of 6.6% (Bureau of Statistics, 
Taiyuan, China). However, the densely built-up area, lo-
cated in the Fenhe River Valley Plain, covers 618  km2 
where has a high population density of 3,750 persons/
km2. Although the land in the densely built-up area is 
strongly influenced by human activities, Taiyuan, as a 
national garden city in China, has good protection of 
native indigenous vegetation which are mainly evergreen 
coniferous species and deciduous broadleaf species. In-
versely, the annular space surrounding the densely built-
up area has a low population density of 522 persons/km2, 
where human activities mainly revolve around point-like 
villages without large-scale construction. The plants in 

the green belt are mainly planted forests, with evergreen 
coniferous species and deciduous broad-leaved species 
predominating. The water bodies are dominated by a res-
ervoir and upper reaches of the tributaries. This region is 
an important environmental protection land, providing 
major ecosystem services for the densely built-up area. 
Thus, based on the geography, population distribution, 
and existing physical space such as roads, buildings, 
and urban development boundaries within the Taiyuan 
metropolitan area this whole area is divided into two 
regions: the densely  built-up area and its surrounding 
green belt (Figure 1).

The data used in this study was the land use classifica-
tion dataset of the Taiyuan metropolitan area, Landsat 8 
satellite imagery, and HD Google images. The 2019 land-
use dataset came from the third national land survey in 
China, a resolution of 30 m. The operational land imager 
and thermal infrared data of Landsat8 were acquired from 
the United States Geological Survey website, with a reso-
lution of 30 m and 100 m (http://earthexplorer.usgs.gov/). 
The image was collected on August 15, 2019, capturing at 
GMT 03:06 AM. There were several reasons for choosing 
this time. On the one hand, it was a time when Taiyuan 
had just finished its rainy season, with fewer clouds and 
trees possessing abundant foliage. On the other hand, by 
comparing the average near-ground temperature in recent 
years, August could satisfy the premise of fewer clouds and 
no sudden drop in temperature, which was suitable to study 
the cooling effect of GI. HD Google images were down-
loaded from Google Earth Pro software.

The Landsat Ecosystem Disturbance Adaptive Process-
ing System was used to convert raw remote sensing data 
to surface reflectance (Masek et al., 2006). Normalization 
Different Vegetation Index (NDVI) and Modified Normali-
zation Different Water Index (MNDWI) was calculated and 
stacked into the surface reflectance image of 2019. The Sup-
port Vector Machines (SVM) technique was used to iden-
tify land cover (Chen & Yu, 2017). Land cover was classified 
into five categories: (1) farmland (annual arable land, rota-
tion land), (2) waterbody, (3) forest (including shrubland), 
(4) grassland, (5) urban land, road, bare land, and other 
impervious surfaces analyzed as the background layer. In 
this study, GI consists of farmland, waterbody, forest, and 
grassland (Figure 2b). Then, 300 random points for each 
category were generated within the overlapping area of 
Google Earth and the Landsat8 image. 1,500 points were 
used to train the classifier for the SVM based on the surface 
reflectance image. At last, to verify the accuracy of the land 
classification, the Google Earth image of Taiyuan was used 
to verify the classification results of the SVM (Congalton, 
1991). Another 300 random points for each category were 
selected to construct the Region of Interest (ROI), and the 
results of the SVM were calibrated by confusion matrix 
(Table 1). The accuracy verification result is about 89.3% 
(Table 2). The above steps were implemented in ENVI 5.3, 
mainly using the Support Vector Machine Classification 
and Generate Random Sample Using Ground Truth ROIs 
tools.
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1.2. Land surface temperature retrieval

An atmospheric correction method was used to invert the 
LST of Taiyuan (Liu et al., 2017). First, ENVI 5.3 was used 
to do radiometric calibration and correction for atmos-
pheric effects on data (Chander et al., 2009; Czapla-Myers 
et al., 2015). The Radiative Transfer Equation of the ther-
mal infrared radiance value λL  was:

( ) ( )λ λ = ε + − ε τ + ↑  ;1SL B T L  (1)
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where ε  is the surface emissivity, ( )SB T  means the heat 
radiation brightness of black body, ST  means true LST 
value (K), λ↑L  means effective bandpass upwelling radi-
ance, λ↓L  means effective bandpass downwelling radi-
ance, while τmeans band average atmospheric transmis-
sion.
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Figure 1. Study area

Table 1. The error matrix for land use classification

Land use Farm-
land

Wa ter-
bo dy

Fo-
rest

Grass-
land

Ur ban 
land, etc.

To-
tal

Farmland 292 0 0 5 3 300

Waterbody 4 283 5 0 8 300

Forest 10 2 259 17 12 300

Grassland 14 0 12 267 7 300

Urban land, 
etc. 24 0 2 3 271 300

Total 344 285 278 297 301 1500

Table 2. The result of Kappa statistics

Types Value
Prog ressive 

Stan dard 
Error a

Approx. 
T b

Approx. 
Signi fi-
can ce

Detection Kappa 0.893 0.009 69.249 0.000

Number of valid 
observations 1500 – – –

Notes: a. Unused null hypothesis. b. Asymptotic standard errors 
with the null hypothesis being used.
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where K1 and K2 are the calibration value. When it is 
Landsat8 TIRS Band 10, 1K = 774.89 ( )µ2W / m · sr· m , 

2K = 1321.08K. ε  is calculated by the NDVI threshold 
method (Julien & Sobrino, 2010; Sobrino et al., 2004).
Therefore, to calculate true LST data, two parameters 
should be obtained: the atmospheric profile parameters and 
surface emissivity ε( ). The former was obtained through 
NASA’s official website (http://atmcorr.gsfc.nasa.gov/), in-
putting the acquisition time of landsat8 data, the latitude, 
and the longitude of the regional center. This study used 
112.53E, 37.87N, and got λ↑L = 1.37 ( )µ2 W / m · sr· m , 

λ↓L = 2.37 µ2 W / m · sr· m  and τ = 0.83. The latter was 
obtained by the NDVI threshold method through vegeta-
tion coverage and NDVI (Carlson & Ripley, 1997; Zhang 
et al., 2017a). Finally, the true surface temperature was cal-
culated by converting the blackbody radiation brightness by 
Planck’s law function (Figure 2a).

1.3. Indicators of landscape complexity

Six relevant indicators were selected from three dimen-
sions of landscape topography, landscape composition, 
and spatial configuration to characterize the landscape 
complexity of GI. They were Terrain niche index (TNI), 
Simpson’s diversity index (SIDI), Percent of landscape 
(PLAND), Patch density (PD), Landscape division index 
(DIVISION), and Fractal dimension index (FDI) (Ta-
ble 3). PLAND, SIDI, DIVISION, and PD were calculated 
by the moving window method in Fragstats4.2; TNI and 
FDI were calculated by the ArcGIS grid calculator.

1.3.1. Landscape complexity indicators of landscape 
topography
The traditional geographic analysis mainly studied sin-
gle or multiple terrain variables through the Digital 

Figure 2. (a) The spatial distribution of LST in Taiyuan 2019; (b) The distribution of landscape elements in Taiyuan, 2019

Table 3. The calculation of landscape complexity indicators

Dimension Index 
(abbreviation) Level Description (unit) Equation

Landscape 
topography

Terrain niche 
index (TNI) Landscape

E and S are the elevations and slope values of 
any point in the area. E  and S  are the average 
elevation and average slope value of the area 
where the point is located. (none)

    
= + +    

    
TNI log 1 · 1E S

E S

Landscape 
composition

Simpson’s 
diver sity index 
(SIDI)

Landscape
Pi is the proportion of landscape occupied by 
patch type (class) i, m is the number of patch type 
(class). (none) =

= −∑ 2

1
SIDI 1

m

i
i

P

Percent of 
landscape 
(PLAND)

Class
Pi  is the proportion of landscape occupied by 
patch type (class) i. aij is the area (m2) of patch ij. 
A is the total landscape area (m2). (Percent)

( )== = ∑ 1PLAND 100
n

iji
i

a
P

A

Spatial 
configuration

Patch density 
(PD)

Landscape/ 
Class

A is the total landscape area (m2). ni is the total 
area of landscape element i. (n/km2) ( )=PD 10 000

A
in

Fractal 
dimension 
index (FDI)

Landscape/ 
Class

A(r) is the size of a certain patch, P(r) is the size 
of a certain patch’s perimeter, D is the fractal 
dimension. (none)

( ) ( )=
2ln lnA r P r
D

Landscape 
division index 
(DIVISION)

Landscape/ 
Class

aij  is the area (m2) of patch ij. A is the total 
landscape area (m2). (proportion)

=

   = −       
∑

2

1
DIVISION 1

n
ij

i

a

A

a) b)
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Elevation Model (Chian & Wilkinson, 2015; Noori 
et al., 2019). However, at the city scale, the interior and 
exterior may have different topography. To explore the 
impact of different topography, TNI is a comprehen-
sive indicator of slope and elevation, which can reflect 
the different biogeographical environments where GI 
is located (Gong et  al., 2017). The high elevation and 
large slope of the region indicate a high value of TNI; 
otherwise, it means low. While the area with low eleva-
tion and large slope, or high elevation and small slope, 
the TNI value tends to be average. In other words, the 
indicator summarizing the characteristics of geomor-
phology can make it easier to discover and understand 
the relationship with LST.

1.3.2. Landscape complexity indicators of landscape 
composition
Landscape composition includes PLAND and SIDI. As 
one of the commonly used indicators in ecological re-
searches (Bokaie et  al., 2016), PLAND is an important 
factor for studying the correlation between land cover 
and LST, which can effectively characterize the impact of 
different GI types on LST (Ogashawara & Brum Bastos, 
2012). At the same time, to minimize the redundancy with 
PD (Simpson, 1949), SIDI has a more intuitive explana-
tion than Shannon’s diversity index and has better statisti-
cal characteristics, which is less sensitive to the existence 
of rare GI types (McGarigal et  al., 2002; Romme, 1982; 
Wu et al., 1997).

1.3.3. Landscape complexity indicators of spatial 
configuration
Studies have confirmed that different forms and com-
plexity of urban spatial patterns have a significant ef-
fect on LST (Li et  al., 2018; Zhou et  al., 2011). In this 
study, the spatial configuration consists of PD, DIVI-
SION, and FDI. PD refers to the number of patches 
per unit area, which represents the distribution den-
sity of GI patches, reflecting the heterogeneity of GI. 
DIVISION reflects the degree of patch aggregation by 
calculating the probability that two randomly selected 
objects are not in the same patch, which can be calcu-
lated at landscape and class level (Timm & McGarigal, 
2012). This algorithm circumvents the shortcomings of 
considering only the involved proximal focus classes, 
as well as the metrics, such as the algorithm of AI in-
dex (McGarigal et al., 2002). FDI refers to the ratio of 
the log of patch circumference to the log of patch area, 
which has a better explanation for irregular geometry 
(Danila et  al., 2019). This algorithm can explain most 
ecological processes and natural phenomena driven by 
mathematical and physical models, which cannot be 
described by Euclidean geometry (Burn, 1984). It em-
phasizes the multidimensional relationship between the 
whole and the parts of GI (Meng et  al., 2019), which 
can truly characterize the two-dimensional geometric 
morphology of non-regular space. 

1.4. Moving-window analysis

As confirmed by previous research, the cooling effect of 
GI has a scale effect (Naeem et  al., 2018), which means 
different window sizes will affect the accuracy of the cal-
culation results. It has also shown the proportion of GI 
within a certain area is one of the key factors affecting the 
cooling effect (Venter et al., 2020). The percentage of GI 
(PGI) was selected to determine the optimal size of the 
window. Following the principle of avoiding the window 
to segment the complete GI patch while moving, the patch 
sizes needed to be clarified. In Taiyuan metropolitan area, 
the average GI patch was about 0.29 km2 (approximately 
0.54×0.54  km), and 85% of patches were smaller than 
0.9×0.9 km. Moreover, limited by the 30m resolution of 
the data, the window size was set to an integer multiple 
of 30 m. Therefore, 0.6×0.6 km, 0.9×0.9 km, 1.5×1.5 km, 
and 1.8×1.8 km were selected to compare the relationship 
between LST and PGI at different sizes (Table 4).

If the size of moving window is too small, it will cut 
the complete patch, which means the cooling effect on 
LST will be miscalculated. On the contrary, the cooling 
effect of patches with fewer GI will be weakened. Mean-
while, the larger window size also means a reduction in 
the number of samples. It was important to realize that 
in the metropolitan area, the densely built-up area has a 
smaller average GI patch size than the green belt. Thus, to 
ensure the accuracy of the correlation results, 1.5×1.5 km 
was chosen as the window size. 

In summary, the Analysis parameters were set to the 
moving window mode in Fragstats software to calculate 
the landscape complexity indicators, except for TNI. The 
ModelBuilder tool in ArcGIS 10.3 was applied to con-
struct the moving window method, and the average TNI 
in each window was calculated according to the formula, 
as well as the average LST (the average LST of each win-
dow was calculated by weighting the average LST of all 
rasters within the window range). The above moving win-
dows were calculated by setting the conditions that the 
shape of the window was a square with a side length of 
1.5 km, and the horizontal moving distance of the window 
was one raster (30 m).

Table 4. Relationship between PGI and LST in different 
window sizes

Moving 
window size

Correlation 
equation R2 p Number of 

samples

600×600 m y = 1.83 – 0.05x 0.428 <0.01 4161
900×900 m y = 1.97 – 0.05x 0.464 <0.01 1643

1200×1200 m y = 2.56 – 0.06x 0.622 <0.01 616
1500×1500 m y = 2.58 – 0.06x 0.655 0.01 425

1.5. Definition and calculation of UCI intensity and 
TVoE

Many studies have demonstrated the influence of the GI 
scale and the improvement of vegetation coverage on the 
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UHI effect (Guo et al., 2019; Shi et al., 2020). Currently, 
most studies directly use LST of the study area obtained 
from the reversal as a measure of the GI cooling effect 
(Zhang et al., 2017b). Some articles quantify the specific 
cooling effect of GI by the difference between the regional 
LST and the study cell LST (Wu et al., 2020; Zhou et al., 
2019b). In this study, the cooling intensity was used to 
represent the cooling capacity of GI, also known as urban 
cooling island (UCI) intensity. And the cooling efficiency 
was defined as a logistic curve between landscape com-
plexity index and UCI intensity, which meant when the 
slope of the curve started to decrease after exceeding a 
point, this point was the threshold value of cooling ef-
ficiency (TVoE) (Augusto et al., 2020).

Based on the minimal research unit of the moving 
window, UCI intensity was calculated by the Min-Max 
Normalization method, with the difference value (∆LST ) 
between the average LST of each moving window unit and 
the average LST of the two regions (Zhou et al., 2019b). 
In this study, ∆ mT  was defined as the average LST of the 
densely  built-up area and green belt respectively. The 
formula of the different value was: ∆ = ∆ −∆LST g mT T , 
where ∆ gT  represented the average LST of each window. 
TVoE was calculated by the logarithmic function curve 
between the complexity indicator (independent vari-
able) of each window and the UCI intensity of the region 
where it was located. Specifically, according to the change 
of TVoE curve, the grid of different sizes was added to 
find the value of the complexity indicator corresponding 
to TVoE. As the landscape complexity index (independent 
variable) increased from small to large, before this TVoE 
point located on the curve, the rise of ∆LST  was obvious. 
After the point, the independent variable continued to in-
crease, and the increased amplitude of ∆LST  significantly 
decreased. 

1.6. Statistical analysis 

This study sought to explore the relationship between 
landscape complexity index and UCI intensity. On the one 
hand, analysis of variance (ANOVA) was used to iden-
tify the difference of LST fluctuation between the dense-
ly  built-up area and the green belt. On the other hand, 
Pearson’s correlation coefficient (PCC) was used to reflect 
the pairwise correlation between independent variables 
and the LST reduction. The principal component analysis 
was chosen to calculate the importance and weights of the 
indicators. At landscape level, statistical analysis was car-
ried out to examine the relationship between TNI, SIDI, 
PD, FDI, and DIVISION of GI and UCI intensity. At class 
level, statistical analysis  was to calculate the correlation 
between the complexity index of each GI type and UCI 
intensity, and TVoE of different GI types. All the correla-
tions are analyzed by partial correlation analysis.

Based on SPSS26.0 and Excel software, min-max nor-
malization was set that when the value of ∆LST was small-
er, the larger the normalized value was. Linear regression 
analysis was used to calculate the impact, with landscape 

complexity index as the independent variable, and UCI 
intensity as the dependent variable. And to calculate the 
importance and weight of the indicators, the values of the 

indicators were also normalized. Equation 
−
−
min

max min
ix

 was 

used for the indicators positively correlated with the UCI 

effect, and 
−
−

max
max min

ix
 was used for indicators with nega-

tive correlations. Finally, TVoE of different GI types were 
obtained by fitting logarithmic function curves formed by 
UCI intensity and complexity indicators. 

Furthermore, to verify the accuracy of TVoE, the two-
way equalization method was used on the x-axis where 
PLAND was located. Firstly, based on the monotonically in-
creasing nature of the logarithmic function and the thresh-
old of “law of diminishing marginal utility”, the data set of 
complexity indicators was divided into two equal levels, and 
the threshold was initially verified to be less than the middle 
value or not. The intermediate value was calculated from 
the maximum and minimum values of indicators. Simul-
taneously, after identifying the value of the indicator corre-
sponding to TVoE, the interval from this value to 0 was di-
vided into two levels equally. Dividing an interval into two 
levels can better ensure the continuity and credibility of the 
data compared to one level. On the basis of the interval of 
these two levels, two new levels with the same interval were 
partitioned on the x-axis, where greater than TVoE. If the 
trends of the fitted curves in the pre-TVoE and post-TVoE 
levels were opposite, the calculation of TVoE was accurate. 
If not, TVoE needed to be recalculated.

2. Results

2.1. Spatial characteristics of GI and relationship 
with LST

The result showed that the distribution of LST was close-
ly related to the spatial characteristics of the GI. It was 
similar to previous studies which proved that if GI had 
a larger area, it would have a higher cooling effect (Jiao 
et al., 2017). The GI of the densely built-up area and the 
green belt covered the area of 209.08 km2 and 655.16 km2 
respectively, and the average LST () was 32.49  °C and 
29.76 °C, with a difference of 2.73 °C. By matching with 
HD Google images, the highest LST points were found in 
the areas where factories were clustered: No.  1 Taiyuan 
Iron and Steel Group, No.  2 Taiyuan Heavy Machinery 
Group Corporation, No.  3 Foxconn Taiyuan Industrial 
Park, and No. 4 Beige Town, where had less GI coverage 
and consumed a lot of energy (Figure 2). As a result, these 
areas were highly susceptible to the heat island effect where 
the LST was much higher than the rest of the regions.

Meanwhile, considering the influence of the surround-
ing GI in the densely  built-up area, as well as previous 
research experience, the area 500 m from the boundary 
line was excluded in this study as an interference zone 
(Du et al., 2017; Hamada & Ohta, 2010). The −∆ m reT  in 
the two regions were 31.63  °C and 29.41  °C, which had 

file:///D:/Audrone_Gurkliene/_Audrone/Zurnalai/TEEL/_2021/15573/javascript:;
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been recalculated (Table 5). Compared with the impervi-
ous surface, the LST affected by UCI in the two regions 
were 1.99 °C and 1.43 °C. And excluding the waterbod-
ies as areas with the lowest LST, the difference between 
the −∆ m reT  of GI and the impervious surface is 2.7  °C 
in the densely built-up area, while that in the green belt 
is 1.58 °C.

To gain a better understanding of the continuous 
change between GI and LST, the east-west (E-W) and 
south-north(S-N) directions were selected with a cut line 
each with the 3D Analyst tool in ArcGIS (Figure 2a). Fig-
ure 3a showed the line crossed the West Mountain and the 
southern part of densely built-up area, having a trend of 
stable fluctuations of LST within the range of GI such as 
forests and shrubs. When transitioning from GI to the im-
pervious surface, LST increased significantly. Along with 
the W-E profile, the variance of LST in the two regions 

were 10.18 and 5.24. Kurtosis of the densely built-up area 
(2.78) was higher than the green belt (0.98), which in-
dicated that the LST fluctuation of the green belt on the 
W-E was smaller than that of the densely built-up area. 
Figure 3b showed that the LST of GI in densely built-up 
areas was slightly higher than the GI in the green belt. The 
extremely low value of LST occurred in the forest of the 
densely built-up area, and the high values occurred in the 
farmland near the development zone. Along with the S-N 
profile, the variance of LST on the two regions were 7.72 
and 6.91, which meant the fluctuation of LST was similar.

2.2. Influence of landscape complexity on GI’s 
cooling effect at landscape level

By comparing the relationship between the landscape 
complexity of GI and the cooling effect, the correlation 

Table 5. Descriptive statistics of LST in Taiyuan, 2019

Location
LST (°C) Average LST of GI (°C) Average 

LST of TIS 
(°C)Max. Min. ∆ mT −∆ m reT Farmland Forest Grassland Waterbody

Densely built-up area 54.31 27.33 32.49 31.63 32.92 30.44 31.67 28.63 33.62
Green belt 38.24 26.29 29.76 29.41 30.64 29.17 30.03 27.13 30.84

Note: Max. means the maximum value of LST; Min. means the minimum value of LST. TIS means the average LST of impervious 
surface.

Figure 3. (a) The trend of LST and land use along with the W–E profile; (b) The trend of LST and land use along with the N–S 
profile. Urb. means the densely built-up area; Sub. means the green belt. The legend is the same as in Figure 2b

a)

b)
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results of the densely built-up area and the green belt had 
some differences (Table 6). For the densely built-up area, 
the result indicated that there was no significant correla-
tion between the cooling effect of GI and TNI. As the only 
indicator of landscape composition at landscape level, 
SIDI had a strong influence on cooling the UHI, which 
was consistent with the value of the weights (Figure 4a, 
Table 6). Meanwhile, among the spatial configuration in-
dicators, the positive correlation between PD and UCI 
intensity (R2 = 0. 213, p < 0.05) and the positive correla-
tion between DIVISION and UCI intensity (R2 = 0.053, 
p < 0.05) indicated that a discrete and high patch density of 
GI was likely to have greater cooling effects than a smaller 
number of aggregated GI. FDI, as the ratio of patch cir-
cumference to the area, reflected that GI with simpler 
form had a stronger cooling effect (Figure 4a).

For the green belt, the topography of GI had consider-
able influence on the cooling effect, which meant that GI 
in complex terrain had a positive effect on alleviating the 
UHI effect, such as high-altitude forests and bushes on 
large slopes. According to the curve in Figure 4b, the equa-
tions of FDI and LST were as follows: = −1.18 0.95 ·y x  
(R2 = 0.134, p < 0.05), which showed when the value of 
FDI was bigger than 1.2 and tended to 1, UCI intensity 
gradually increased. The equation of DIVISION and UCI 
intensity was as follows: = −1.6 0.06 ·y x  (R2  =  0.047, 
p  <  0.05), which showed when the value of DIVISION 
was larger, the cooling effect gradually decreased. Accord-
ing to the weights, the importance of DIVISION together 
with TNI for UCI intensity was 48%, nearly half, although 

the distribution of GI was less correlated with the cooling 
effect. Thus, in this case, aggregated configuration and a 
simple form of GI had a better cooling effect in the green 
belt (Table 6).

The calculation of multiple sets of data showed that the 
cooling effect of GI was closely related to the topography 
and configuration. Comparing the relationship between 
landscape complexity index and UCI intensity in the two 
regions, it found that GI with a simpler form tended to 
have a better cooling effect at landscape level. The more 
aggregated configuration the GI is in the green belt the 
better its cooling effect, which is the opposite of the dense-
ly built-up area.

2.3. Influence of landscape complexity on UCI 
intensity at class level

To further explore the influence of landscape complex-
ity index on UCI’s cooling efficiency, and calculate TVoE, 
this study selected the indicators which had a significant 
correlation with UCI intensity to identify the difference 
between the densely built-up area and the green belt. It 
should be noted that the landscape complexity of farm-
land and waterbody in cities was more affected by human 
activities and climate than the other GI types. Therefore, 
in the arid city, forest and grassland were taken as the 
main research object.

In the densely  built-up area, UCI intensity was sig-
nificantly positively correlated with the PLAND of farm-
land, forest, and waterbody, and significantly negatively 

Table 6. Relationships between landscape complexity index and UCI intensity

Zone Mea sure TNI SIDI PD FDI DIVISION

Densely built-up 
area

PCC 0.035 0.285** 0.352* –0.385** 0.231**

p 0.549 0.000 0.038 0.002 0.000
Weights 0.15 0.23 0.21 0.17 0.24

Green belt
PCC 0.728** –0.069 –0.213** –0.376** –0.086**

p 0.000 0.073 0.000 0.000 0.026
Weights 0.27 0.16 0.16 0.19 0.21

Note: **. at 0.01 level (two-tailed), significant correlation; *. at 0.05 level (two-tailed), significant correlation.

Figure 4. (a) Relationship between landscape complexity index and UCI intensity in the densely built-up area; (b) Relationship 
between landscape complexity index and UCI intensity in the green belt

a)

b)
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correlated with the DIVISION of farmland, forest, and 
waterbody (Table 7). This indicated that water bodies with 
high specific heat capacity properties, as well as forests 
with abundant greenery possessed a great cooling effect. 
Meanwhile, the farmland with seasonal variation in crops 
possessed a slightly lower cooling potential than forests in 
the context of this study. As shown in Figure 5, the forest 
with a distribution of aggregation and the high percent-
age area had a better cooling effect than the fragmented 
one, and the logarithmic function of UCI intensity and 
PLAND-Forest was: y = 0.0577ln(x) + 0.346 (R² = 0.2329, 
p < 0.01). Results showed that when the value of PLAND 
was from 2% to 0%, the curve was very steep, indicating 
that cooling efficiency increased rapidly with the increase 
of forest area proportion in this interval. However, as the 
proportion of forest area increased larger, the red line 
tended to be horizontal, meaning that cooling efficiency 
gradually decreased and approached a stable value indefi-
nitely.

Furthermore, the two-way equalization method was 
used to verify TVoE. Firstly, in the densely built-up area, 
the maximum PLAND value was about 60% and the mini-
mum value was tending to be 0, which meant the interme-
diate value was 30%. It showed that TVoE was less than 
30% in Figure 6. Meanwhile, TVoE was 2%, which indi-
cated that the PLAND-Forest was divided into 6 levels: 
PLAND.1 (0–1%), PLAND.2 (1–2%), PLAND.3 (2–3%), 
PLAND.4 (3–4%), PLAND.5 (4–30%) and PLAND.6 
(>30%). Although the bivariate correlations in some sub-
plots were not high, the linear trends before and after the 
2% had verified the accuracy of TVoE. Figure 6 indicated 
that PLAND had indicated that the relationship between 
PLAND and UCI intensity showed an opposite trend before 
and after the value of 2%. The result verified the credibility 
of TVoE, but also showed that under the same research 
unit, the cooling effect increases with the area of forest.

In the green belt, the impact of the spatial configura-
tion indicators of the forest with UCI intensity was sig-
nificant, and PLAND of the forest had a greater impact 
on the cooling effect, which was similar to the results of 
the densely built-up area (Table 7). The result showed in 
Figure  7 that when the red line exceeded the PLAND 

Figure 5. (a) The result of UCI intensity and TVoE of PLAND-Forest in the densely built-up area;  
(b) Relationship between UCI intensity and DIVISION-Forest in the densely built-up area

a) b)

Table 7. Relationships between landscape complexity of various 
GI types with UCI intensity

Zone Indicator GI type PCC p Weights

Densely 
built-up 
area

FDI

Farmland 0.242* 0.016 0.244
Forest 0.015 0.876 0.233
Grassland 0.070 0.735 0.232
waterbody -0.450** 0.000 0.291

DIVISION

Farmland -0.276** 0.000 0.222
Forest –0.276** 0.000 0.268
Grassland -0.097 0.260 0.237
waterbody -0.474** 0.000 0.273

PLAND

Farmland 0.291** 0.000 0.229
Forest 0.396** 0.000 0.248
Grassland 0.134 0.118 0.220
waterbody 0.616** 0.000 0.303

Green 
belt

FDI

Farmland -0.252** 0.000 0.278
Forest 0.042 0.359 0.217
Grassland –0.081 0.345 0.300
waterbody -0.116** 0.010 0.205

DIVISION

Farmland 0.221** 0.000 0.243
Forest -0.656** 0.000 0.315
Grassland 0.084 0.063 0.133
waterbody -0.290** 0.000 0.309

PLAND

Farmland -0.290** 0.000 0.225
Forest 0.743** 0.000 0.249
Grassland 0.323** 0.000 0.280
waterbody 0.096* 0.034 0.246

Note: **. at 0.01 level (two-tailed), significant correlation; *. at 
0.05 level (two-tailed), significant correlation.

value of 4%, the slope of the curve started to decrease, 
which meant TVoE of PLAND was 9 ha. And the range 
of PLAND value was from 0 to 100%. To verify the result, 
the value of PLAND was divided into 6 levels: PLAND.1 
(0–2%), PLAND.2 (2–4%), PLAND.3 (4–6%), PLAND.4 
(6–8%), PLAND.5 (8–50%) and PLAND.6 (>50%). Spe-
cifically, as Figure  8 showed, the PLAND-Forest had a 
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trend of positive relationship within 0–4%, and this lin-
ear relationship became negative when the value became 
4–8%. Meanwhile, the cooling effect decreased as the DI-
VISION values of the forest rose, which meant that if the 
large area forest had an aggregated spatial structuration, 
it could provide a better cooling effect.

Unlike the densely built-up area, PLAND of grassland 
in the green belt had a significant correlation with UCI 
intensity (PCC  =  0.323**, p  <  0.01). Based on TVoE, it 
showed that the value of threshold was in the interval of 
less than 50% PLAND-Grass. Thus, the PLAND-Grass was 
divided into 6 levels: PLAND.1 (0–0.5%), PLAND.2 (0.5–
1%), PLAND.3 (1–1.5%), PLAND.4 (1.5–2%), PLAND.5 
(2–50%) and PLAND.6 (>50%) (Figure  10). The results 
showed that the relationship between PLAND-Grass and 
UCI intensity had an opposite trend before and after the 
value of 1% (Figure 10). However, we found in PLAND.5 
that increasing the grass area did not necessarily exist the 
cooling effect. This was related to the limitation of the 
sample size and the division of the sample area, which 

might not truly reflect the influence of grassland on UCI 
intensity.

The calculation of PLAND (Figure 5, 7, and 9) indi-
cated that, in an area of 1.5×1.5 km, 2% of forest area in 
the densely  built-up area, 4% of forest area, and 1% of 
grassland area in the green belt had the highest cooling 
efficiency, which confirmed that forest with a compact 
distribution owned the good cooling effect, in this arid 
basin city. 

3. Discussion
3.1. Relationships between the UCI intensity and 
different types of GI
The results showed that in the densely built-up area, GI 
with multiple types of dispersed distribution and having 
a simple shape can significantly reduce LST, while in the 
green belt GI with aggregated configuration and a simple 
form has a better cooling effect. Meanwhile, the larger and 
more densely distributed a forest is, the greater its ability 

Figure 6. Verification of TVoE on PLAND-Forest in the densely built-up area

Figure 7. (a) The result of UCI intensity and TVoE of PLAND-Forest in the green belt;  
(b) Relationship between UCI intensity and DIVISION-Forest in the green belt

a)                             b)
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Figure 8. Verification of TVoE on PLAND-Forest in the green belt

Figure 9. The result of UCI intensity and TVoE of PLAND-Grass in the green belt

Figure 10. Verification of TVoE on PLAND-Grass in the green belt
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to mitigate the UHI effect. This study clearly explains the 
dependence of UCI intensity on different GI types, and 
these differences include internal structural characteris-
tics of GI and external environmental characteristics. On 
the one hand, the TNI was an important indicator of the 
environmental characteristics, which had a strong positive 
correlation with UCI intensity in the green belt. It includes 
the impact of different geographical environments on the 
UCI intensity of GI such as the plain and mountain. For 
instance, with the elevation increasing, the relative tem-
perature of the land surface tends to decrease (Novikmec 
et al., 2013), which explains that different elevations and 
slopes show strong interactions with other ecological fac-
tors to enhance the cooling effect. A study in Hangzhou 
has also been argued that the shading, slope direction, 
slope, and elevation of the mountain are linearly corre-
lated with LST. And the more shading formed, the lower 
the LST of the corresponding region (Peng et al., 2020). 
These shading effects, thermal mass effects, obstruction 
of airflow, and latent heat exchange due to the formation 
of the mountain’s vertical features can have an impact on 
the variation and identification of regional LST, and are 
subject to more in-depth study (Equere et al., 2021).

However, within the densely built-up area located in 
the river valley, the topography is less undulating and 
space is flatter, which explains the relationship between 
TNI and UCI intensity is not significantly correlated.

On the other hand, FDI and DIVISION, as indicators 
of spatial structure within the GI, were important driv-
ers of regional LST at landscape level (Table 6). FDI was 
significantly negatively correlated with the UCI intensity 
and DIVISION had a significantly positive correlation in 
the densely built-up area, which was the opposite of the 
results from the green belt. These results differed from the 
findings of Chinese cities with a humid climate such as 
Suzhou and Changsha (Weng et  al., 2007; Zhang et  al., 
2017b). It suggested that the cooling effect of the spatial 
configuration was influenced by humidity as a climatic 
factor, as also argued in the study of Rasul et al. (2015). 
The simple shape of the GI reduced the contact surface 
with the surrounding land, thus reducing the influence 
from the outside on the cooling effect of GI (Kong et al., 
2014b). The difference in the relationship between DIVI-
SION and the cooling effect in the two regions showed a 
high correlation between the cooling effect and the land 
surrounding the GI, which meant the dispersed GI could 
effectively cool the UHI.

However, the dispersed GI was also more susceptible 
to the influence of heat sources. The higher the number 
of heat sources and maximum temperature in the densely 
built-up area compared to the green belt, the greater its 
effect on the dispersed GI. Therefore, the aggregated GI 
in the densely built-up area might have a better cooling 
effect. As some studies have shown that clustering or less 
fragmented patterns of green space are more effective at 
reducing LST than dispersive patterns (Fan et al., 2015). 
It is noteworthy that some of the studies took different 

methods. For example, an article used the Normalized 
Compactness Index to calculate the arrangement of GI 
in the Beijing metropolitan region (Zhang et al., 2017c). 
The core algorithm for this indicator was the Euclidean 
distance, which equated disparities between different at-
tributes of a sample. And the result was that if the area 
became smaller, the denser the green patch, the cooling 
effect would weaken. A result of another study showed 
that the uniformly distributed green space has a greater 
cooling effect, rather than the aggregation of large areas 
of green space in Baotou (Bao et al., 2016). It used the k-
nearest neighbor algorithm to calculate the nearest neigh-
bor index based on the mean distance from each feature 
to its nearest neighboring feature. The algorithm in this 
study was explained in section 2.3. This kind of difference 
may be due to the different algorithms, and the climatic 
characteristics of the different study areas, which should 
be clarified with contrast experiments in the same space.

Furthermore, this study explored that within a unit 
area, forests with more aggregated distribution and larger 
area proportion showed a better cooling effect, and there 
was TVoE of GI in the two regions. The concept of TVoE 
is from the “law of diminishing marginal utility” in eco-
nomics (Zhang et  al., 2019). In terms of the landscape 
complexity index, different GI types need a minimum 
value to achieve the cooling effect, which represents that 
if the value exceeds the threshold, the cooling efficiency 
decreases. In this study, the results were consistent with 
existing research, which showed that if the percentage of 
forest area was higher, the UCI intensity would be strong-
er. And when the area percentage of the forest increased 
by 10%, the LST decreased by about 0.83 °C (Kong et al., 
2014a). Within the range of 1.5×1.5 km, TVoE of PLAND-
Forest in the densely built-up area was calculated to 2%, 
about 4.5 ha. And this indicator’s value in the green belt 
was 4%, about 9  ha. For example, in cities with humid 
climates at low latitudes, when the vegetation is rich and 
healthy, and the temperature of GI patches is high, 0.92–
0.96 ha patches have the optimal cooling effect (Fan et al., 
2019). TVoE of the Chinese city Fuzhou is 4.55  ha (Yu 
et al., 2017). This difference value of TVoE has a certain 
relationship with the geographical environment. Due to 
the lack of surface water resources, it is impossible to ef-
fectively connect the blue-green infrastructure (Sun et al., 
2018). 

The result also found that the grassland with compact 
configuration and simple shape could effectively reduce 
LST in the green belt. Understandably, grassland has a 
lower impact on cooling effect than forest (Table 7), ba-
sed on the fact that forest has more complex plant mat-
ching and structure than grass and shrubs (Masoudi & 
Tan, 2019). Plants improve LST by shading the canopy 
and transpiration of leaves (Rahman et al., 2017). The in-
crease of forest area proportion undoubtedly enhances the 
transpiration of vegetation and the mean humidity of the 
region, which has been confirmed by Rasul et al. (2015) 
studying of cities in the dry season.
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3.2. Implications for GI planning strategies

Studies in the past had proved that adjusting the area and 
structure of green space could effectively reduce the LST. 
A strong correlation between the cooling effect and the 
indicators such as the shape, size, and distance of green 
space had been demonstrated (Rahman et al., 2015). At 
landscape level, the results of this study showed that a 
scattered GI system with the simple form and rich GI 
composition in the densely built-up area, and a compact 
GI system with the simple form and less diversity of GI 
types in the green belt might be the most practical and 
efficient way to cool the UHI (Figure 4), which were con-
sistent with the results of some articles, such as the fractal 
dimension and distribution  of GI had a positively cor-
related with the cooling effect in Maryland (Zhou et al., 
2011), and the UCI intensity was negatively correlated 
with the dispersive distribution of GI in Tehran (Bokaie 
et al., 2016). The findings of this study did not represent 
the best way to mitigate the UHI in all cities, but were still 
highly informative for comparative analysis of study areas, 
especially for cities with similar latitudes.

Further, regarding the effect of GI on regional UHI, 
there had been many studies showing a positive correla-
tion between GI size and UCI effects, but this pattern was 
not fixed (Bowler et al., 2010; Monteiro et al., 2016). And 
some papers documented that there was a threshold for 
the UCI effect of the greenfield scale (Du et al., 2017; Sun 
& Chen, 2012). It‘s worth noting that in the constant area 
of green space, the number of green patches could increa-
se or decrease the regional LST in Changchun, depending 
on whether the number was larger than a threshold (Yang 
et al., 2017). 

In this study, the threshold value of efficiency of the 
forest was 4.5 ha in the densely built-up area. This result 
is very similar to two other cases where 4.55 ± 0.5 ha and 
5 ha were revealed to be the optimal green space size for 
cooling, respectively (Zhang et  al., 2017c; Jia, 2009). It 
also found that GI with simple and dispersed morpho-
logy had better UCI intensity. However, according to the 
laws of urban development, it shows that the proportion 
of construction land area in the densely built-up area will 
be continuously increasing, which will lead to a massive 
reduction of the forest. Therefore, for urban planning and 
management in the densely built-up area of Taiyuan, for-
ests are considered as the main type in the GI composi-
tion, and the cooling effect can be enhanced by design-
ing a regular shape and controlling the area of individual 
patches to 4.5 ha. Meanwhile, increasing the degree of ag-
gregated will fortify the energy and information exchange 
of the forest to the surroundings, and enhance the cooling 
effect (Oliveira et al., 2011).

For the green belt, TVoE of the forest area and grass-
land areas were 9 ha and 2.25 ha respectively, but this did 
not mean that GI should be limited to this scale to form 
the UCI. TVoE in the green belt is used as a lower limit 
for the patches’ area, which is different from the thresh-
olds in the densely built-up area. TVoE is set in the main 

ecological space of the city to safeguard the aggregation 
and integrity of GI patches and to prevent fragmented 
green spaces caused by over-urbanization. For example, 
with sufficient land, large integrated country parks and 
woodlands can be planned to provide more ecosystem 
services to the region. To increase the area of GI in high 
latitudes and large slopes to encourage privately contract-
ed woodland conservation, rather than competing with 
older urban areas (Maimaitiyiming et al., 2014). Insisting 
on strict control of GI in the green belt, gradually increas-
ing the forest coverage area will provide cool islands for 
the entire city (Wang et  al., 2019b). Unlike the densely 
built-up area, the landscape complexity of grassland is 
also one of the important factors for reducing LST in this 
region. Increasing the proportion of grassland area can 
effectively cool the UHI. Furthermore, the cooling effect 
of the distribution and shape of grassland should also be 
paid attention to. Although the correlation between these 
indicators and the UCI intensity is not significant, the law 
of influence is consistent, both of the two regions. Espe-
cially, in the cities with an arid climate, this kind of cor-
relation has some reference value for GI planning (Myint 
et al., 2015).

Therefore, for the GI planning and management of 
the Taiyuan metropolitan area, about 4.5 ha is the most 
effective size of forest in the densely built-up area to re-
duce LST. The 9 ha of forest area and 2.25 ha of grassland 
area have the most optimum cooling effect in the green 
belt. At the same time, it should also be considered that 
a simple form of GI should be arranged dispersedly and 
combined with multiple types in the densely built-up area, 
and a simple form of GI should be arranged centrally with 
high TNI in the green belt. While the area located in the 
junction of the two regions, is frequently affected by urban 
development, more research is still needed. The method 
of this study is valuable for dividing the best research unit 
and TVoE of GI.

3.3. Limitations and future research

It should be noted that there are some limitations to this 
study. Firstly, limited by the cloud cover of remote sens-
ing images in the study area, this study selects one remote 
sensing image in the early morning of summer 2019 as 
the basic data of land use. The selection of one single data 
set ignores comparative analyses of UCI at different times, 
such as seasons and day-night, which can affect the UCI 
effect (Peng et al., 2018). Secondly, LST was influenced by 
many dynamic factors, such as natural and human activi-
ties. Thus, the influence of landscape complexity on LST 
and the threshold of the presence of GI area in the re-
gion proposed in this study might be applicable in regions 
where the context of season, geographic environment, and 
urban development was similar to that of the Taiyuan 
metropolitan area. Thirdly, even for the same type of GI, 
the different plant growth quality can affect the UCI effect 
at smaller scales. Although the vegetation characteristics 
of the two regions in this study were relatively similar, 
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the relationship between plant species selection and sys-
tem construction was not explored in depth. This study 
highlights the UCI effect of different GI in the densely 
built-up area and green belt. However, the UHI effect, as 
a class of climate phenomena mainly generated by urban 
development and population concentration, is influenced 
by various factors, such as urban morphology, climate, 
geographic location, GI composition and configuration, 
as well as socio-economic factors like population density 
and per capita income (Shishegar, 2015). This is one of 
the most important ecological concerns for future urban 
planning. For the UCI effect to have wider applicability 
and to achieve upgrades from urban to a global scale, UCI 
should be understood in different scenarios. Some of these 
studies have shown different UCI patterns by comparing 
warm and humid (subtropical monsoon climate) with 
warm and dry (Mediterranean climate) cities (Akbari & 
Kolokotsa, 2016). Some other articles have focused on the 
impact of the socio-economic sector on the UHI (Li et al., 
2020). In fact, Nature has also published a study on the 
UHI effect on population and climate, which shows that 
increase green cover and albedo are more effective in arid 
regions (Manoli et  al., 2019). Therefore, not only green 
space pattern and plant growth quality influence the UCI 
effect, but the analysis of climate, geographic location, and 
socio-economic factors play a crucial role in further un-
derstanding the UCI effect.

Conclusions

For cities like Taiyuan, with the arid climate, water re-
sources are scarce and land use is tight. Urban planners 
cannot demolish a large number of existing buildings and 
roads to alleviate the UHI effect. Meanwhile, as we all 
know, GI planning at the metropolitan scale is the result 
of constantly weighing urban land use and environmental 
sustainability. Therefore, in this study, based on the “Law 
of diminishing Utility”, cooling efficiency and UCI inten-
sity are identified, and TVoE is verified in the landscape 
complexity index of forest and grassland, which provides 
credible and operational information for urban planners 
and policymakers.

Practically, for the densely  built-up area, forest with 
large area proportion and aggregated distribution has a 
good cooling effect, and TVoE of forest is about 4.5 ha. 
However, the densely  built-up area has a high-density 
residential environment, which means the space for GI is 
quite limited. Thus, based on the premise of determining 
the proportion of the GI area, the three-dimensional green 
capacity of the specific space could be increased, such as 
replacing the traditional single-plane greening model with 
a three-dimensional greening layout model (Duncan et al., 
2019; Sookhan et al., 2018). For the green belt, forest and 
grassland patches should be guaranteed to be larger than 
9  ha and 2.25  ha, and make them spatially aggregated, 
especially in areas with high topography and undulating 
terrain. These conclusions are valuable to urban planning 

and GI management. This study selected an arid city as 
an example to demonstrate the reliability and feasibility 
of landscape complexity index on GI’s cooling effect. Such 
methods can be applied to assess TVoE of the GI spatial 
structures and landscape configurations in other cities.

Undoubtedly, city planners and policymakers can use 
specific control strategies to mitigate the UHI effect in fu-
ture land planning according to the correlations between 
the indicators and UCI intensity. Especially for the arid 
cities, compared with increasing the area of waterbody 
and green space only, adjusting the landscape complexity 
of GI is a more economical and effective way to reduce 
LST and achieve environmental sustainability.
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