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contamination in the environment is considered as a 
global problem. As3+ stress can affect the growth and pro-
ductivity of the plants by a plethora of (Singh et al., 2017) 
physiological and biochemical alterations and the most 
damaging one is the production of reactive oxygen species 
(ROS). Plants sometimes develop various tolerance and 
adaptive mechanisms to cope with stresses which involve 
a series of physiological and biochemical changes (Khalid 
et al., 2017). As3+ is also reported to inhibit rate of photo-
synthesis in plants.  

Rice (Oriza sativa L) is a potentially important route 
of human exposure to arsenic as staple food of the peo-
ple in tropical, subtropical and temperate regions of East 
Asia. The As3+ in soil can be accumulated by rice plants 
and can reach to human being through food intake. It has 
been highlighted that the rice plants are more suscepti-
ble for As3+ accumulation because of changing in redox 
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Highlights

It has been experimentally found that:
	X By application of Mg-salt as fertilizer As-induced toxicity can be reduced.
	X In As contaminated soil As has got competitive advantage over Mg but application of Mg fertilizer is able to mitigate 

the problem.
	X Mg is an important plant nutrient hence there is no extra cost involved and it is an eco-friendly & economic method.

Abstract. Arsenic (As3+) is a toxic metalloid found in the earth’s crust, its elevated concentration is a concern for human 
health because rice is the staple grain in eastern part of India and the waterlogged rice field environment provides oppor-
tunity for more As3+ uptake. Magnesium (Mg2+) is an important plant nutrient. Present work is a search for reducing As3+ 
toxicity in plants through Mg2+ application. The findings are quite impressive, the root to shoot biomass ratio showed more 
than 1.5 times increase compared to the control. Total protein content increased 2 folds. Carbohydrate and chlorophyll 
content increased two to three times compared to control. On the other hand, Malondialdehyde content showed a decline 
with the application of increased Mg2+ dose. The in-silico study shows a better interaction with As3+ in presence of Mg2+ 
but interestingly without stress symptoms. These findings from the research indicate that Mg2+ application can be effective 
in reducing As3+ induced stress in plants.
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Introduction

Arsenic (As3+ and As5+) is a ubiquitous metalloid found 
in earth’s crust. There is gradual increase in soil As3+ level 
due to different anthropogenic activities (Chandrakar 
et  al., 2016). It is a non-essential element for plants but 
depending on the concentration gradient between the 
source and the sink it is taken up from soil mostly in inor-
ganic forms with the help of various transporter proteins. 
Among the two oxidation states of As3+ and As5+, the As5+ 
form is less toxic and is found in immobile mineral form 
(Shrivastava et al., 2015). The inorganic form of arsenic is 
more toxic than the organic form. 

Sources of As3+ poisoning include agricultural land 
and urban areas, in countries around the world of which 
Bangladesh, Pakistan, Nepal, Vietnam, Burma, Thai-
land and Cambodia are the most affected. Hence As3+ 
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condition during flooding condition in the paddy fields 
(Ma, 2001).  In case of cultivation in a large area with 
moderately As3+ infested soil it is difficult to remove soil 
As3+. Phytoremediation is practised as an eco-friendly and 
the most economic remediation technique. This technique 
is dependent on many environmental parameters and un-
der best possible conditions (Chaudhry et al., 2002) also 
the efficiency is limited. Another major concern for phy-
toremediation is the proper disposal of the huge contami-
nated biomass generated. 

Mg2+ is the second most important nutrient for the 
plants and is part of large numbers of metabolic pathways. 
According to Cakmak and Yazici (2010), Chloroplast in 
plants contains 31% of the total Mg2+ content; it is re-
quired for chlorophyll formation and plays a key role in 
photosynthetic activity. Wingler et  al. (2005) explained 
that under Mg-deprivation due to a reduction in electron 
transport, chlorosis takes place in plants, which impairs 
CO2 fixation and induces generation of Reactive Oxygen 
species (ROS). These can cause damage of cell compo-
nents, like membrane lipids, proteins, and nucleic acids, 
resulting in metabolic disruption (Scandalios, 2005). An 
increased activity of antioxidant defense enzymes has 
been reported in some plant species under Mg-deficient 
conditions (Tewari et al., 2005; Shulaev et al., 2008). 

The importance of Mg2+ in crop production was well 
estimated only in the last decade (Cakmak & Yazici, 
2010), agronomists and scientists have paid little atten-
tion to this mineral nutrient compared to others. There are 
prominent reasons for Mg2+ deficiency to occur in plants, 
among them, the effects of cation competition (Ca2+, K+ 
and Na+) were found to be significant (Broadley & White, 
2010) which is further accelerated with addition of ‘N-P-
K’ fertilizer without adding Mg2+. Hence in the cultivation 
process without using Mg2+ fertilizer, there is enough rea-
son for Mg2+ deficiency in the plants. 

From the above discussions it is understandable that 
soil As3+ in plants adversely affects various metabolic pro-
cesses which are manifested as stress symptoms in plants. 
Mg2+ regulates a lot of metabolic activities in plants and 
its deficiency also causes stress symptoms. All these fac-
tors corroborate the scientific fact that Mg2+ in plants 
can be helpful in reducing physiological and biochemi-
cal problems. In addition, Mg2+ uptake by plants gets ad-
versely affected due to cation competition and it indicates 
requirement of additional magnesium fertilizer in the cul-
tivation process.

Under such condition the objectives of this present 
study are to (i) understand the most effective role of soil 

Mg2+ fertilizer in reducing As induced stresses in rice 
plants, (ii) highlight the nature of transporter proteins 
involve in the competitive uptake (iii) propose an eco-
friendly and economic process for remediation of As tox-
icity in rice plants.

1. Materials and method

1.1. Criteria of selection of Plant species

Rice being the staple consumed form of carbohydrate in 
Indo-Gangetic plains which is recognised as a potential 
source of As (As3+) contamination from various studies 
(Ma, 2001). The rice plants are more susceptible to As 
(As3+) contamination due to favourable changes of physi-
co-chemical condition of soil during its growth and it can 
be the easiest way to human contamination through food 
consumption. Thus rice is chosen as the experimental 
plant in the present study. It is a monocot plant belongs to 
the Gramineae family and the genus Oryzae and the plant 
variety used for the experiment was Shatabdi (IET4786). 
Experimental set-up was done in September 2019 and 
harvesting was in January 2020 and the testing of param-
eters was done during January–February 2020.

1.2. Setting up of the experiment

The rice seed, collected from Rice Research Station, Chin-
surah, West Bengal were allowed to germinate in a pot and 
8–10 days old seedlings were first sown, then these were 
transplanted after another 15 days into a total of 12 differ-
ent pots comprising of one control and three experimental 
sets, each in triplicate (Table 1). Each pot had 3 Kg of soil 
with a definite amount of magnesium (Mg2+ salt, magne-
sium carbonate) and Arsenic (As3+ salt, sodium arsenite) 
addendum  in addition 2 gms of compost was added in 
each pot in divided dose as fertilizer for normal growth 
of the plants. The rice seedlings were added uniformly in 
a ratio of 10 seedlings per pot and the plants were grown 
till the panicle stage. All settings were done in triplicate 
and the results were represented as an average.

An in-silico study was performed to have idea on the 
transporter proteins involvement in the competitive trans-
portation process. A molecular docking study was done to 
understand the protein-ligand interaction. Previous to the 
docking interaction studies, the 3D structure of the root 
transport protein of Oryza sativa (PDB ID 6OCE) was se-
lected (Maity et al., 2019). The protein that was taken into 
consideration was a hypothetical transporter protein that 
was determined using the X-ray crystallographic studies.

Table 1. Showing experimental set-up: pots with different addendum

Sl No. Pot marking Addendum

1 C – Control As3+ (30 mg/kg) without Mg2+

2 Experimental-1 (E1) Mg2+ (5.5 gm/kg) + As3+ (30 mg/kg)
3 Experimental-2 (E2) Mg2+  (6.5 gm/kg) + As3+ (30 mg/kg)
4 Experimental-3 (E3) Mg2+ (7.5 gm/kg) + As3+ (30 mg/kg)
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1.3. Estimation of soil pH

The pH of soil sample was measured in soil solution with 
dilution ratio of soil: solution as 1:2.5. The samples were 
equilibrated to the normal temperature. The pH was 
measured by digital pH meter (model no. Systronics-802) 
after standardisation, soil pH was tested as 7(±0.2). 

1.4. Estimation of malondialdehyde content 

The sample extract was prepared by grinding the fresh 
plant sample followed by centrifugation and collecting the 
supernatant. In the supernatant 20% TCA (Trichloroacetic 
Acid) and 0.5% TBA (Thiobarbituric acid) were added 
and mixed well. The mixture was boiled and then quickly 
cooled on ice and then centrifuged.  The supernatant was 
collected and the absorbance was recorded at 532 nm. 
The concentrations were calculated by graphical plotting 
against a standard curve using different concentrations of 
malondialdehyde (Zhang & Huang, 2013).

1.5. Estimation of total chlorophyll content 

The fresh plant samples were ground in liquid nitrogen 
using acetone and supernatant was collected for prepara-
tion of the sample extract. This procedure was repeated 
till the residue becomes colourless. The absorbance was 
measured by colorimeter (Digital Photo Colorimeter, 
model No. LT-12, LABTRONICS) at 645 nm, 663 nm 
to calculate the chlorophyll concentration (Sadasivam & 
Manickam, 2008).

1.6. Estimation of total carbohydrate 

The fresh samples were acid digested and then neutral-
ized with sodium carbonate and centrifuged. To the su-
pernatant anthrone was added, boiled, cooled and the 
absorbance (Digital Photo Colorimeter, model No. LT-12, 
LABTRONICS) recorded at 630 nm. The concentrations 
were calculated by graphical plotting against a standard 
curve using different concentrations of standard glucose 
(Sadasivam & Manickam, 2008).

1.7. Estimation of total protein 

The fresh plant samples were ground followed by centrifu-
gation and supernatant collected. To this extract alkaline 
copper solution was added and mixed well followed by 
addition of Folin – ciocalteau reagent, mixed well and in-
cubated in the dark for 30 min. The absorbance was meas-
ured at 660 nm (Digital Photo Colorimeter, model No. LT-
12, LABTRONICS). The concentrations were calculated 
by graphical plotting against a standard curve using differ-
ent concentrations of bovine serum albumin (Sadasivam 
& Manickam, 2008).

1.8. Docking interaction study 

Ligand dependent protein docking was performed us-
ing the Lamarckian Genetic Algorithm (LGA) method. 

Standard docking settings were applied and the energeti-
cally most favourable binding poses (lowest docked en-
ergy) were taken to obtain the best conformation. The 
prediction was done using Auto-Dock-Vina software. The 
docking interaction studies were performed between the 
transport protein, Arsenic (As3+) and Magnesium (Mg2+). 
The unwanted water molecules that were present in the 
protein was separated and the protein was stabilized at 
pH 7 (±0.2). The most stable conformation of the deter-
mined structures of the prepared ligand as predicted was 
selected to flexibly dock against the created receptor grid. 
The interaction was studied under “Ligand interaction 
diagram” and the types of interaction and bond lengths 
were predicted. Finally, the interaction of the metal with 
amino acid was performed using Ligplot.

1.9. Statistical significance 

The experimental results were analyzed by using paired 
T test following standard statistical methods and the data 
were subjected to estimate significant level. Only the p < 
0.05 or 0.01 was considered and were shown in the figures. 
Descriptive statistics including mean, average, standard 
deviation and standard error were considered to represent 
the precision of the analysis. All results showed more than 
90% confidence level.

2. Results and discussion 

In the present study, different biochemical plant param-
eters were assessed to understand the As3+ induced toxic-
ity at cellular level in the rice plants and the role of Mg2+ 
in mitigating the same. Also through in silico study the 
interaction of the transporter protein with As3+ and Mg2+ 
was observed. It has been reported that As3+ has a negative 
impact on plant biomass. Hence to understand the effect 
of As3+ on the plant biomass and also the contribution of 
Mg2+ in it, the root to shoot biomass ratio was studied.

2.1. Comparison of plant root to shoot growth

In the experimental result as shown in Figure 1 the control 
plant with only As3+ dose and no Mg2+ the root to shoot 
biomass ratio was quite low, where as in the plants with 

Figure 1. Comparison of changes in root to shoot biomass ratio 
in the experimental plants
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application of different doses of Mg2+ the root to shoot 
biomass ratio was increased gradually with increase of 
Mg2+ dose. At higher concentration As3+ is toxic for al-
most all plants and reduces growth of both root and shoot, 
depresses tillering (Abedin et al., 2002). In many research 
works it has also been reported that Mg2+ deficiency in 
plants causes decrease in root to shoot biomass ratio (Cak-
mak et al., 1994a, 1994b; Mengutay et al., 2013).

In a study by Farhat et al. (2016) it was reported that 
magnesium fertilization increases total plant biomass by 
61% compared to Mg2+ deficient control plants (Farhat 
et  al., 2016). The positive effect of magnesium fertiliza-
tion on the root biomass (77%) was greater than the shoot 
biomass (59%) as described by da Silva et al. (2014). The 
experimental results (Figure 2) also showed a consider-
able increase in root lengths with increased doses of Mg2+ 
fertilizer compared to the control plant with only As3+ and 
no Mg2+. 

Figure 2. Comparison of root length between the experimental 
plants and control

2.2. Plant stress parameters

In general, exposure to As3+ reduces chlorophyll and pro-
tein content and photosynthetic activity in plants (Marin 
et al., 1993). In plants photosynthetic limitation results in 
reduced capacity for biochemical utilization of absorbed 
light energy which induces the formation of reactive oxy-
gen species (ROS) such as superoxide radicals and hy-
drogen peroxide (Hauer-Jákli & Tränkner, 2019). In the 

present work the Mg2+ deficient and only As3+ exposed 
control plants showed less chlorophyll content (Figure 3) 
compared to the plants with Mg2+ application where total 
chlorophyll content had increased significantly.

It has been reported that Mg2+ directly affects the ac-
tivity of Rubisco enzyme and activation by binding to the 
carbamylated Rubisco side chain (Hazra et al., 2015) and 
Mg2+ supply significantly enhances net photosynthetic 
CO2 assimilation compared to the plants with Mg2+ de-
ficiency. In the present study, photosynthetic CO2 assimi-
lation was confirmed in terms of increased carbohydrate 
production with the increase in Mg2+ dose (Figure 4).

Figure 4. Change in Carbohydrate content in the  
experimental plants

Malondialdehyde (MDA) accumulation was reported 
in rice (Ding et al., 2008), as a general indicator of lipid 
peroxidation under low Mg2+ availability conditions. 
According to the study conducted by Hauer-Jákli and 
Tränkner (2019), the levels of ROS increased by 31% 
under Mg2+ deficiency. In the work by Kobayashi et  al. 
(2018) there was an increased level of oxidative stress in 
Mg2+ deficient rice plants. MDA is an important by prod-
uct of lipid-peroxidation during oxidative stress. Hence 
sufficient Mg2+ supply is required for plants to reduce 
oxidative stress. It is also been reported that As3+ causes 
oxidative stress in plants. In the present study, MDA con-
tent analysis also showed a similar trend (Figure 5). The 
control sample with only As3+ exposure had shown maxi-
mum stress in terms of highest MDA content. However, 

Figure 3. Change in Chlorophyll content in the  
experimental plants

Figure 5. Change in MDA content among the  
experimental plants
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with increasing Mg2+ fertilizer dose, MDA content had 
decreased considerably. Hence, it could be hypothesized 
that Mg2+ might have played some positive roles in rice 
plants to withstand the increment of MDA. 

Studies on rice plant have shown that magnesium 
(Mg2+) has a significant impact on the nutritional quality 
of rice. With sufficient magnesium (Mg2+) supply in rice 
plant the total protein content significantly increases. It 
has also been observed in  brown rice that total amino 
acids is increased and the contents of two kinds of limit-
ing amino acids, lysine and threonine, of cereal protein is 
also increased leading to improvement of the nutritional 
quality of the produce (Ding, 2002). The experimental re-
sults (Figure 6) showed that the control plants with only 
As3+ treatment had minimum protein content but with 
increased Mg2+ content in other plants the protein content 
had increased which corroborate the findings by previous 
researchers. 

Figure 6. Comparison of protein content in different 
experimental plants

2.3. Molecular interaction study 

The docking interaction studies between 6OCE protein 
with both As3+ and Mg2+ showed the value –1.37 and 
–1.31Kcal/mol respectively, it seems that the interaction 
with As3+ was slightly better. It was further observed that 
in the presence of Mg2+, the uptake of As was increased as 

the value of binding interaction was enhanced from –1.37 
to –1.39 Kcal/mol (Figure 7c). 

The ligplot revealed the stable interactions of Mg2+ and 
As3+ with transport protein via hydrogen bond as represent-
ed in Figure 7 and Table 2. It is interesting to highlight that 
although As3+ ion had shown competitive advantage over 
Mg2+ in O. sativa, but without effecting the plant which is 
justified from the biochemical parameters and it is possible 
because of application of  Mg2+ fertilizer (Thakur et al., 2020; 
Gransee & Führs, 2013) in the cultivation process.

2.4. Implication of the work

Arsenic is a toxic metalloid naturally present in the soil. 
Rising soil As concentration is a major concern around 
the globe due to the health risk to plants, animals and 
human beings. Rice is the staple food in eastern part of 
India and soil Arsenic is a major concern here. The wa-
terlogged field condition in rice cultivation makes it more 
prone to As3+ uptake. Mg2+ is an important macro nutri-
ent required for normal growth of the plant. In the work 
we have found that adding Mg2+ along with commercial 
fertilizer (in this case ‘N-P-K’) improves health of the 
plant as well as reduces As3+ induced stress. Hence it can 
be an eco-friendly and sustainable solution to the global 
agricultural problem.

Table 2. Molecular interaction between transport protein with 
As3+ and Mg2+ ions

Interaction
Binding 
energy 

(Kcal/mol)
Amino acid

Arsenic vs 6OCE –1.37 Tyr 356, Leu 456
Magnesium vs 
6OCE –1.31 Phe 469, Phe 473, Val 472, 

Asn 471, Gly 475, Leu 474

Magnesium vs 
6OCE vs Arsenic –1.39

With Magnesium: Val 472, 
Gly 475, Phe 469
With Arsenic: Tyr 356, Leu 
456, Ala 570

                              Note: Text marked in blue represents reviewers (both reviewer 1 and reviewer 3) comments. 

Figure 7. Molecular interaction of transport protein of O. sativa (6OCE) (A) As3+ (B)  
Mg2+ (C) Synergistic interaction of Mg2+ and As3+
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Conclusions

The purpose of this work was to understand how the ap-
plication of Mg2+ could be effective in reducing the As3+ 
toxicity in plants. In the present study, the docking inter-
action between As3+ and Mg2+ with the transporter pro-
tein revealed that plants accumulated a lower amount of 
Mg2+ compared to As3+ (Figure 7c). From the analysis of 
all the biochemical parameters, it could be concluded that 
the application of Mg2+ fertilizer showed effectiveness in 
reducing As3+ induced toxicity. Interestingly though the 
docking interaction showed more uptake of As3+ com-
pared to Mg2+ but the biochemical parameters showed 
less stress in plants. This may be due to added Mg2+ doses, 
which led us to forecast that Mg2+ can act as a toxicity 
reducer for As contaminated plants. Further work in this 
direction might be employed to ascertain the optimum 
application of Mg2+ fertilizer in order to represent the best 
performances.
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