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as the three main pathways by which the urbanization af-
fect regional climate conditions (Miller & Hutchins, 2017). 
Specifically, land use cover change and anthropogenic aer-
osol emissions affect the climate environment by chang-
ing the physical properties of the earth’s surface (Li et al., 
2007) and the thermal radiation absorption capacity of 
the atmospheric system (Zheng et al., 2012), respectively. 
However, the majority of research on the impact of anthro-
pogenic heat emission focused on estimating the climate 
effects of anthropogenic industrial energy consumption, 
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Highlights

	X Entertainment and tourism related activities had significant positive impacts on regional climate condition, while that 
of tourism related activities is negative.
	X Human activities showed greater impact on the climate suitability in economically underdeveloped regions and com-

pletely opposite impacts in region regions with different topographic conditions.
	X The positive impact of entertainment, tourism related activities and the spatial heterogeneity in impact mechanisms 

could be explained by the special environmental optimization effect of the urban spaces and the urban planning strate-
gies in China, respectively.

Abstract. The impact mechanism of human activities on climate suitability is critical for understanding the human-envi-
ronment nexus. In this study, social network data from Sina Weibo Platform was collected to quantitatively examined the 
relationship between the seven major types of human activities and climate suitability. The results indicated that the im-
pacts of entertainment, tourism and daily life related human activities on climate suitability are significant (p-value < 0.05). 
With one-unit (one check-in record/km2) increase of entertainment and tourism related human activities, the coverage 
rate of climate suitable zone and the length of climate suitable period increase by 0.003% and 0.026 months, respectively. 
In contrast, one-unit of increase of daily life activities made the Theil entropy index of climate inequity and the length of 
climate suitable period increase 0.00035 units and shorten 0.014 months, respectively. Moreover, the impact mechanism 
of human activities on climate suitability showed a significant spatial heterogeneity within regions at different economic 
level or topographical conditions, which could be explained by the discrepancy of environmental policies, urban form and 
urban ventilation channel design strategies in China. This work exhibited a further step to new possibilities in clarifying 
the climate effect of human activities using open-sourced social network data.

Keywords: human activities, check-in data, climate suitability, spatial regression models.

Introduction

Rapid urbanization had been recognized as one of the 
main driving forces of the climate change and ecological 
environment deterioration in Asia-Pacific regions, rep-
resented by China (Gu et  al., 2011; Wang et  al., 2019). 
Therefore, clarifying the impact mechanism of urbaniza-
tion over climate condition is critical for the understand-
ing on relationship between human and environment.

Urban land use cover change, anthropogenic aerosol 
emission and anthropogenic heat emission are identified 
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vehicle fuel combustion and human metabolism. It has 
remained a significant challenge to dissect the impact 
mechanism due to the complexity and unobservability in 
quantifying human activity patterns (Feng et al., 2014).

With the advent of the big data age, the emergence 
of large-scale social network data provides the possibility 
for researchers to accurately track human activities (Yan 
et al., 2019). Therefore, this study conducted a case study 
to explore the relationship between the activity patterns 
of Sina Weibo users and climate conditions in 31 prov-
inces (or regions) of China. Specifically, we hope to utilize 
Sina Weibo data as a medium to explain the two follow 
research questions: (1) How different types of human ac-
tivities affect regional climate? (2) What are the implicit 
impact mechanisms of human activities on climate?

The rest of this paper are organized as follows. In 
the methodology section, the primary data, models and 
algorithms used in this study were introduced. In the 
results section, the quantitative results on the relation-
ship between human activities and urban climate was 
presented and discussed. In the conclusions section, we 
summarized the main findings of this work and pointed 
out the innovation, defects, future development direction 
of this study.

1. Literature review

1.1. Anthropogenic heat emission and climate 
condition

The diversity of spaces carrying human activities, the 
complex heat exchanges accompany with human activi-
ties and the difficulties in obtaining data records of hu-
man activities in large-scale regions led to a significant 
challenge in estimating the climate effect of anthropo-
genic heat emission (Feng et al., 2014). At present, the 
relevant research related to the relationship between 
anthropogenic heat emission and climate condition 
were mainly focused on estimating the heat emission 
and temperature variation caused by human activities 
in particular areas with certain functions. For example, 
climatologists had estimated the heat emission of human 
activities in urban centers and residential areas in Tokyo 
(Ichinose et al., 1999), Europe (Offerle et al., 2005) and 
Singapore (Quah & Roth, 2012) respectively and pointed 
that the heat emission of each person in the urban cen-
tral business district was about 113–400 W/m2, while 
that of residential areas was only 13–17 W/m2, and the 
additional anthropogenic heat release per 2 W/m2 could 
lead to an increase the surface air temperature by 0.15 °C 
(Block et al., 2004). Similarly, Feng et al. (2014) analyzed 
the high-resolution remote sensing data and found that 
the anthropogenic heat release caused a 0.89  °C tem-
perature rise and summer precipitation change in the 
Yangtze River Delta, China. However, the estimating re-
sults of these studies focused on the difference within 
anthropogenic heat emissions emerged in various urban 
regions, so there remains poorly understood on the heat 

emissions from the perspective of the diversity of human 
activity patterns.

1.2. Assessment methods of climate condition

Climate assessment refers to the analysis of basic meteoro-
logical elements and major disastrous weather character-
istics in specific regions. Accurate assessment of climate 
condition is of great significance to understand the social 
and economic benefits of climate as a natural resource. 
Climate suitability was one kind of climate condition 
evaluation index and was designed to conduct quantita-
tive evaluation models of climate condition by summa-
rizing the relationship between basic meteorological ele-
ments and human body feelings (Yan et  al., 2013). The 
models related to the evaluation of climate suitability were 
mainly divided into two categories. On the one hand, the 
experience-based models had dominated climate suitabil-
ity evaluation in the early stage. Since the first experience-
based model of Effective Temperature Index (ET) was put 
forward in 1923 (Houghten, 1923), researchers had put 
forward models for different climate conditions. Among 
them, the models designed for thermal environment are 
the Wet Bulb Globe Temperature (WBGT), Discomfort 
Index (DI) and Temperature Humidity Index (THI) (Mi-
nard et  al., 1957; Thom, 1959). And the Wind Cold In-
dex (WCI) is mainly for climate evaluation in cold envi-
ronment (Siple & Passel, 1945). Generally speaking, the 
experience-based models are statistical models based on 
the subjective feelings or physiological reactions of human 
beings. On the other hand, with the development of bi-
ometeorology and computer technology, the research of 
mechanism model based on human body heat balance had 
attracted extensive attention. According to the voting re-
sults of 1396 subjects in the United States and Denmark, 
Fanger proposed a widely used thermal comfort evalua-
tion index of Predicted Mean Vote (PMV) by regression 
analysis (Fanger, 1970). The Physiological Equivalent 
Temperature (PET) model developed from the Munich 
Energy Balance Model for Individuals (MEBMI) was an-
other widely used climate suitability mechanism model, 
which comprehensively considered the influence of main 
meteorological parameters, activities, clothing and indi-
vidual parameters on comfort (Höppe, 1999). In the 21st 
century, under the initiative of WMO’s climatology Com-
mittee, the European science and technology cooperation 
program 730 established a Universal Thermal Climate In-
dex (UTCI) based on multi node model by integrating the 
most advanced professional and technical knowledge in 
fields of physiology, medicine, mathematics, meteorology 
and computer science (Jendritzky et al., 2012). In summa-
ry, climate suitability evaluation model had gone through 
the era of experience-based model based on statistical re-
sults and mechanism model based on human body heat 
balance. However, the experience-based model had few 
input parameters, simple structure and easy data acquisi-
tion, which still showed a certain application prospect at 
present and in the future.
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2. Methodology

The technical roadmap of this study is shown in Figure 1.
 In this study, the impact mechanisms of different hu-

man activities on the climatic environment were ex-
plored by constructing spatial regression models. First-
ly, we collected the climate data from the study area and 
utilized THI and WCI indices to quantify the climate 
conditions of 31 provinces or regions in China. Then, 
we classified Sina Weibo users’ check-in data from the 
study area in 7 subgroups according to the activity type 
and calculated the intensity of 7 types of human ac-
tivities in 31 provinces or regions in China. Finally, we 
took climate conditions and human activity intensity as 
dependent variables and independent variables respec-
tively and input them into the spatial regression models 
together with covariates related to China’s geography 
and socio-economic status to explore the relationship 
between them.

2.1. Climate suitability assessment

2.1.1. Meteorological data
Meteorological data used in this work was mainly col-
lected from the National Meteorological Data Platform 
of China (http://data.cma.cn/site/index.html). The data 
included monthly temperature, wind speed, relative hu-
midity and sunshine duration of China recorded by 2170 

meteorological stations in 2014. The details of the data are 
presented in Table 1.

Table 1. Introduction to meteorological data

Type Description Unit

Average Monthly 
Temperature (t)

Monthly average temperature at 
the location of meteorological 
station

°C

Average Monthly 
Wind speed (v)

Monthly average wind speed at the 
height of 10m at the location of 
meteorological station

m/s

Average Monthly 
Relative humidity 
(h)

Monthly average relative humidity 
at the location of meteorological 
station

%

Average Monthly 
Sunshine 
duration (s)

Monthly average number of 
hours of sunshine received at the 
location of meteorological station

Hour

In addition, as this study was dedicated to exploring 
the impact of human activities on the climate environ-
ment in full extent of China, the study area is divided into 
10679 grids (resolution: 0.3×0.3 degree), and the climate 
state of all grids are estimated by the common Kriging 
interpolation method, which had been widely used in the 
field of climate data estimation and simulation (Boer et al., 
2001). The interpolation algorithm is implemented by R 
language using R-Studio.

Figure 1. Technical roadmap of the impact mechanism of human activities over climate suitability
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2.1.2. Evaluation indices of climate suitability
In the process of introducing the western mechanism 
model to evaluate the climate suitability in China, Chinese 
researchers are still working on forming a universal mech-
anism model due to the huge differences in Chinese ethnic 
characteristics, diet structure and basic metabolic level. 
On the contrary, the experience-based models introduced 
into China earlier showed better evaluation performance 
than mechanism models after being revised according to 
China’s geographical, seasonal and ethnic characteristics 
and even has been transformed into national standards 
(Tang et  al., 2008; Ma et  al., 2009, 2011; Kong, 2020). 
Therefore, referring to the relevant national standard of 
“GB/T 27963-2011” issued by the National Meteorological 
Administration of China, this study selected two climate 
suitability evaluation indices of WCI and THI to quanti-
tatively evaluate the climate suitability of China. The cal-
culation algorithms were presented in Equations (1) and 
(2) (Tang et al., 2008):

( )( )1.8 32 0.55 1 1.8 26THI t h t= + − − − ; (1)

( )( )10 10.45 33 8.55 ,WCI v v t s= − + − − +  (2)

where, t represents the monthly average temperature with 
the unit of °C; h represents the monthly average relative 
humidity with the unit of %; v represents the monthly 
average wind speed with the unit of meters per second; 
s represents the monthly average sunshine duration in 
hours per day. In addition, the evaluation criteria for cli-
mate suitability are presented in Table 2.

Table 2. Evaluation criteria for climate suitability indices THI 
and WCI (Tang et al., 2008)

THI WCI Bodily sensation Suitability

<40 <–1200 Extremely cold Uncomfortable
40~45 –1200 ~ –1000 Cold Uncomfortable
45~55 –1000 ~ –800 Cold Uncomfortable
55~60 –800 ~ –600 Cool Comfortable
60~65 –600 ~ –300 Cool Comfortable
65~70 –300 ~ –200 Warm Comfortable
70~75 –200 ~ –50 Warm Comfortable
75~80 –50~80 Hot Uncomfortable

>80 >80 Extremely hot Uncomfortable

Of these, THI mainly takes the influence of tempera-
ture and relative humidity on human comfort into ac-
count, while WCI is more sensitive to wind speed, tem-
perature and sunshine duration. Therefore, combined 
with “GB/T 27963-2011” and Tang’s work (Tang et  al., 
2008), the month with average THI quantification result 
of [55, 75] and WCI quantification result of [–800, –50] 
is defined as the climate condition of this month reaches 
suitable level. Similarly, referring to the method in chap-
ter 3.1.1, this study calculated the monthly THI and WCI 
indices of 10679 grids from January to December in 2014. 

According to the calculation results, the months when the 
climate of all grids reached the comfortable level in 2014 
were counted, which was defined as the climate suitable 
period. Furthermore, this study continues to define the 
area with climate suitable period length greater than or 
equal to 5 months as the climate suitable zone (Tang et al., 
2008). Finally, the calculation method of climate suitable 
period and climate suitable area for each province in Chi-
na are presented in Equations (3) and (4):
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where, i represents the province number; k represents the 
gird number; PER represents the length of climate suitable 
period in province i; ZONE represents the coverage rate of 
climate suitable zone in province i; in  represents the total 
number of grids in province i; k

il  represents the number 
of months in 2014 when the climate of grid k in province 
i reached comfortable level; is  represents the number of 
grids with climate suitable period longer than 5 months 
in province i.

In addition to the periods and zones with suitable 
climate, whether the urban residents in the region could 
enjoy the comfortable climate environment fairly is also 
the key to evaluate the climate suitability. Therefore, this 
study also introduces Theil entropy index to measure the 
distribution of regional climate (Cowell, 2000). The Theil 
entropy index was originally designed to measure income 
inequality and social poverty, which was widely used in 
the field of economics and sociology. In recent years, the 
Theil index has been used by researchers in the field of en-
vironment and climate as the main tool to explore regional 
environmental equity and justice and has achieved good 
results (Azimi et al., 2019). The equation of the Theil en-
tropy index used in this study is presented in Equation (5), 
and the calculation of the index is realized by R language.

1

1 ln ,
n

in
INEQ

n x=

 µ
=   

 
∑  (5)

where, INEQ represents the Theil entropy index (The 
calculation result is a rational number between 0 and 1. 
The closer the calculation result is to 0, the more uniform 
the feature distribution); n represents the total number of 
grids in the particular province; µ  represents the mean 
value of the length of climate suitable period of all grids 
in the particular province; ix  represents the length of cli-
mate suitable period at grid i.

2.2. Quantification of human activities

The check-in records data of Sina Weibo, which was seen 
as the Chinese answer to Twitter, was introduced as a me-
dium to reflect the type and intensity of human activities 
(Zhen & Wei, 2008). At present, this kind of data has been 
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widely used in the field of urban research to explore urban 
flow, urban dynamic structure and urban land use identi-
fication (Zheng et al., 2019). Specifically, we collected the 
check-in data generated in 20141 in the form of: POI ID, 
Address, Longitude, Latitude, Category Name, Check-in 
Number, Photo Number. Among them, the Category Name 
parameter records the type of activities the user is engaged 
in when completing the check-in behavior, and the Check-
in Number parameter records the frequency of the check-
in activities. In addition, the API of Sina Weibo divides 
all the check-in activities into more than 200 categories 
by default. Among them, the places and patterns of some 
parts human activities are similar. Therefore, in order to 
accurately grasp the relationship between the overall char-
acteristics of human activity patterns and climate suitabil-
ity, this study, divided over 200 types human activities into 
7 categories (Table  3) according to the general patterns 
of human activities and the Sina Weibo data processing 
methods proposed in previous works (Yan et al., 2019).

Table 3. Classification of check-in points (Yan et al., 2019)

Activity type Original POI label

Entertain-
ment

Mall, Restaurant, Gym, Bar, Museum, Gallery, 
etc.

Public 
service

Municipal government, Police station, etc.

Daily life Community, Apartment, Block, etc.
Tourism Hotels, Temples, Scenic spots, Landmark 

buildings, etc.
Transpor-
tation

Railway station, Bus station, Subway station, 
Port, etc.

Work Factory, Company, Office building, etc.
Others Religious organizations, Construction sites, etc.

Specifically, we calculated the density of the seven 
main types of check-in records in 31 provinces of China 
(due to the lack of data, Hong Kong, Macau and Taiwan 
are not within the scope of the study) to represent the 
intensity of different types of human activities. The spatial 
distribution characteristics are shown in the figure below, 
and the visualization is completed with the help of QGIS 
(Figure 2).

2.3. Construction of regression models

Since climate elements are spatially continuous variables, 
this study explores the impact of human activities on cli-
mate comfort by constructing a spatial regression model. 
Specifically, this section will elaborate on how we select 
suitable variables and regression models.

1 There are restrictions on the time interval and time period for 
Sina Weibo API to obtain public data. After 2015, Sina Weibo 
gradually closed the free access to data. The data used in this 
study is the most recently available free data set covering the 
whole are of China.

2.3.1. Variable selection
Specifically, the length of climate suitable period (PER), 
the coverage rate of climate suitable zone (ZONE) and 
climate inequality (INEQ) were set as dependent vari-
ables and the intensity of seven types of human activities 
(ENT, PUB, DAI, TOU, TRA, WOR, OTH) were set as 
independent variables. In addition, in order to ensure that 
the regression models built in this study can accurately 
reflect the regression relationship between independent 
and dependent variables, indicators reflecting urban land 
use change (PA, GR, CL) and anthropogenic aerosol emis-
sion (PM, SO, NO) level2 are introduced as tool variables. 
The basic information for all variables selected in the final 
study is shown in the Table 4.

In addition, considering that China has a vast territory 
and spans multiple terrain regions, regression models on 
a global scale might not accurately reflect the relationship 
between human activities and the climate environment. 
Therefore, during the process of model building, in order 
to eliminate the influence of climatic zone and economic 
level difference on the regression results, we also divided 
China’s provinces into four categories: mountainous re-
gion, flatlands region, economically developed region and 
economically underdeveloped region, and explored the 
discrepancy of human activities’ impact on climate suit-
ability in different part of China. The regional division 
referred to the GDP level, landform category and land-
sea position of each province (i.e., the median value of 
variable GDP and TOP). The details of relevant data are 
shown in the Table 4.

2.3.2. Model selection
In order to accurately reveal the relationship between vari-
ous human activities and climate suitability and sort out 
the impact mechanism quantitatively, we need to work 
further with appropriate econometric models. When the 
variables are spatial variables and show significant ag-
gregation or discrete distribution patterns, the estimation 
results of spatial regression models are significantly better 
than those of OLS model (Anselin, 2009). Therefore, due 
to the aggregated distribution characteristics of the main 
climate variables in this study (see chapter 4.1), the spa-
tial autoregressive model (SAR) and spatial error model 
(SEM) were selected to analyze the mechanism of human 
activities on climate suitability. The basic calculation equa-
tion of these models is presented in Equations (6) and (7):

( )2: , 0, ; ySAR y W X N= r + b+ ∈ d   (6)

( )2: ,  0, ,  uSEM y X W N= b+ λ + ∈ d   (7)

2 SOx and NOx produced by motor vehicles, power plants, heat-
ing and industry had been demonstrated to be the key influ-
encing factors of urban aerosol particles of PM10 and PM2.5 
(Shi & Xu, 2012). Therefore, the variables of PM, SO and NO 
were selected in this work to reflect the anthropogenic aerosol 
emission.
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Figure 2. Spatial distribution of the check-in density of human activity
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Table 4. Descriptive statistics of variables used in regression models

Va ri-
able Definition Data sources Unit Type of variable Mean. Sd. Min. Max.

ENT
The density of 
entertainment related 
activities

Sina Weibo Check-in number/
Square kilometer

Independent 
variable 211.98 182.86 32.28 1006.75

PUB The density of public 
service related activities Sina Weibo Check-in number/

Square kilometer
Independent 
variable 194.18 116.93 27.93 485.59

DAI The density of daily life 
related activities Sina Weibo Check-in number/

Square kilometer
Independent 
variable 93.55 63.83 18.94 273.64

TOU The density of tourism 
related activities Sina Weibo Check-in number/

Square kilometer
Independent 
variable 63.3 47.66 10.51 213.13

TRA
The density of 
transportation related 
activities

Sina Weibo Check-in number/
Square kilometer

Independent 
variable 114.73 83.52 18.53 376.36

WOR The density of work 
related activities Sina Weibo Check-in number/

Square kilometer
Independent 
variable 37.02 37.12 3.73 184.26

OTH The density of other 
activities Sina Weibo Check-in number/

Square kilometer
Independent 
variable 88.98 72.23 12.06 352.37

PER Length of climate suitable 
period

Meteorological 
Data Service 
Center

Month Dependent 
variable 5.47 1.12 2.14 8.74

ZONE Coverage rate of climate 
suitable zone

Meteorological 
Data Service 
Center

% Dependent 
variable 0.5 0.33 0 1

INEQ Theil entropy index of 
climate suitability

Meteorological 
Data Service 
Center

[0,1] Dependent 
variable 0.02 0.03 0 0.12

PM
The total mass of 
industrial and domestic 
smoke dust emissions

China National 
Bureau of Statistics

Tons / million 
people

Instrumental 
variables 134.13 111.29 22.39 418.4

SO
The total mass of 
industrial and domestic 
SOx emissions

China National 
Bureau of Statistics

Tons / million 
people

Instrumental 
variable 159.25 121.39 16.58 535.32

NO
The total mass of 
industrial and domestic 
NOx emissions

China National 
Bureau of Statistics

Tons / million 
people

Instrumental 
variables 160.51 106.96 63.39 550.35

PA Area of green park per 
person

China National 
Bureau of Statistics Hectare per person Instrumental 

variable 0.47 1.01 0 5.51

GR
The ratio of green 
coverage area to regional 
area in the completed area

China National 
Bureau of Statistics % Instrumental 

variable 39.11 3.68 29.8 48.4

CL Area of construction land 
per person

China National 
Bureau of Statistics

Square kilometers 
per 10000 people

Instrumental 
variable 0.32 0.13 0.11 0.69

TOP

The average level 
of topography and 
geomorphology in the 
whole province

China Landform 
Datasets 
(1:1000000)

[0,5] Classification 
basis 3.02 0.95 1 4.88

GDP

The final result of 
production activities of all 
resident units in a certain 
period

China National 
Bureau of Statistics

10000 RMB / 
person

Classification 
basis 5.29 2.32 2.61 10.69
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where, r represents the parameter of spatial lag coefficient; 
b represents the vector of regression coefficient; W  rep-
resents the spatial weight matrix; yW  represents spatial 
lag term of dependent variable; uW  represents spatial lag 
term of error term;   represents the error term. The er-
ror term obeys a normal distribution with mathematical 
expectation of 0 and variance of d2, denoted as ( )20,N d . 
In the two models mentioned above, the spatial lag term 
of dependent variable is considered in SAR model and the 
lag term of error term is considered in SEM model.

2.4. Moran’s I index

The global and local Moran’s I indices were introduced 
to explore the spatial distribution and heterogeneity of 
climate suitability. The Moran’s I indices are presented in 
Equations (8) and (9).

( )( )
( )

1; 1
2

   ;

N
ij i ji j

ii

w x x x xNGlobal Moran s I
W x x

= =
− −

=
−

′
∑

∑
 (8)

( ) 2
2

1; 1
 '   ,   ,

1

N
i

ij j i
i i j

x x WLocal Moran s I w x x S
NS = =

−
= − =

−∑  (9)

where N represents the number of spatial units indexed by 
i and j; x represents the variable of interest; x  represents 
the mean value of x; ijw  represents the matrix of spatial 
weights with zeroes on the diagonal; W represents the sum 
of ijw . By calculating the value of global Moran’s I index 
and its corresponding z-score and p-value, we can evalu-
ate the distribution pattern (Clustering, discrete or ran-
dom) and significance of spatial data sets (Moran, 1950). 
Besides, four types of spatial clusters (HH, HL, LH, LL) 
were detected by local Moran’s I (Anselin, 1995). Specifi-
cally, HH cluster denotes the area where high values sur-
rounded by nearby high values; HL cluster denotes the 
area where high values surrounded by nearby low values; 
LH cluster denotes the area where low values surrounded 
by nearby high values; LL cluster denotes the area where 
low values surrounded by nearby low values. The output 
of Moran’s I were presented in Figure 3.

3. Results

3.1. Assessment results of climate suitability

In the part of empirical research, firstly, the three indica-
tors of length of climate suitability period (PER), coverage 
rate of suitable zone (ZONE) and Theil index of climate 
inequity (INEQ) reflecting climate suitability of 31 prov-
inces in China throughout 2014 were calculated and visu-
alized (Figure 3). 

3.1.1. Climate suitable period
The average length of the climate suitable period where 
valid data can be collected is about 5.47 months and 
showed a relatively significant aggregation distribution 

pattern (Moran’s I: z-value = 1.708; 0.05 < p-value < 0.1). 
From the perspective of overall spatial distribution char-
acteristics, the distribution of the period with suitable cli-
mate in China showed the characteristics that relatively 
long in the southeast coastal area and relatively short in 
the northwest inland area (Figure 3a). Specifically, the re-
gions with long period with suitable climate were mainly 
located in the Yun-Gui Plateau (Yunnan: 8.74, Guizhou: 
6.85) and the surrounding central plains areas (Henan: 
6.25), while the those with short periods were mainly 
located in the northwest (Qinghai: 2.14, Tibet: 2.87) and 
northeast (Heilongjiang: 4.50) of China.

Furthermore, from the results of local Moran’s I, it can 
be seen that the high positive z-values of the four prov-
inces of Xinjiang, Qinghai, Guizhou and Guangxi indi-
cated statistically significant spatial outliers at local scale. 
Among them, Guizhou and Guangxi were identified as 
HH clusters, which indicated that these two provinces 
and their surrounding areas were statistically significant 
clusters of areas with long period of suitable climate. 
Qinghai Province, on the contrary, was identified as LL 
cluster, which indicated for a statistically significant cluster 
of areas with short climate suitable period. In addition, 
Xinjiang province was identified as LH cluster. Indicating 
that Xinjiang was the only outlier which experience long 
period of suitable climate within its neighbor areas.

3.1.2. Climate suitable zone
The average coverage rate of the climate suitable zone where 
valid data can be collected is about 49.8% and showed a 
relatively significant aggregation distribution pattern (Mo-
ran’s I: z-value = 2.013; 0.05 < p-value < 0.1). From the per-
spective of overall spatial distribution characteristics, the 
distribution of the coverage rate of regions with suitable cli-
mate in China showed the characteristics of relatively large 
in the midland areas and relatively small in the northeast, 
northwest inland and southeast coastal areas. Specifically, 
the highest coverage rate of climate suitable zone appeared 
in Shanghai, 100% of the girds in Shanghai are identified 
as the climate suitable zones. The areas with relatively high 
coverage rate mainly appear around Yunnan-Guizhou 
Plateau, Shaanxi Province (97.41%) and Shanxi Province 
(97.14%). On the contrary, no regions with suitable climate 
have been found in the four provinces of Heilongjiang, Ji-
angxi, Hainan and Qinghai (0%). 

Furthermore, from the results of local Moran’s I, it 
can be seen that the high positive z-values of the three 
provinces of Xinjiang, Heilongjiang and Chongqing indi-
cated statistically significant spatial outliers at local scale. 
Among them, Chongqing was identified as HH cluster, 
which indicated that Chongqing and its surrounding ar-
eas were statistically significant clusters of areas with high 
coverage rate of climate suitable zone. Xinjiang and Hei-
longjiang, on the contrary, are recognized as LL clusters, 
which demonstrated that these two provinces and their 
surrounding areas were statistically significant clusters of 
areas with low coverage rate of climate suitable zone.
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Figure 3. Spatial distribution and association of climate suitability indices: a) spatial distribution of PER; b) local Moran’s I of spatial 
association of PER; c) spatial distribution of ZONE; d) local Moran’s I of spatial association of ZONE; e) spatial distribution of 

INEQ; f) local Moran’s I of spatial association of INEQ

3.1.3. Climate inequality
From the calculation results, the Theil entropy index in 
western China was higher than that in eastern China in 
2014 and showed a very significant aggregation distribu-
tion pattern (Moran’s I: z-value = 4.907; p-value < 0.01). 
This indicated that compared with the western, the climate 

conditions in eastern China are more evenly distributed. 
Specifically, the provinces where the climate condition 
distributed evenly are Jiangxi and Shanghai. The Theil 
entropy indices corresponding to these two provinces 
in 2014 was equal to 0. However, not all of these two 
provinces were evenly distributed with suitable climatic 
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conditions. The climate suitable period of all grids in Ji-
angxi province did not reached 5 months, while that of 
Shanghai exceeded 8 months.

Furthermore, from the results of local Moran’s I, it can 
be seen that the high positive z-values of the provinces in 
western China and the middle-lower reaches of the Yang-
tze River basin indicated statistically significant spatial 
outliers at local scale. Among them, all western regions 
except Xinjiang were identified as HH clusters, which in-
dicated that these provinces and their surrounding areas 
were statistically significant clusters of areas where un-
even climate distribution (high Theil index). Moreover, 
Xinjiang was identified as LH clusters, which indicated 
that Xinjiang was the only outlier which experience even 
climate condition within its neighbor areas. In addition, 
the middle and lower reaches of the Yangtze River basin 
are identified as LL clusters, indicating that urban dwellers 
in these provinces enjoy relatively homogeneous climatic 
conditions since conditions in adjacent areas are evenly 
distributed.

3.2. Impact of human activities on climate 
suitability

3.2.1. Global scale
Due to the significant aggregated distribution characteris-
tics of the main climate variables (PER, ZONE and INEQ), 
we constructed 6 spatial regression models with INEQ, PER 
and ZONE as dependent variables and SAR and SEM as 
econometric models respectively to analyze the mechanism 
of human activities on climate suitability. The output of the 
global regression models was shown in Table 5.

From the goodness-of-fit results (AIC) of global re-
gression models, SAR models (model 1) is more effective 

in explaining the relationship between climatic inequality 
and human activities, while SEM models (model 4 and 
6) are more suitable for examining the relationship be-
tween climate suitable period/zone and human activities. 
This indicated that climate inequality in China is more 
correlated to climate conditions during its surrounding 
areas, while the length of climatic suitable period and the 
coverage rate of climatic suitable zone might be affected 
by other hidden variables.

The output of the global regression models showed 
that: (1) The coefficient of ENT in model 6 was 0.003 
(p-value < 0.01), which showed that entertainment related 
human activities have significant positive impact on the 
proportion of climatic suitable areas. One unit of increase 
the density of entertainment activities accompany with the 
extend of the coverage rate of climate suitable zones by 
0.003%. (2) The coefficient of TOU in model 4 was 0.026 
(p-value < 0.01), which showed that tourism related hu-
man activities had a very significant positive impact on the 
length of climatic suitable period. Frequent travels could 
prolong the climate suitable period in related regions, and 
one-unit intensity of transportation related activity could 
prolong the climate suitable period by 0.026 months. (3) In 
contrast, the coefficients of DAI in model 1(0.00035) and 
4(–0.01434) demonstrated that with the increase of the 
density of human activities related to daily life, the level of 
climate suitability declines (0.01 < p-value < 0.05). With 
one-unit increase of the density of daily life related human 
activities, the Theil entropy index of climate inequity and 
the length of climate suitable period increase 0.00035 units 
and decrease 0.014 months, respectively. (4) The impact of 
remaining four types of human activities on climate suit-
ability is not significant according to the p-values of PUB, 
TRA, WOR and OTH in models from Table 5.

Table 5. Parameter estimation result of global regression models

Variable
INEQ PER ZONE

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

CL –0.11809** –0.08843** 0.95693 –0.6614 –0.13707 –0.55105
GR –0.00334** –0.00212* 0.06047 0.07152* 0.02117 0.02625*
PA 0.02338** 0.02167** –1.24298** –1.37431** –0.13621* –0.19183**
PM 0.00009* 0.00013** –0.00416 –0.00687** 0.0001 –0.00084
NO –0.00007 –0.00009 –0.00332 –0.00218 –0.00289* –0.00233*
SO –0.00005 –0.00007 0.00853** 0.00902** 0.00323** 0.00279**
ENT 0.000001 0.000005 –0.0004 0.00346 0.00125 0.00285**
PUB 0.00006 0.000004 –0.00023 0.00335 –0.00093 –0.00008
DAI 0.00035* 0.00052** –0.00311 –0.01434* –0.00026 –0.00347
TOU 0.00004 –0.00008 0.02166** 0.02597** 0.00185 0.0032
TRA –0.00004 –0.00006 –0.00419 –0.00421 0.00059 0.00053
WOR –0.00039 –0.00051 –0.00702 –0.00333 –0.00343 –0.00414
OTH –0.00014 –0.00008 0.00389 –0.00329 0.00042 –0.00243
Model Type SAR SEM SAR SEM SAR SEM
AIC Value –150.811 –150.062 79.273 65.24 17.021 7.044

Note: ** represent that the p-value < 0.01; * represent that the 0.01 < p-value < 0.05.
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3.2.2. Heterogeneity of impact mechanism
Relevant research results have revealed that economic 
level and topographical condition can have a significant 
impact on regional climate and environment (Bulkeley, 
2001). Therefore, we divide China’s provinces into four 
categories of mountainous regions, flatlands regions, eco-
nomically developed regions and economically under-
developed regions (Figure 4) referring to the GDP level, 
landform category and land-sea position of each province 
(see chapter 3.3.1), and the spatial regression models were 
constructed in four regions respectively to estimate the 
heterogeneity of the impact mechanism. The output of 
regression models with better AIC value were selected to 
represent the impact of human activities on climate suit-
ability in corresponding regions.

(1) Economic level heterogeneity
In order to clarify the diversity of regression relationships 
in the regions with different economic level, all the girds 
of China were divided into 2 parts of economically de-
veloped and underdeveloped regions based on the GDP 
level of 2014 (divided by median value). The SAR and 
SEM were conducted within these two types of regions, 
and the results were shown in Table 6.

In general, the output of the regression models indicated 
that the influence and mechanism of human activities that 
have impact on climate suitability showed a significant het-
erogeneity in area with different economic levels. Specifically:

Firstly, certain types of human activities didn’t show 
impact on climate suitability in economically developed 
regions. This was particularly evident in the interactive 

Figure 4. Regional division of provinces in China

Table 6. Parameter estimation result of local regression models in regions with different economic levels

Variable
INEQ PER ZONE

Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

CL –0.01796 0.09284** –3.34293** –80.99320** –2.10614 –27.81950*
GR 0.00135** –0.00006** –0.04858** –1.03611** –0.02856** –0.38904**
PA 0.02402** 0.02498** –0.46438** –6.25589** –0.08015 –1.65652*
PM –0.00003* 0.00041** –0.00297** 0.04394** –0.00069 0.01536
NO 0.00007 –0.00048** –0.00265* 0.11030** –0.00193 0.03495**
SO –0.00006 –0.00037** 0.00371** –0.00994** 0.00172 –0.00227
ENT 0.00003 0.00033** 0.00760** 0.55912** 0.00314 0.18833
PUB –0.00001 –0.00070** –0.00086** 0.17200** –0.00187 0.05396*
DAI –0.00017* 0.00013** 0.00204 –0.06202** –0.00403 –0.01966**
TOU –0.00009 –0.00110** –0.01244** –0.27395** –0.00877 –0.10130
TRA 0.00010 –0.00020** 0.00772** 0.01960 0.00680* 0.00273
WOR 0.00015 0.00383** –0.03765** –2.89693** –0.01111 –0.93224
OTH –0.00009** 0.00035** –0.00240** –0.02900** 0.00153** –0.00691
Model Type SEM SAR SEM SEM SEM SEM
AIC Value –164.41 –881.748 –59.9739 –169.728 –31.8565 –215.059

Note: ** represent that the p-value < 0.01; * represent that the 0.01 < p-value < 0.05; Models 7, 9 and 11 are constructed to explore the 
relationship between climate suitability and human activities in economically developed regions, while models 8, 10 and 12 correspond 
to economically underdeveloped regions.
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relationship between human activities and climate ineq-
uity. The p-values of human activities related factors (p-
value < 0.01) in model 8 indicated that all seven types of 
human activities have very significant impacts on climate 
inequality in economically underdeveloped areas. For 
comparison, in model 7, only the p-values of DAI and 
OTH ranged from 0.01 to 0.05, which indicated that cli-
mate inequity in economically developed regions is only 
affected by daily life related and other types of human ac-
tivities.

Secondly, this study also found that some particular 
types of human activities have a greater impact on cli-
mate suitability of economically underdeveloped regions 
than developed regions. This was particularly evident in 
the regression relationships between human activities and 
the length of the climate suitable period. The coefficients 
of ENT(0.55912), TOU(–0.27395) and WOR(–2.89693) 
in model 10 showed that the length of climate suitable 
period might be prolonged or shortened by 0.56, 0.3 and 
2.9 months with the change of one-unit density of en-
tertainment, tourism and work related human activities, 
respectively. Accordingly, the coefficients of economical-
ly developed areas in model 9 are 0.0076, –0.01244 and 
–0.03765 respectively, which means that the correspond-
ing climate comfort period changes are only 0.008, 0.01 
and 0.03 months.

Furthermore, from the output of the regression mod-
els, we also found that some types of human activities had 
completely opposite impact mechanisms on the climate 
suitability of regions with different economic levels. For 
example, by comparing the coefficients of PUB in models 
9 (–0.00086) and 10 (0.172000), it had been found that 

human activities related to public services could prolong 
the climate suitable period of economically underdevel-
oped regions but shorten that of economically developed 
areas. Similarly, human activities related to daily life are 
conducive to promoting climate equity in economically 
developed regions but aggravate the uneven distribution 
of climate in economically underdeveloped regions ac-
cording to the difference of coefficients of DAI in models 
7 (–0.00017) and 8 (0.00013).

(2) Topographical condition heterogeneity
In order to eliminate the influence of natural factors such 
as terrain and climate province on climate conditions and 
improve the accuracy of the regression models, all the 
girds of China were divided into 2 parts of mountainous 
regions and flatland regions followed the landform cat-
egory and land-sea position. The SAR and SEM were con-
ducted within these two types of regions, and the results 
were shown in Table 7.

The results showed the heterogeneity in the impact of 
human activities on climate suitability of areas with dif-
ferent topographical conditions are mainly reflected in the 
difference of impact factors and the mechanisms. Specifi-
cally:

First of all, human activities have a significantly greater 
impact on the climate environment in mountainous re-
gions. This is mainly reflected in the regression relation-
ships between human activities, climate suitable zone and 
climate inequity. In model 13 and model 17, six of the 
seven human activity related variables had p-values less 
than 0.05, while only two in models 14 and 18. This in-
dicated that most of human activities showed significant 

Table 7. Parameter estimation result of local regression models in regions with different topographical conditions

Variable
INEQ PER ZONE

Model 13 Model 14 Model 15 Model 16 Model 17 Model 18

CL –0.17808** 0.04476** –2.98240** –17.27940** 0.52602** –2.97254*
GR –0.00377** –0.00254** –0.19660** 0.19864** –0.08882** 0.07493**
PA 0.04132** 0.00216 –1.79426** –1.52276** –0.22765** –0.43454**
PM 0.00071** 0.00020** –0.02305** 0.01854** –0.00512** 0.00309*
NO –0.00121** –0.00014* 0.03389** –0.06340** 0.00975** –0.01223*
SO 0.00025** 0.00004 0.00160 0.04957** 0.00088 0.01142**
ENT 0.00075** –0.00018 –0.01467** 0.18347** –0.00006 0.02151
PUB 0.00008 –0.00017** 0.01480** –0.00155** 0.00119** 0.00380**
DAI 0.00062** –0.00007 –0.03556** 0.10691** –0.01122** 0.01066
TOU –0.00119** 0.00030 0.05414** –0.15417** –0.00280* –0.02021
TRA –0.00104** 0.00020** –0.00811 0.03201** –0.00438** 0.00477*
WOR –0.00111** 0.00113 0.08917** –1.00789** 0.03081** –0.12029
OTH 0.00126** –0.00014** –0.01345 –0.02521** 0.00831** –0.00052
Model Type SEM SAR SEM SAR SEM SAR
AIC Value –118.123 –178.795 10.191 –592.974 –35.769 –61.6325

Note: ** represent that the p-value < 0.01; * represent that the 0.01 < p-value < 0.05; Models 13, 15 and 17 are constructed to explore 
the relationship between climate suitability and human activities in mountainous regions, while models 14, 16 and 18 correspond to 
flatlands regions.
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impacts on the coverage rate of the climate suitable zone 
and the Theil entropy index corresponding to climate 
inequity of mountainous regions, but only two of them 
affected the climate condition of flatlands region signifi-
cantly, in contrast.

In addition, this work also found that human activi-
ties had completely opposite impact mechanisms on the 
climate suitability of regions with different topographical 
conditions, which is similar to the situation when we dis-
cussed the cases of differences in economic levels. When 
we compare the coefficients of various human activity re-
lated variables in models 13, 15, 17 and 14, 16, 18, it could 
be found that the symbols of the coefficients are in pairs of 
positive and negative in most cases, which indicated that 
the impact of human activities on mountainous and flat-
lands regions is basically opposite. However, this situation 
only occurred twice when we discuss the heterogeneity of 
economic level (see Table 6).

Specifically, the coefficients of PUB, TOU and WOR 
in model 16(–0.00155, –0.15417 and –1.00789) are nega-
tive but positive in model 15(0.01480, 05414 and 0.08917). 
This indicated that with the increase of the density of 
public services, tourism, and work-related human ac-
tivities, the length of climate suitable period shortens in 
flatlands regions and extends in mountainous regions. 
On the contrary, the coefficients of ENT, DAI in model 
16 (0.18347 and 0.10691) and TRA in model 14(0.00020) 
and model 18(0.00477) are positive, but negative in mod-
el 15(–0.01467 and –0.03556), model 13(–0.00104) and 
model 17(–0.00438). From which, it could be found that 
high intensity of human activities related to entertainment 
and daily life showed a positive impact on the climate en-
vironment of the flatlands regions and but exacerbate the 
climate suitability of the mountainous region. In addition, 
transportation related human activities are special. The 

increase in the intensity of such activities could expand 
the coverage rate of the climate suitable zone in the flat-
lands regions and lead to a depravation in climate equity 
at the same time.

3.3. Discussions on the regression results

This study quantifies the effects of different types of hu-
man activities on climate suitability by constructing spa-
tial regression models. The results suggest a significant 
link between human activities and climate suitability. 
However, the human-environment nexus and the impact 
mechanism of human activities on climate suitability re-
vealed in this work are not completely consistent with the 
results of previous studies. These findings are understand-
able because:

3.3.1. Can human beings influence climate suitability 
in other ways?
Climate elements are continuous spatial variables, and 
their spatial distribution is significantly associated with 
adjacent units (Jensen & Jensen, 2012). From the good-
ness-of-fit of the regression models, it can be seen that 
the SAR do not perform as well as SEM models. This sug-
gested that some important factors affecting climate suit-
ability had been ignored according to the characteristics 
of SEM model (Jensen & Jensen, 2012). In fact, since the 
concept and Sustainable Development Goals (SDG) have 
been put forward, an important human behavior related 
factor has been pointed out having significant impact on 
climate suitability and human-environment nexus, which 
is the climatic policies and regulations (Schor, 2015). Due 
to the difference of climate change influence and ability 
to adapt to climate change, different regions in China 
have different policy objectives and priorities to adapt to 

Figure 5. Human activities’ optimization mechanism for climate environment



148 Y. Ren et al. The impact mechanism of human activities over climate suitability based on social network data...

climate change and energy conservation (Wen et al., 2020; 
Wang & Gong, 2020; Gong et al., 2021), which may be the 
reason why there are significant differences in the level of 
governance of regional climate in China (Sun et al., 2015). 
This conjecture has also been pointed out in studies in 
the fields of economics, politics and law. Specifically, Peng 
et al. (2015) concluded that Tianjin, Hebei and other prov-
inces in China take coastal zone as the core of climate gov-
ernance, while Jiangsu, Anhui and other provinces take 
public health as the key. 

3.3.2. Why does the climate become more suitable 
with the increase of the intensities of certain types of 
human activities?
The results showed in Table 5 indicated that the change 
trend of climate suitability indices (PER, ZONE, INEQ) is 
the same as of the intensity of entertainment and tourism 
related human activities. This result is inconsistent with 
the conclusions of previous studies that high intensity 
human activities in urban spaces which causes anthro-
pogenic heat emission is a major contributor to the heat 
island effect that disrupts urban microclimates. In order 
to further verify our conjecture, we draw our reasoning 
process as a flow chart (Figure 5) to further illustrate the 
implicit mechanism by which human activities optimize 
the regional climate environment.

On the one hand, the China’s eco-friendly commercial 
street design style is likely to be the key to the climate 
optimization effect of entertainment related human ac-
tivities. Specifically, Lu (2018) found that special urban 
street spaces in China reduce heat island intensity through 
both ecological surface heat absorption cooling and build-
ing shadow reduction cooling. Similarly, Li and Wang’s 
(2016) randomly investigated three streets in China and 
found that the reasonable orientation, aspect ratios, lay-
out of green spaces and water areas of the street design 
are main characteristics of the eco-friendly design strate-
gies for commercial streets. These findings illustrated that, 
compared with heat release and temperature rise caused 
by human activities in commercial districts in developed 
countries (Block et al., 2004), China’s special commercial 
street design style is likely to produce cooling effect on the 
contrary. Therefore, the area of eco-friendly commercial 
blocks which is correlated with the intensity of human 
activities of shopping and catering is likely to be the rea-
sonable explanation for the relationship between human 
entertainment activities and the expansion of the climate 
suitable area reflected in the regression models.

On the other hand, the mechanism of tourism activi-
ties prolonging the climate suitable period may be related 
to the cooling mechanism of urban green spaces (Kong 
et  al., 2013). Qiu (2014) elaborated the mechanism of 
green space’s influence on regional climate and found that 
green space could significantly reduce the temperature of 
different types of construction land by 2.384~1.65 °C. At 
the same time, Chinese government has invested heavily 
in the construction of new national parks and green spac-
es to create green tourism destinations for urban residents 

(Huang et al., 2008) and green spaces are recognized as 
the main tourism destinations in China. This further in-
dicated that the tourist flows actually reflected the area of 
regional green space and might be the reason why tourism 
activities optimized climate suitability.

In summary, there is no doubt that human activities 
generate metabolic heat. The unexpected results showed 
in the regression models that entertainment and tourism 
related human activities could affect and even optimize 
the climate environment could be explained by the be-
havior patterns of these two types of human activities and 
the environmental optimization effect of the spaces that 
carries these activities.

3.3.3. What makes the spatial heterogeneity in the 
impact mechanisms of human activities on climate 
environment?
This work pointed that the types of human activities af-
fecting climate suitability at different economic levels are 
different.

This might be related to differences in the behavior 
patterns of residents in regions with different economic 
levels. Hunecke et  al., pointed that travel mode choices 
and residence choice tendency of residents in high-in-
come regions produced less air pollutants (Hunecke et al., 
2001), which could greatly reduce the pressure on the en-
vironment effectively. This might be the reason why hu-
man activities showed a relatively less significant impact 
on economically developed regions than underdeveloped.

Moreover, this work also found that human activi-
ties had completely opposite impact mechanisms on the 
climate suitability of mountainous region. This may be 
related to the special urban form and urban ventilation 
channel of mountain cities in China. Chongqing, a typical 
mountainous city in China, was taken as an example to 
focus on the mechanism of reconstructing urban ventila-
tion channel and optimizing regional climate environment 
through the rational use of its mountainous terrain in the 
process of planning and design (Chen, 2012). This work 
further pointed out that high-rise buildings in mountain-
ous cities have a significant role in promoting the wind 
speed near the ground (about 1.5  m/s). Therefore, we 
speculated that the urban planning strategies dominated 
by the special urban ventilation channel in mountainous 
cities is the main reason for the topographic heterogeneity.

Conclusions

In this paper, we quantified the relationship between hu-
man activities and climate suitability and clarified the im-
plicit impact mechanisms between them with the help of 
Sina Weibo check-in data and spatial regression models. 
Based on the above research, the following research results 
can be obtained.

First, entertainment, tourism and daily life related 
human activities on climate suitability are significant 
(p-value < 0.05). With one-unit (one check-in record/km2) 
increase of entertainment and tourism related human 
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activities, the coverage rate of climate suitable zone and 
the length of climate suitable period increase by 0.003% 
and 0.026 months, respectively. In contrast, one-unit of 
increase of daily life activities made the Theil entropy in-
dex of climate inequity and the length of climate suitable 
period increase 0.00035 units and shorten 0.014 months, 
respectively. Second, human activities showed greater im-
pact on the climate suitability of economically underdevel-
oped regions and completely opposite impact on the cli-
mate suitability of region regions at different topographic 
conditions. Third, the unexpected regression results on 
the implicit impact mechanisms of entertainment, tour-
ism related human activities and the significant spatial 
heterogeneity could be explained by the environmental 
optimization effect of the spaces that carries these two 
types of activities and the special urban planning strate-
gies in China, respectively.

Based on the above research conclusions, the follow-
ing suggestions to optimize regional climate condition 
are proposed. The pedestrian street design in the urban 
center, especially the size of the street and the allocation 
of green and water elements unable the cooling effect of 
pedestrian street. Government should issue relevant urban 
design regulations to promote the design of environment-
friendly pedestrian street. Besides, for mountainous cit-
ies, urban ventilation channel structure design is of great 
importance for the optimization of urban climate and en-
vironment. Government needs to focus on the impact of 
mountain terrain and building patterns on further urban 
planning strategies.

Due to the data access restrictions of Sina Weibo plat-
form API, we could only obtain the nationwide check-
in data of China before 2015. This made it difficult to 
construct panel data to explore the dynamic relationship 
between human activities and climate conditions. In the 
future, we will explore more ways to obtain multi-sourced 
data, strive to improve the effectiveness of data, and deeply 
explain the development trend of human-environment 
nexus through different periods.
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