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Freshwater resources of small islands are limited be-
cause it is affected by tides in the daily and rain in the an-
nual (Narulita et al., 2005). According to Purnama (2010), 
tides are one of the factors that affected groundwater level 
fluctuations, while (Levanon et  al., 2016), showed there 
were interactions between these two attributes in the form 
of groundwater level position change. Dong et al. (2015) 
stated a seasonal and diurnal water level fluctuation in 
coastal aquifers is typically caused by oceanic tidal and 
barometric variations. On low coral islands, the ground-
water lens is a vital source of freshwater for the terrestrial 
ecosystem and domestic consumption (White et al., 2007). 

Several researchers have conducted studies related to 
tidal – groundwater interactions with various methods. 
The summary obtains as follows:

 – analytical solutions (Nielsen, 1990; Jeng et al., 2002; 
Dong et al., 2015; Huang et al., 2015 etc);

 – numerical modeling (Ataie-Ashtiani et  al., 2001; 
Pauw et al., 2014; Levanon et al., 2016 etc);
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Highlights

	X The sea level in the study area showed the occurrence of elevating caused by standing waves. Despite the standing wave 
phenomenon, the sea level around the island has a similar.
	X Groundwater conditions showed that the largest fluctuations level occurred during the new moon phase.
	X The effect of tides on the groundwater level characterized by decreasing in amplitudes and time lags as increasing the 

distance from the coast.

Abstract. This research aims to identify the effect of tides on groundwater level fluctuation in Gili Ketapang Island by using 
a combination of field monitoring and hydrodynamic modeling. Groundwater data were collected from 5 July to 17 August 
2018 from two wells monitoring, while the hydrodynamic model was adopted to identify sea-level conditions. The result 
explains the sea level around the island is similar among extremely strong correlations between the points. The hydrody-
namic model proves a standing wave due to tidal amplification in Madura Strait waters. The effect of tides on the ground-
water level characterized by decreasing in amplitudes and time lags as increasing the distance from the coast.
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Introduction 

Indonesia is the largest archipelago country in the world, 
with a total of 17,504 large and small islands. Falkland 
et al. (1991), defined a small Island as a land with an area 
less than 2,000 km2 or widths below 10 km, while a very 
small island has an area of fewer than 100 km2 or widths 
below 3  km. Small islands consist of geological, hydro-
logical, demographic, and socio-economic unique char-
acteristics. Falkland (1993) reported that the factors that 
influence the existence of water resources on small islands 
included (1) physiography (2) climate and hydrology (3) 
geology and hydrogeology (4) land and vegetation (5) hu-
mans and for flat islands (5) sea-level fluctuations, such 
as tides. Most of the oceanic island is relatively permeable 
consisting of sand, coral, or limestone and having con-
tact by seawater on all sides (Todd, 1980); moreover have 
phreatic groundwater with saline groundwater underlying 
the freshwater (Fetter, 1972). 

http://creativecommons.org/licenses/by/4.0/
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 – field monitoring (Kim et al., 2005, 2006; Abarca et al., 
2013; Narulita et al., 2005; Opatz & Dinicola, 2018; 
Singaraja et al., 2018 etc).

Many studies take locations such as islands and coastal 
areas directly exposed to sea waters, while a few highlight 
the bay waters. Whereas in the bay waters area tidal ampli-
fication often occurs as explained by Dean and Dalrymple 
(1991), Hadi and Radjawane (2010), Van Rijn (2011), and 
Holleman and Stacey (2014), where one of the effects of 

amplification is related to coastal area inundation such as 
Holleman and Stacey (2014), Hill (2016), and Kusmanto 
et al. (2016). This term has an impact on the condition of 
coastal groundwater especially on small islands, where the 
combination of tides, the phenomenon in the bay waters, 
and groundwater has not been much considered. There-
fore, this research attempts to implement this. Previous 
studies regarding tidal-groundwater relations are shown 
in Table 1. 

Table 1. Literature review related to the tidal-groundwater topics

Authors Area Methods Aims

Abdullah et al. 
(1997)

Sipadan Island, 
Malaysia

Field monitoring Determine the effect of tidal change on the groundwater quality 
of such an island using temperature, dissolved oxygen content, 
conductivity, salinity, and pH

Urish and 
McKenna (2004)

Nauset Marsh, 
Massachusetts, 
USA

Field monitoring Provides new insights into the coastal groundwater discharge 
phenomenon by describing the result of field study on tidally 
influenced sandy beaches

Kim et al. (2005) Kimje Coastal 
Area, Korea

Field monitoring Time series analysis for identification of tidal effect on groundwater 
quality

Jeng et al. (2005) Ardeer, 
Scotland

Field monitoring & 
numerical modeling

Combine the tidal influence on groundwater dynamics, saltwater 
intrusion, and chemical transport in a coastal aquifer model to 
elucidate their interactions

Xun et al. (2006) Beihai, China Field monitoring Investigate tidal effect on groundwater level in Beihai coastal 
aquifer

Vandenbohede and 
Lebbe (2007)

Belgian coastal 
plain, Belgia

Numerical modeling Influences of tides on the groundwater flow in a phreatic aquifer 
situated under the dunes and a gently sloping shore

Mao et al. (2006) Ardeer, 
Scotland

Field monitoring & 
numerical modeling

Identify in particularly the effect of tidal fluctuations at a midly 
sloping beach

Robinson et al. 
(2007)

experimental 
data

Numerical modeling A detailed parametric study investigating the rate of water exchange 
across the aquifer-ocean interface driven by tidal forcing

Wu and Zhuang 
(2010)

experimental 
data

Numerical modeling Identify characteristics of groundwater table fluctuation and 
influencing factors

Banerjee et al. 
(2012)

Kalpeni Island, 
India

Field sampling Reporting the groundwater quality and salinization on shallow 
groundwater regime in a small coral island

Liu et al. (2012) experimental 
data

Numerical modeling Investigate the influences of different beach slopes on the tide 
induced water table fluctuation and the groundwater dynamics in 
the transition zone based on designed numerical scenarios

Abarca et al. (2013) Waquoit Bay, 
Massachusetts, 
USA

Field monitoring, 
tracer injection & 
numerical modeling

Present the evidence of the complex interaction among the 
intertidal saline cell, the deep saltwater wedge, and fresh water 
discharge

Heiss and Michael 
(2014)

Cape 
Henlopen, 
Delaware, USA

Field monitoring & 
numerical modeling

Identify the physical forcing conditions (i.e. tidal amplitude 
variability and fluctuation in the inland water table) and time scales 
that are the most important that controlling the structure and area 
extent of the intertidal salinity distribution

Dong et al. (2015) Kyushu Island, 
Japan

Field monitoring Analyses the tidal and barometric effects on water level fluctuation 
in a coastal aquifer near Ariake Sea

Hsieh et al. (2015) experimental 
data

Analytical solutions Linearizing the 1-D non-linear Boussineqs equation to characterize 
the variation of groundwater level induced by tidal and rainfall in 
coastal unconfined aquifer

Huang et al. (2015) experimental 
data

Analytical solutions Present the analytical model considering three tidal boundary 
effects for U-shaped aquifers

Levanon et al. 
(2017)

Nitzanim 
Nature Reserve, 
Israel

Field monitoring & 
numerical modeling

Validate the mechanism for tidal induced groundwater fluctuations 
using time series analysis of field data and numerical simulations

Zhang et al. (2017) Rorotonga, 
Cook Islands

Field monitoring & 
numerical modeling

Investigate slope break effect on beach groundwater flow at a field 
site 

Jasonsmith et al. 
(2017)

Wybong Creek, 
Australia

Field monitoring Investigate the influence of earth-tide in area study and identify 
processes contributing to salinity in tributary of the river
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Some researchers identified interactions of tides and 
groundwater with several methods. The analytical solu-
tions was carried out by Nielsen (1990); Jeng et al. (2002); 
Dong et al. (2015); and Huang et al. (2015). The numerical 
modeling was carried out by Ataie-Ashtiani et al. (2001); 
Pauw et  al. (2014); dan Levanon et  al. (2016). The field 
measurement was carried out by Kim et al. (2005, 2006); 
Abarca et al. (2013); Narulita et al. (2005); and Singaraja 
et  al. (2018). Research on the interaction between tides 
and groundwater in coastal areas was mostly carried out 
by hydrogeochemical and geoelectric approaches. How-
ever, an understanding of groundwater fluctuations due to 
tides was rarely studied, especially on small island regions.

Gili Ketapang Island is located in the north of 
Probolinggo Regency and included in the Madura Strait 
waters. This very small island has an area of 0.68 km2 and 
a population density of 12,356 people/km2 (Husrin, 2018). 
It has limited water resources, due to its large population. 
In addition, it is geographically surrounded by the waters 
of the Madura Strait, causing oceanographic influences, on 
the tides towards groundwater. The hydrogeological char-
acteristics of Gili Ketapang Island are alluvium deposits 
and limestone. This study aims to identify the effect of 
tides on groundwater level fluctuations on Gili Ketapang 
Island. Research location is shown in Figure 1.

This study aims to identify the effect of tides on ground-
water level fluctuations on a small island. This study applies 
hydrodynamic models which ordinarily used in hydrody-
namic modeling of marine waters, such as Bayhaqi et  al. 
(2018), Prihantono et  al. (2018), and Wisha et  al. (2018). 
The hydrodynamic model is implemented to recognize the 
bay waters phenomena in the research area. Several studies 
on hydrodynamic in the bay area have been provided such 
as Sutherland et al. (2005), Webb (2014), Cui et al. (2019), 
though no one has yet sought to associate the model with 
groundwater. The combination of hydrodynamic modeling 
and groundwater monitoring is expected to gain the explana-
tions of the effect of tides induces groundwater.

1. Methodology

1.1. Study area

Gili Ketapang Island is an isolated coral island, located 
in the north of the Probolinggo Regency and included in 

the Madura Strait waters area. Gili Ketapang Island has an 
area of 0.68 km2 (classified as a very small island) with a 
population density of 12,356 people/km2 (Husrin, 2018). 
The percentage of built areas on the island is approxi-
mately 90.28% or 65 hectares, while the non-built area 
was 9.72% or 7 hectares. The built area on the island is 
dominated by residential buildings with closely distances 
between houses. This dense-populated small island can 
produce pressure on the groundwater due to the impact 
of excessive groundwater abstraction. 

Based on the Geological Map of Probolinggo at scale 1: 
100,000, Gili Ketapang Island is composed of: (1) surface de-
posits (Qa), i.e. clay, mud, sand, pebble, cobble, boulder, and 
plant residues; and (2) coral limestone, i.e. coral limestone 
and sandy limestone. The eastern part of the island comprises 
a layer of the aquifer, in the northern part, there is a layer with 
a depth between 0-18 m below the surface and is increasingly 
thinning towards the south. In the middle part of the island 
with the north-south orientation, there is a relatively deep 
layer with a depth between 8–100 m below surface. Toward 
the east, the aquifer thickness is thinner because the eastern 
part of the island is dominated by compact limestone.

Gili Ketapang Island is controlled by the condition of 
oceanic drivers, like currents, waves, and tides. Accord-
ing to Hidayati et  al. (2016), the dominant direction of 
the waves is northwest to southeast with a height of up to 
0.33–0.58 m. Formzahl value in the Madura Strait waters 
provides a value of 0.723; this indicates that the Madura 
Strait waters are classified as a tidal type of mixed tide pre-
vailing semidiurnal. Kusmanto et al. (2016) stated that the 
tidal range in the Madura Strait waters is relatively high 
compared to the Java Sea. The location of this research is 
shown in Figure 1.

1.2. Field monitoring

The data used were tidal and groundwater fluctuations. 
Tidal data obtained were measured by the Marine Re-
search Center and predicted by the TMD and Tidal Pre-
diction Height from MIKE21. Field data were measured 
from 1 July 2018 at 12:20 PM till July 5, 2018, at 11:20 AM 
with measurement intervals of 10 minutes. This result was 
used to validate the MIKE21 simulation and TPXO 6.2 
tidal prediction data carried out by the Tidal Model Driver 
(TMD) program.

Authors Area Methods Aims

Singaraja et al. 
(2018)

Cuddalore 
coastal region, 
India

Field monitoring The relation between water table, dissolved oxygen, and electric 
conductivity in the coastal aquifers and tidal influences in selected 
three locations

Trglavcnik et al. 
(2018)

Sabe Island, 
Canada

Field monitoring & 
numerical modeling

Practical use of a combined approache of analyzing signal 
propagationof both tidal and storm pulse can provide insight into 
structure of a heterogeneous coastal aquifer system

Opatz and Dinicola 
(2018)

Naval Base 
Kitsap, 
Keyport, 
Washington

Field monitoring Determine the optimal time during the semi-diurnal and the 
neap-spring tidal cycles to sample groundwater for fresh water 
contaminant in monitoring wells

End of Table 1
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Field monitoring consists of both tidal and ground-
water level monitoring. Tidal is measured on 1 July 2018 
at 12.20 West Indonesia Time (WIB) until 5 July 2018 at 
11.20 WIB with a 10-minutes interval, installation of the 
tidal monitoring located in the northeast of the island. 
Lack of instrument and unallowable condition in the field 
causing tidal monitoring is only accomplished for 5 days. 
To extend the range of data, this study applies hydrody-
namic modeling using MIKE21. Hence, tidal data can be 
managed to validate the results of the model.

Tidal data from TMD was carried out at a time inter-
val of 1 hour, from July 1, 2018, to August 31, 2018, using 
a UTC reference, for adequate comparison with field data. 
Furthermore, TMD tidal data was used as a comparison 
against MIKE21 simulation results, with the tidal predic-
tion data from global tide used as a boundary condition 
of the hydrodynamic model. Groundwater level data were 
obtained from two measurement locations, namely Well01 
and Well02 with distances of 30 and 250 meters from the 
coast. Well01 was measured from July 5, 2018, at 10:30 
AM till August 17, 2018, at 01:00 PM, while Well02 was 
measured from July 5, 2018, at 12:10 PM till August 17, 
2018, at 10:40 AM, with both data measured during the 
dry season. These data were used to determine ground-
water conditions and their position over several phases of 
the moon and combined with the hydrodynamic models 
to obtain a relationship between tides and groundwater.

Groundwater data collected from two monitoring 
wells, namely Well01 is about 30 m and Well02 is about 
250 m from the shore. Both monitoring wells are located 
in the northern part of the island. Well01 has measured 
on 5 July 2018, at 10.30 West Indonesia Time to 17 August 
2018, at 13.00 West Indonesia Time, while Well02 is meas-
ured starting from 5 July 2018, at 12.10 West Indonesia 
Time to 17 August 2018, at 10.40 West Indonesia Time. 

Both wells measured during the dry season at an about 
one meter in-depth with a 10-minutes interval. This data 
is applied to determine groundwater conditions and their 
relative position over several moon-phases and combined 
with hydrodynamic models to gain a relation between 
tides and groundwater.

This study did not perform datum references such as 
Trglavcnik et al. (2018) and Opatz and Dinicola (2018), to 
reference groundwater levels to sea levels. However, this 
study implements a relative reference to sea level by meas-
uring groundwater level and sea level at the same time us-
ing traditional equipment: water pass tubes. Therefore, the 
position of the groundwater level can still be referenced to 
the sea level. Illustration of groundwater level fastening to 
mean sea level is shown in Figure 2 as follows.

Some of the variables required to bind the groundwa-
ter level represent (a) the height of the pipe upon the sea 
level for a moment; (b) pipe length; (c) shortly of sea-lev-
el value; and (d) distance of the sensor from water-table. 
For a moment of sea-level value represents the condition 
of sea level when fastening was executed. The sea-level 
value for a moment was collected from a tidal model to 

Figure 1. Map of research location in the Madura Strait waters includes showing locations of both tidal  
and wells monitoring. Tidal monitoring labeled with blue dot whereas the wells labeled by an orange and green dot

Figure 2. Illustration binding the groundwater to sea level. 
This process uses tidal model data and groundwater level 

monitoring data
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fasten groundwater data relative to mean sea level, due to 
the lack of time-series data. The calculation results pro-
duce consequences for errors. The consequence because 
of using model data not real of field measurements and 
are unmeasured periodically, so estimation of the error 
to be high to reference the groundwater level. Hence, the 
groundwater level position to mean sea level in the study 
mentioned as the relative groundwater level.

1.3. Hydrodynamic modeling

The hydrodynamic model is a shallow water model using 
hydrodynamic equations: (1) continuity equation and (2) 
horizontal momentum equation of x-y component. Tidal 
hydrodynamic models were processed using MIKE21. Ac-
cording to Danish Hydraulic Institute [DHI] (2017), the 
equations are presented using Cartesian coordinates. The 
local continuity equation is written as Eq. (1) below:

.u v w S
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

  (1)

And the two horizontal momentum equations for the 
x- and y- component is written as Eqs (2) and (3).
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where: t – time; x,y,z – Cartesian co-ordinates; η – surface 
elevation; d – still water depth; u, v, w – velocity compo-
nents in x, y, z direction; f – Coriolis parameter; g – gravi-
tational acceleration; ρ – density of water; ρ0 – reference 
density of water; pa – atmospheric pressure; vt – vertical 
turbulent or eddy viscosity; S – magnitude of discharge 
due to point sources; us, vs – velocity by which the water 
is discharged into the ambient water.

The steps in the hydrodynamic modeling process in-
clude:

1. Mesh generating
The important points in making mesh, particularly 

grid computing, water depth, and information about 
boundary conditions (DHI, 2017). The data utilized in 
creating the mesh are shown in Table 2 as follows.

2. Running hydrodynamic model
Hydrodynamic modeling was generated by using 

MIKE21, among the mesh applied is Flow Model Flexible 
Mesh (Flow Model FM), as has been done by Wisha et al. 
(2018) and Prihantono et al. (2018). Hydrodynamic mod-
eling was provided for two months, starting from 1 July 
to 31 August 2018. The setup parameters of the hydrody-
namic modeling are shown in Table 3 as follows.

Table 3. Setup parameters in hydrodynamic modeling

Modul: Hydrodynamic Module (HD)

No Parameter Penerapan dalam penelitian

1. Mesh and 
Bathymetri

Generate mesh and bathymetry 
interpolation by using the Natural 
Neighbor method

2. Domain 
spesification Minimum depth cutoff : –4

3. Boundary 
names

Eastern boundary (BC02), Northern 
boundary (BC03), dan Western boundary 
(BC04)

4. Simulation 
period

Number of time steps : 1488
Time step interval : 3600 detik
Simulation start date : 1 Juli 2018
Simulation end date : 1 September 2018

5. Density Barotropic

6. Eddy 
viscosity

Eddy type : Smagorinsky à 0.28 (konstan)
Minimum eddy viscosity : 67
Maximum eddy viscosity : 16666667

7. Bed 
resistance Manning number à 32 m1/3

8. Output

Point dan area
Output items : surface elevation, u 
velocity, v velocity, current speed, current 
direction

Validation of the model was generated to determine 
the accuracy of the model. In other words, to assess an 
error value of the model. In this study, the validation was 
performed by comparing the values between the MIKE21 
modeling with tidal monitoring. Measuring the accuracy 

Table 2. Data utilized for creating the mesh

No Data
Source

Agency Sites

1. Shore-
line

Geospatial 
Information 
Agency (BIG)

https://portal.ina-sdi.or.id/
downloadaoi/

2. Bathy-
metry

Geospatial 
Information 
Agency (BIG)

http://tides.big.go.id/DEMNAS/
Resolution : 6 arc-second 
(±180 m)

3.

Boun-
dary 
Con di-
tion

Eastern boundary (BC02):
Start point à [–7,778; 114,413]
End point à [–6,581; 114, 456]
Northern boundary (BC03):
Start point à [–6,581; 114, 456]
End point à [–6,612; 111, 713]
Western boundary (BC04):
Start point à [–6,612; 111, 713]
End point à [–6,761; 111,702]

https://portal.ina-sdi.or.id/downloadaoi/
https://portal.ina-sdi.or.id/downloadaoi/
http://tides.big.go.id/DEMNAS/
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by using RMSE (Root Mean Square Error), according 
to Spaulding and Mendelsohn (1999) and Bayhaqi et al. 
(2018) are proved by Eq. (4) as follows:

( )2
1

1 1 ,
n

i
RMSE y y

n =

= −∑   (4)

where: RMSE – Root Mean Square Error; n – total data; 
y – model data; y1 – field data.

A correlation test was conducted to identify the 
strength of the linear relationship between predictive and 
observation data (Barnston, 1992). Correlation data is 
used to ascertain the relationship between two variables 
using the correlation coefficient. The correlation coef-
ficient has values extending from –1 (indicates negative 
correlation) to +1 (denotes positive correlation). The cor-
relation formula is shown in Eq. (5) below.

( )( )
( ) ( )2 2 2 2

,
( ) ( )

n xy x y
R

n x x n y y

Σ − Σ Σ
=

Σ − Σ Σ − Σ
  (5)

where: R – Correlation value; n – Total data; x – Variable x 
(predictive data); y – Variable y (observational data). 

2. Results and discussion

2.1. Model validation and description of tidal 
conditions in the Madura Strait

The tidal conditions of the Madura Strait waters are ex-
plained through hydrodynamic modeling using MIKE21. 
The data from the modeling are validated first, producing 
an RMSE value of 0.202 m (or 20 cm), meaning the model 
data produce an error of ±0.202 m (±20.2 cm) or about 
10.30%. The RMSE of the hydrodynamic model must be 
smaller than 0.4 or 40% of the standard deviation, refer-
ring to Holt et al. (2005); Huang et al. (2010); and Wisha 
et al. (2018). The standard deviation of the MIKE21 model 
was 0.58 m, which means the maximum allowable error is 
0.23 m, therefore the model results can be used. The cor-
relation coefficient value between field data and MIKE21 
model is 0.945. It indicates a strong relationship between 
field data and the MIKE21 model. Furthermore, the 
MIKE21 model can be used for further analysis. Results 

of validation and correlation test of the MIKE21 model 
with field data are shown in Figure 3 as follows.

The results of the MIKE21 modeling reveal that sea-
level conditions in the Madura Strait waters vary. These 
variations are recognized by plotting to extract sea level 
values at several points during the modeling period. As-
suming in semi-enclosed bay waters there are possible 
differences in sea level in particular locations. Therefore, 
several representative locations were chosen: (1) in the 
waters around Gili Ketapang Island; and (2) in Madura 
Strait waters, to suppose the differences in sea level and 
its implications in the area. Plotting locations and sea-level 
information of the model are shown in Table 4 and Fig-
ure 4 as follows.

Table 4. Sea level variations in several locations based on 
MIKE21 model

No Code Location
Sea level (m)

*) Tidal 
Range (m)Maxi-

mum
Mini-
mum

1 t01
Northeastern of 
Gili Ketapang 
Island

1.320 –1.535 2.855

2 t02 Northern of Gili 
Ketapang Island 1.324 –1.540 2.864

3 t03 Western of Gili 
Ketapang Island 1.333 –1.554 2.887

4 t04 Southern of Gili 
Ketapang Island 1.319 –1.536 2.855

5 t05 Eastern of Gili 
Ketapang Island 1.311 –1.526 2.837

6 t06
The mouth 
of the semi-
enclosed bay

1.002 –1.177 2.179

7 t07
The middle part 
of the semi-
enclosed bay

1.281 –1.494 2.775

8 t08

The narrow 
mouth of the 
Madura Strait 
waters

1.309 –1.172 2.481

Note: *)Tidal Range – value range between maximum and mini-
mum of tides.
The tidal range is determined during the new moon on 13 July 
2018.

Points t01 to t05 were around Gili Ketapang Island, 
with point t01 (northeast of Gili Ketapang Island) as the 
location of tidal measurements in the field, which was 
used as validation of MIKE21 simulations. In addition, 
these points had almost the same sea-level values, with 
maximum and minimum values of 1.3 and –1.5 meters re-
spectively. The maximum and minimum sea level from the 
five points was 1.33 meters and –1.55 meters, respectively. 
It showed that the sea level around Gili Ketapang island 
had almost the same tendency. This similarity is also seen 
from the value of tidal range which is the distance be-
tween the maximum and minimum sea level. Tidal range 

Figure 3. Comparison of the MIKE21 model with field data. 
The blue line shows field data, while the dashed red line shows 

the MIKE21 model



Journal of Environmental Engineering and Landscape Management, 2021, 29(3): 215–228 221

values at points t01 to t05 were 2.85, 2.86, 2.88, 2.85, and 
2.84 meters, respectively, with an average of 2.86 meters. 
These values were similar, thereby, indicating that the tidal 
conditions around Gili Ketapang Island were the same. 
Based on the calculation, the correlation between t01, t02, 
t03, t04, and t05 produced a value of 1.0, meaning that the 
five points have a very strong correlation. 

Regional sea-level characteristics in Madura Strait wa-
ters are unique when observed from variations in tidal 

ranges. This sea-level characterization is classified into two 
areas, specifically (1) Madura Strait waters, represented by 
t06, t07, and t08; and (2) the waters nearby Gili Ketapang 
Island, represented by t01 – t05 or tketapang. Based on the 
tidal range, t06 – t07 – t08 shows fluctuating with consecu-
tive values: 2.18, 2.77, and 2.48 m. This trend can be ob-
served in the spring and neap tide which shows in Figure 5.

Seawater levels around Gili Ketapang Island (t01 – t05) 
have almost the same value, with a maximum average of 

Figure 4. Mapping of the plotting location of sea-level values from the MIKE21 model,  
where t01 – t05 (tketapang) points are in the waters nearby Gili Ketapang Island, while t06, t07,  

and t08 points are in the Madura Strait waters

Figure 5. Comparison of sea level t06, t07, and t08 at the phase: new moon, first-quarter, full moon, and third-quarter
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about 1.3 m and a minimum average of about –1.5 m. 
This similarity can also be seen as the tidal value of the 
t01 – t05 which produces an average of 2.86 m. These con-
ditions indicate the sea level conditions surrounding Gili 
Ketapang Island are the same. Calculation of the correla-
tion regarding the five points has a correlation value of 
1.0 which means the correlation between the five points 
is extremely strong. Furthermore, there is no significant 
variation regarding sea-level conditions around the island.

According to Van Rijn (2011), Holleman and Stacey 
(2014), and Kusmanto et  al. (2016) variations of tidal 
range due to four main things, particularly (a) resonance 
of standing waves due to the impact of reflected waves 
especially during a flood; (b) the effect of friction; (c) 
decreasing the area of the geometry towards the coast 
or converging geometry; and (d) the effect of inertia. 
Therefore sea level values of t06, t07, and t08 are less than 
t01 – t05 because the depth at the t06 – t08 point is larger 
than t01 – t05. Whereas t01 – t05 or tketapang is due to 
the impact of shallow waters about the island. Interest-
ingly, tidal range from t06 and t08 smaller than t01 – t05, 
but on t07 has a value approximating t01 – t05. 

According to Hadi and Radjawane (2010), resonance 
in a bay or gulf occurs if the tidal period approximates 

or has equal value among the natural periods of the bay. 
Formzahl values in the Madura Strait waters have a value 
of 0.723, meaning classified as a mixed tide prevailing 
semidiurnal with a period of 12.42 hours. Kusmanto et al. 
(2016) have calculated the natural period of the bay and 
produce 12.46 hours. This confirms tidal resonance in the 
Madura Strait waters.

The east-west transect represents by t06  –  t08 point 
designates a mark of elevating at t07 which means a proof 
of the tidal amplification process in the Madura Strait wa-
ters. According to Kusmanto et al. (2016), this amplifica-
tion due to the converging geometry toward a semi-closed 
bay. Illustration of elevating in the Madura Strait waters 
can be recognized using the MIKE21 model and presented 
in Figure 6. Whereas, the north-south transect represents 
by tketapang-t07 shows an insignificant in sea-level dif-
ferences. It means in t07 and the waters surrounding the 
island reveal a similar dynamics of the sea level.

Dean and Dalrymple (1991) and Van Rijn (2011) 
pronounced that tides propagate through the bay waters 
within bordered by land at the ends will generate the reso-
nance. The resonance means a local tidal amplification in 
the bay area proximate to the waters. According to Godin 
(1993), the resonance occurs at a flood event can produce 

Figure 6. Illustration of tidal elevating in the Madura Strait waters. Figure (a) shows the reflected waves at the ebb event, Figure 
(b) shows the incoming waves starting to dominate and increasing in Figure (c) and Figure (d). The peak event occurs in Figure 
(e), where the incoming waves combine with the reflected waves making a superposition. The illustration is obtained from the 

hydrodynamic model during the full moon phase on 26 August 2018 at 01.00; 05.00; 06:00; 07.00 and 08.00 WIB 
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a standing wave. This is reemphasized by Holleman and 
Stacey (2014), the resonance and convergence of the ge-
ometry of the coastline at the edge of the bay waters will 
generate a rise in sea level. According to this explanation, 
the t07 point denotes the standing wave occurs.

According to Holleman and Stacey (2014), standing 
wave resonance is the result of a superposition of incom-
ing waves among reflected waves. In this case, waves origi-
nate from the open waters then through t06 point, run 
and reach the t08 point and hit the shoreline, then reflect 
and face with the other incoming waves around t07 point. 
The meeting point generates an increasing water level and 
result superposition. An illustration of the superposition 
in the Madura Strait waters shown in Figure 7.

Tidal amplification has various impacts on coastal are-
as. The southern part of the Madura Strait waters classified 

as a sub-aerial deposition coast characterized by tidal flat 
at several locations (Kusmanto et al., 2016). The impacts 
resulting from tidal amplification include inundation in 
coastal areas, accumulation, and distribution of sediments 
that can produce tidal flats, impact in water quality, har-
bor silting, and those relevant to this study, specifically the 
impact on groundwater.

2.2. Groundwater conditions on Gili Ketapang 
Island

Groundwater conditions on Gili Ketapang Island in 
monitoring wells (Well01 and Well02) indicate there are 
changes in groundwater levels in both well monitoring. 
During the monitoring, the highest groundwater level in 
Well01 is 0.025 m (above the sea level) while the lowest 
is –0.365 m (below the sea level) with an average position 
is –0.227 m relatively. Therefore, during monitoring, the 
groundwater level position in Well01 is below sea level 
relatively. Moreover, during the period of monitoring, the 
highest in Well02 is 0.145 m (above the sea level), while 
the lowest is –0.070 m (below sea level), with an average 
at the position of 0.020 m relatively. Figure 8 shows the 
groundwater fluctuation both the Well01 and Well02.

Based on Figure 8, the groundwater level in the full 
moon (FM) is lower than in the new moon (NM), al-
though both have similar graph trends. This condition is 

Figure 7. Illustration of wave superposition between incoming 
waves and reflected waves that produce standing waves

Figure 8. Groundwater level fluctuation on: (a) Well01 and (b) Well02
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related to the distance of the Moon from the Earth when 
the new moon (NM) phase on 13 July 2018 is the clos-
est distance (perigee) which is 357,434 km, while the full 
moon (FM) phase 28 July 2018) is the furthest distance 
(apogee) which is 405,953 km (Badan Meteorologi, Kli-
matologi, dan Geofisika [BMKG], 2018). Tides influenced 
by the gravitational forces of astronomical objects such as 
the sun, earth, the moon. Hence, the farther the distance 
provides a weak gravitational force dan less on the tidal 
amplitude.

Purnama (2010) stated groundwater level changes af-
fected by several things i.e. flow variation, weather vari-
ations, tides, earthquakes, loading from the outside, and 
subsidence. Variations in groundwater level also indicate 
differences inflow-outflow in monitoring wells. In Fig-
ure 8, the graph of Well01 is tighter than Well02. It means 
groundwater in Well01 provides more fluctuating and 
more rapid variations than in Well02. The most significant 
fluctuation in Well01 and Well02 is during the new moon 
(NM) phase. Each of the phases the groundwater level also 
has a variation value shown in Table 5. The graph pattern 
of both wells shows an asymmetric as declared by Horn 
(2002), Wu and Zhuang (2010), and Singaraja et al. (2018). 
The difference in groundwater position between Well01 
and Well02 reveals the impact of variation distance from 
the coast. This study did not measure the other factors like 
evapotranspiration, whereas monitoring was conducted 
during the dry season which has quite high evapotranspi-
ration. Therefore, collected data have potentially biased be-
cause it has been unfiltered with other measurable factors.

2.3. Effect of tides on groundwater

Tides and groundwater level fluctuations in Figure 9 and 
Figure 10 show there are similar graph patterns. The graph 
pattern reveals the tides on the new moon phase (NM) 
are higher than during the full moon (FM). This trend 
is followed by groundwater conditions, particularly when 
the new moon (NM) groundwater levels in Well01 and 

Figure 9. The sea-level fluctuations with groundwater levels in 
Well01. Description of the moon phase: (b) third-quarter;  

(c) new month; (d) first-quarter; (e) full moon;  
(f) third-quarter; (g) new moon

Table 5. The groundwater level for each moon phase

New Moon First Quarter Full Moon Third Quarter

Max elevation 0.025 m –0.129 m –0.109 m –0.079 m

Well 
01

Date 14 July 2018 24 July 2018 28 July 2018 09 Au gust 2018

Time 15:40 WIB 12:40 WIB 14:40 WIB 12:30 WIB

Min elevation –0.280 m –0.354 m –0.343 m –0.365 m

Date 15 July 2018 25 July 2018 28 July 2018 06 Au gust 2018

Time 00:10 WIB 21:50 WIB 23:00 WIB 01:50 WIB

Max elevation 0.145 m 0.022 m 0.038 m 0.034 m

Well 
02

Date 15 July 2018 25 July 2018 30 July 2018 09 Au gust 2018

Time 17:02 WIB 14:40 WIB 16:50 WIB 15:20 WIB

Min elevation 0.059 m –0.049 m –0.015 m –0.070 m

Date 14 July 2018 25 July 2018 30 July 2018 07 Au gust 2018

Time 08:00 WIB 05:00 WIB 07:40 WIB 03:00 WIB

Well02 be higher than during the full moon (FM). This 
means the influence of tides on groundwater. The tidal 
and groundwater graphs show the tidal and groundwater 
graphs on Well01 have a related, different from Well02. It 
means the effect of tides on Well01 is higher than Well02.

The effect of tides on groundwater inland affected 
by the distance from the coast, increasing the distance 
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Figure 10. The sea-level fluctuations with groundwater levels in 
Well02. Description of the moon phase: (b) third-quarter;  

(c) new month; (d) first-quarter; (e) full moon;  
(f) third-quarter; (g) new moon

towards the land will decreasing the effect. Previous re-
search also found the impact of tides on groundwater 
level fluctuations in coastal areas is characterized by a 
decrease in amplitude with increasing distance from the 
coast (Nielsen, 1990; Xun et  al., 2006, 2015; Liu et  al., 
2012; Levanon et al., 2016; Trglavcnik et al., 2018). This is 
reported from the graph both Well01 and Well02 which 
decreasing in amplitude. Farther distance from the coast 
provides more distantly because groundwater changes are 
slowly and require a longer duration. Previous research 
with analytical methods, numerical models, and field 
monitoring also found groundwater amplitude decreased 
exponentially with distance, but this has been unfound in 
this study because groundwater monitoring data are only 
two points.

The amplitude decreases due to the constituent mate-
rial in coastal or physical areas (Hegge & Masselink, 1991) 
especially the beach is often defined as a low-pass filter in 
beach groundwater science (Horn, 2002). It means only 
the low-frequency oscillations are transmitted through 
a beach matrix, whereas high-frequency oscillations are 
limited to the intertidal beach face slope zone. This is 
confirmed in Werner and Lockington (2003) groundwater 
level fluctuations in unconfined aquifers that are associ-
ated with low-frequency tidal oscillations. 

The relation between tides and groundwater explained 
in the conceptual framework of Hegge and Masselink 
(1991) presented in Figure 11. The black box represents a 
function of the beach action to reduce the amplitude and 
frequency of the input of swash energy. Beach slope also is 
confirmed to have an impact on changes in amplitude. Liu 
et al. (2012) found a sloping beach has a more important 
influence on the amplitude of the water fluctuation than a 
vertical beach. Jeng et al. (2005) also found that water fluc-
tuations vary inversely with the beach slope, although they 
have not derived a particular form about the relationship 
between the amplitude and beach angle. Furthermore, the 
attenuation is caused by water saturation and effect on the 
land (Levanon et al., 2016) especially in the capillary zone 
(a part in the unsaturated zone).

Horn (2002), Xun et al. (2006, 2015), Levanon et al. 
(2016), Trglavcnik et al. (2018) and many researchers on 
similar topics mentioned besides decreasing amplitude, 
increasing distance to the land generates time lag to in-
crease. Increasing the groundwater level can occur at a 
different time with the rising of tidal. In general, the tidal 
rise first, then the groundwater follows, this process will 
produce a time lag. The time lag occurs when there is a 
difference in time both sea-level and groundwater level 
rise. This study uses a time difference between a peak in 
the tide and the corresponding peak in the hydraulic head. 
The calculation of time lag shown in Table 6 and Table 7.

Table 6. Calculation of the time lag in Well01

No Moon Phase Date Time lag (hours)

1
New moon

11–15 July 2018 3.6
2 9–11 August 2018 3.6
3 First Quarter 18–22 July 2018 4.4
4 Full moon 26–30 July 2018 3.6
5

Third Quarter
5–8 July 2018 4.5

6 3–7 August 2018 4.4
Average 4.02

Table 7. Calculation of the time lag in Well02

No Moon Phase Date Time lag (hours)

1
New moon

11–15 July 2018 5.8
2 9–11 August 2018 5.8
3 First Quarter 18–22 July 2018 5.6
4 Full moon 26–30 July 2018 5.6
5

This Quarter
5–8 July 2018 5.7

6 3–7 August 2018 5.6
Average 5.68

Figure 11. Conceptual the coherence and the gain function to 
examine the relationship between run-up and groundwater 

(illustration from Hegge & Masselink, 1991)
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Based on Tables 6 and 7, the time lag between Well01 
and 02 is varied. Well01 and 02 have the lowest time lag 
value of 3.6 and 5.6 hours occurred in the new and full 
moon phases, while the time lag during the neap tide (first 
and third quarters) about 4.4–4.5 hours. The average time 
lag on Well01 and Well02 is 4.02 and 5.68 hours, respec-
tively. The calculation shows increasing the distance from 
the coast includes a consequent more prolonged duration 
in response to tidal. These results are following Erskine 
(1991), Kim et al. (2006), Xun et al. (2006), Levanon et al. 
(2016, 2017).

The effect of tides on groundwater is one of the hydro-
dynamic processes in the coastal areas. For a small island, 
the hydrodynamic process produces an extensive impact, 
especially groundwater dynamics on a small island. The 
technical practice of this research is related to how to 
manage and protect the freshwater resources on a small 
island. Conservation of water must become a household 
responsibility. White et  al. (2007) state that behavioral 
change in all levels is important to conserving and pro-
tecting water in small islands. Although this requires a 
recognition of the unique cultural, social, economic, and 
geographical in contexts of small islands and might be 
long-term commitments.

The implications of this study provide input and en-
rich methods to recognize the relationship between tides 
and groundwater. Although this research nonetheless has 
many shortcomings and needs to be improved for the 
following research, for example, material objects such 
as groundwater quality and aquifer properties need to 
be studied more thoroughly, especially on the island of 
Gili Ketapang, as well as sufficiently advanced combina-
tion methods can be applied. Regionally, the implications 
of this research include the framework of managing and 
protecting water resources in small islands and coastal ar-
eas. The dynamic of hydro-oceanography studies on small 
islands possess the potential to improve in Indonesia be-
cause the topic is relevant to the national project specifi-
cally national research master plan or RIRN, especially on 
the topic developing in technologies and managing small 
island and coastal areas.

Conclusions

In conclusion, the effects of tides can be identified by us-
ing a combination of field monitoring and hydrodynamic 
modeling. The condition of the Madura Strait waters ex-
poses a standing wave phenomenon as a result of tidal 
resonance. This phenomenon has an influence on ground-
water on Gili Ketapang Island because the sea level around 
the island is identical to the sea level of the Madura Strait 
which affected by resonance. Groundwater conditions on 
Gili Ketapang Island are described as follows: (1) fluctua-
tions in each phase of the month with the highest val-
ues during a spring tide (2) groundwater graph is more 
tenuous as the distance from the coast increases, and (3) 
the amplitude decreases as the distance from the coast in-
creases. The effect of tides on groundwater can be proven 

by the general characteristics of the decrease in amplitude 
and increasing of time lags as the distance from the coast 
increases. This process is determined by beach material 
and beach slope.
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