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commonly used to reveal the recharge and discharge 
mechanisms of water bodies (Craig, 1961). Previous study 
found that the relationship between δ2H and δ18O tends 
to deviate from the GWML in different regions due to a 
variety of factors, including climate, altitude, latitude, and 
etc., and thus, the national meteoric water lines (NMWL) 
were often used to explore precipitation patterns in differ-
ent countries (Dansgaard, 1964; Gat, 1996). Over the last 
few decades, several studies have been carried out based 
on the analyses of water stable isotopes, and these findings 
have provided important guidance for the regional man-
agement of water resources (Jeff, 2015; Sun et  al., 2016; 
Tran et al., 2019; Wet et al., 2020). 

However, disappointingly, the related-information on 
stable isotopes in water is difficult to obtain due to the 
high cost of stable isotopic instruments, and therefore, the 
application of stable isotopes is still limited. Therefore, in 
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Highlights

	X δ2H and δ18O values are essential for the management of water resources.
	X Major ion concentrations and stable isotopic compositions of surface water were influenced by evaporation.
	X δ18O can be predicted by some major ions selected by optimal subset regression.

Abstract. The δ2H and δ18O values in water bodies are essential to the management of water resources because of the 
ability to insight into hydrological processes. In this study, we have measured and analyzed the major ions (Na+, K+, Ca2+, 
Mg2+, Cl–, 2–

4SO  and –
3HCO ) and stable H-O isotopes (δ2H and δ18O) for fifteen surface water samples collected from the 

Xinbian River in Suzhou, northern Anhui Province, China. The results show that all of the water samples are classified to 
be Na-HCO3 type, and the mean values of δ2H and δ18O are –42.93‰ and –5.36‰, respectively. Gibbs diagram and the 
relationship between δ2H and δ18O indicate that both water chemistry and stable isotopes in river water are mainly con-
trolled by evaporation. Correlation analysis reveals that a significant correlation between major ions and δ18O. Predictors 
(K+, 2–

4SO  and –
3HCO ) have been selected by optimal subset regression analysis were used to model the δ18O values in the 

river water. Moreover, the residuals of the model were normally distributed and values between –0.2‰ to 0.2‰ for most 
water samples, suggesting a strong relationship between the observed and predicted δ18O values.

Keywords: major ions, stable isotopes, prediction, river water, hydrochemistry. 

Introduction

Water is the most important resource for human survival 
and social development. However, in recent years, water 
pollution in many areas has become more seriously as a 
result of human activities, such as households, agriculture 
and industry (Wang & Yang, 2016; Alam et al., 2020; Singh 
et al., 2020). Under this situation, the stable isotopes have 
gained more attention from researchers because it can 
be used to understand the hydrological processes in dif-
ferent watersheds (Kumar et al., 2019), the relationships 
between different water bodies (Qian et al., 2013; Zhang 
et al., 2015), water quality assessment (Brooks et al., 2014) 
and sources of water recharge (Qian et  al., 2014; Prada 
et al., 2016; Cao et al., 2018; Kuang et al., 2019). 

The global meteoric water line (GMWL, δ2H = 
8 × δ18O + 10) has been proposed by Craig and has been 
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recent years, scholars have constructed various predic-
tive models based on these factors (Kumar et  al., 2019; 
Kuang et al., 2019; Delavau et al., 2011; Terzer et al., 2013; 
Ogrinc et al., 2018). For example, a model was constructed 
by δ18O, latitude and elevation, and the model residuals 
were used to reveal hydrological processes in different 
stretches of the Ganga basin (Kumar et  al., 2019). The 
δ18O-elevation relationships in the Yellow River source 
region and surrounding areas have been modeled, and the 
results have been applied for paleo-elevation reconstruc-
tions (Kuang et al., 2019). The precipitation δ18O values 
have been modeled using five parameters (longitude, lati-
tude, altitude, precipitation and temperature) in Canadian, 
and the results have certain significance for promoting the 
research of climate variability and surface hydrology in 
remote areas (Delavau et al., 2011). A multivariate linear 
regression analysis was performed on the δ18O, longitude, 
latitude and altitude of rainfall over the Sava River Basin, 
and the predicted δ18O values were further compared with 
the measured δ18O values in river water. The research re-
sults showed that spatial variability is the major control-
ling factor for the surface water isotope ratios in this area 
(Ogrinc et al., 2018).

In summary, most prediction models for isotopes rely 
on meteorological or geographic parameters currently. 
However, the relationship between major ions and stable 
isotopes has not received corresponding attention, which 
limits the ability of the stable isotopes for understanding 
hydrological processes. Therefore, fifteen surface water 
samples have been collected from the Xinbian River, Su-
zhou, northern Anhui Province, China, and the contents 
of major ions and stable H-O isotopes have been meas-
ured and analyzed in order to obtain the following in-
formation: (1) the compositions of water chemistry and 
stable isotopes and their controlling factors, (2) the rela-
tionship between major ions and stable isotopes, and (3) 
application of major ions to predict δ18O values in river 
water using multiple linear regression model.

1. Materials and methods

1.1. Study area

Suzhou (33°18′–34°38′N and 116°09′–118°10′E) is located 
in the junction of Anhui, Jiangsu, Henan and Shandong 
provinces with the total administrative area of 9787 km2. 
The study area belongs to the warm temperate zone and 
semi-humid monsoon climate and is in a plain landform 
with elevation between 20  m and 30  m. Temperatures 
in the region range from –1  °C to 37  °C, with a multi-
year average temperature and relative humidity of 14 °C 
and 70%, respectively.The average annual precipitation is 
830 mm, and 60% of the annual precipitation is concen-
trated in the summer. In addition, October is a typical 
representative of the dry season in the study area, while 
surface water is rarely affected by the mixture of other wa-
ter bodies, such as rainfall and groundwater (Chen et al., 
2020). The Xinbian River, completed in 1970, is a tributary 

of the Huai River basin (Figure 1) and is also the largest 
man-made river in Suzhou at present, with a length of 
128 km, an average width of 100 m and a watershed area 
of about 6562 km2, it has played an important role in ag-
ricultural irrigation and navigation in the area. 

Figure 1. Location of the study area

1.2. Sampling and analyses

In this study, a total of fifteen surface water samples have 
been collected from the Xinbian River in October 2019, 
and the locations of the sampling points are shown in Fig-
ure  1. All river water samples were collected using pre-
cleaned polyethylene bottles at 50  cm below the water 
surface. After sampling, the samples were filtered through 
0.45 µm membranes in the laboratory and then stored at a 
constant temperature (4 °C) in the refrigerator. The major 
ions (Na+, K+, Ca2+, Mg2+, Cl– and 2–

4SO ) were measured 
by ion chromatographs (ICS-600-900, Thermo Fischer 
Scientific, USA), and –

3HCO  was measured by titration 
with hydrochloric acid at a concentration of 0.049 mol/l, 
2H and 18O were measured by liquid phase isotope ana-
lyzer (LGR, LICA United Technology Limited, CAN) 
and the analytical results were expressed in δ-notation 
(‰) relative to the Vienna Standard Mean Ocean Water 
(V-SMOW). Furthermore, the measurement accuracies 
are ±0.1‰ and ±0.5‰ for δ18O and δ2H, respectively. 
Each parameter of each water sample was tested five times, 
then the maximum and minimum values were removed 
and the average of the three remaining values was taken 
as the final test result. The analysis of –HCO  has been 
completed within 24 hours, and the analyses of other pa-
rameters have been completed within a week. For the data 
analysis, the Minitab (version 14), AqQA (version 1.5) and 
Rstudio (version 3.6.3, based on the ggplot2 package) had 
been used.
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2. Results and discussions

2.1. Contents of the major ions and  
stable isotopes 

The analytical results for major ions and stable isotopes 
of water samples are shown in Table 1 and Figure 2. As 
shown in Figure 2a, the mean contents of Cl–, Ca2+, Mg2+ 
and K+ are lower than the mean contents of Na+, SO4

2– 
and –

3HCO . –
3HCO  has the highest average concentra-

tion, whereas Na+ and 2–
4SO  have similar average concen-

trations. The decreasing order of the mean concentrations 
of all ions are: –

3HCO (308.6 mg/L) > 2–
4SO (175.4 mg/L) 

> Na+(156.2 mg/L) > Cl–(121 mg/L) > Mg2+(44.9 mg/L) 

> K+(24.5 mg/L) > Ca2+(17 mg/L). The δ2H values range 
from –44.85 to –41.67‰, with a mean value of –42.93‰. 
The δ18O values range from –5.94 to –5.03‰, with mean 
value of –5.36‰. In addition, the content of TDS ranges 
from 641.4 to 770.5 mg/L (mean = 693.2 mg/L), belonging 
to freshwater (TDS < 1000 mg/L) (Table 1).  As shown in 
Figure 2b, along the flow direction, –

3HCO  content has an 
obvious upward and downward trend, 2–

4SO  and Cl– con-
tents show a decreasing trend, while the concentrations 
of Na+, Mg2+, Ca2+ and K+ have no significant change 
characteristics. 

Previous studies have shown that the flow of water from 
the recharge zone to the discharge zone is accompanied by 

Figure 2. Major ion concentrations of water samples from Xinbian River, Suzhou, northern Anhui Province:  
a – Barplot of the major ion concentrations; b – Trends in the concentration of major ions  

in water along the flow direction

Table 1. Compositions of major ions (mg/L) and hydrogen and stable isotopes in river water

ID
Na+ K+ Mg2+ Ca2+ Cl– SO4

2– HCO3
– TDS δ2H δ18O d-excess

Unit: mg/L Unit: ‰

S1 156.7 27.0 52.9 20.9 132.2 220.0 321.6 770.5 –42.25 –5.47 1.48
S2 156.4 26.9 52.8 21.0 129.9 211.6 311.2 754.1 –43.87 –5.26 –1.80
S3 156.0 26.8 52.7 20.9 133.1 209.1 325.2 761.1 –43.54 –5.49 0.39
S4 166.0 24.4 40.0 14.0 122.3 167.7 291.1 679.9 –44.85 –5.04 –4.52
S5 166.8 24.4 39.9 13.9 124.5 168.0 288.6 681.9 –42.79 –5.06 –2.32
S6 167.4 24.6 40.4 13.9 129.6 173.6 306.9 703.0 –43.59 –5.09 –2.86
S7 166.7 24.4 40.0 13.9 124.5 169.9 288.8 683.8 –41.97 –5.28 0.24
S8 167.0 24.6 40.0 13.9 125.5 171.2 297.2 690.9 –42.82 –5.25 –0.84
S9 166.2 24.5 40.0 13.9 125.1 169.4 286.8 682.5 –43.29 –5.23 –1.45

S10 166.4 24.7 40.0 14.0 122.5 169.2 321.6 697.4 –42.57 –5.03 –2.31
S11 141.7 22.8 46.5 18.8 112.9 156.5 312.2 655.5 –41.67 –5.71 4.02
S12 141.8 22.7 46.5 18.7 110.7 155.9 306.6 649.7 –43.04 –5.32 –0.48
S13 141.7 22.7 46.3 18.6 117.6 154.1 315.8 658.8 –41.75 –5.73 4.05
S14 142.6 23.0 46.3 18.7 110.9 156.4 287.0 641.4 –43.46 –5.18 –2.01
S15 142.5 22.9 46.2 18.6 101.6 155.2 349.8 662.0 –41.79 –5.94 5.74
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a corresponding change in its major anion (from –
3HCO , 

Cl– to 2–
4SO ) (Tóth, 1999; Jalali, 2005). Therefore, classifi-

cation of hydrochemistry types is essential to understand 
the evolution of water. In this study, Piper diagram have 
been used by AqQA software (version 1.5) for classifying 
hydrochemical types and the results are shown in Figure 3 
(Piper, 1944). It can be seen that the cations and anions in 
all water samples show an enrichment trend towards Na+ 
and –

3HCO , respectively (Figure 3). Therefore, all of the 
river water samples were classified to be Na- –

3HCO  type, 
which means that the water is under the situation of suf-
ficient recharge. 

2.2. Process controlling water chemistry and stable 
isotopes

Gibbs diagram has been proposed by Gibbs and can be 
used to reveal the controlling mechanisms of surface wa-
ter chemistry (Gibbs, 1970; Prasanna et  al., 2011; Tiri 
et al., 2018; He & Li, 2019). The three regions in Gibbs 

diagram correspond to three different controlling mech-
anisms: evaporation dominance, rock dominance and 
precipitation dominance (see Figure 4). The calculations 
of the Gibbs values are: Gibbs I = Cl– / (Cl– + –

3HCO
) and Gibbs II = Na+ / (Na+ + Ca2+) (unit in meq/l). In 
this study, the Gibbs I values range from 0.33 to 0.42 and 
Gibbs II values range from 0.87 to 0.91. It can be seen 
from the Figure 4a that all of the samples were located 
in the evaporation dominance area. In addition, previ-
ous studies have shown that evaporation will change the 
dominate cation in surface water from Ca2+ to Na+. As 
can be seen from the Figure  4b, all of the river water 
samples have high Gibbs II values (mean = 0.89), im-
plying that the water chemistry have been influenced by 
evaporation (Gibbs, 1970).

Previous studies have shown that evaporation line (EL) 
is an important reference for understanding the evapora-
tion of regional water bodies (Chen et al., 2008). In recent 
years, most scholars have applied a combination of GMWL, 
NMWL and EL to study the relationship between stable iso-
topes in the water bodies and provided valuable guidance 
for regional water management (Kumar et al., 2019; Cao 
et al., 2018). In this study, due to the lack of rainfall-related 
data of Suzhou City, the GMWL, NMWL of China (δ2H = 
7.89 × δ18O + 8.16) and MEL (evaporation line in mining 
area near the study area, δ2H  = 5.89 × δ18O  – 7.68) have 
been employed for understanding the mechanisms control-
ling the stable isotopes in river water (Chen et  al., 2008; 
Zheng et al., 1983). As can be seen from the Figure 5, the 
relationship between δ2H and δ18O in this study is similar 
to MEL, but different from the GMWL and NMWL, and 
therefore, it can be inferred that the river water has been 
influenced by evaporation significantly.

The fractionation of stable isotopes in regional water 
bodies can be quantified by comparison with the d-excess 
values (δ2H – 8 × δ18O) of GWML and NWML (Dansgaard, 
1964). Previous studies have shown that water-rock inter-
actions and evaporation are the major factors influencing 
the enrichment of δ2H and δ18O values in water bodies 
(Zhang et al., 2015). The embankments and bottom of this 

Figure 3. Piper diagram

Figure 4. Gibbs diagram Figure 5. Relationships between δ2H and δ18O in river water
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section of the Xinbian River were artificially constructed 
with little contact with rocks and minerals, moreover, a 
very weak relationship with groundwater recharge (Chen 
et al., 2020). Therefore, in this study, the influence of δ2H 
and δ18O from water-rock interactions is limited. Because 
of the atomic mass of oxygen isotopes is much heavier 
than that of hydrogen isotopes, with the continues of 
evaporation, the fractionation of oxygen isotopes will be 
more significant than that of hydrogen isotopes, which 
will lead to the decreasing of d-excess value of surface wa-
ter. In this study, the d-excess values of the fifteen water 
samples range from –4.52 to 5.74‰ (mean  = –0.18‰), 
which were significantly lower than the d-excess value 
of GMWL (10‰) and NMWL (8.16‰), and suggesting 
that isotopic compositions of the river water have been 
strongly influenced by evaporation (Figure 6).

Figure 6. Variation of the d-excess for each water sample

2.3. Relationship between major ions and stable 
isotopes

Correlation analysis is a multivariate statistical analysis 
method, which can be used to evaluate the degree of in-
trinsic association between two or more variables (Wu 
et al., 2014, 2020). In the study of geochemistry, a good 
correlation between elements means that they come from 

the same source or have been influenced by similar factors 
(Nwankwoala et al., 2014). 

It can be seen from Tabel 2 that the δ18O has a signifi-
cant positive correlation with Na+ (r = 0.722), and has a 
significant negative correlation with –

3HCO  (r = –0.693) 
and Ca2+(r = –0.605), implying the close relationship be-
tween them. However, the relationship between hydrogen 
isotopes and major ions is insignificant, which was similar 
to the results obtained by the analysis of d-excess, because 
the mass of hydrogen isotope is lower than the oxygen iso-
tope, and during the high extent of evaporation, the frac-
tionation of hydrogen isotope will be insignificant. Such 
results provide the possibility of prediction of δ18O values 
by the major ion concentrations, but cannot be applied for 
the prediction of hydrogen isotopes (see below).

2.4. Construction of prediction model

2.4.1. Major ion selection by optimal subset method
Optimal subset regression is an effective tool for selecting 
linear regression models with as few variables as possi-
ble while ensuring a high degree of fit (Gorman, 1976; 
Lee et al., 2018). Based on the input dependent variable 
and multiple independent variables, best subset regression 
can generate several linear models. Then, it is necessary to 
select the optimal variables by artificially comparing the 
goodness-of-fit indexes in each model.

Table 3. Results of the optimal subset regression analysis

Mo-
del R2 2

adjR Ma llows 
Cp

S Predictor(s)

1 0.521 0.484 5.7 0.19853 X1

2 0.701 0.651 1.4 0.16318 X1, X7

3 0.740 0.669 2.1 0.15899 X2, X6, X7

4 0.748 0.647 3.8 0.16420 X1, X2, X4, X7

5 0.775 0.650 4.8 0.16342 X1, X2, X4, X6, X7

6 0.790 0.633 6.3 0.16743 X1, X2, X3, X4, X6, 
X7

7 0.800 0.599 8.0 0.17499 X1, X2, X3, X4, X5, 
X6, X7

Table 2. Results of correlation analysis 

Na+ K+ Mg2+ Ca2+ Cl– SO4
2– HCO3

– δ2H δ18O

Na+ 1.000
K+ 0.514* 1.000

Mg2+ –0.570* 0.411 1.000
Ca2+ –0.724** 0.219 0.979** 1.000
Cl– 0.708** 0.860** 0.080 –0.112 1.000

SO4
2– 0.300 0.969** 0.610* 0.437 0.774** 1.000

HCO3
– –0.429 0.082 0.528* 0.548* –0.234 0.199 1.000

δ2H –0.388 –0.362 0.065 0.150 –0.373 –0.268 0.405 1.000
δ18O 0.722** 0.275 –0.511 –0.605* 0.476 0.096 –0.693** –0.659** 1.000

Note: * and ** represent significant correlations at the levels of 0.05 and 0.01, respectively.
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In most studies, R2, 2
adjR , Mallows Cp and S are often 

used as reference indexes for selecting the best variables 
(Ke et al., 2009; Sun et al., 2010). The details of the four 
indicators are as follows: R2 is a goodness-of-fit indicator 
for the model, with values ranging from 0 to 1. In general, 
a larger value of R2 indicating a better fit. However, even 
though some variables may be redundant, R2 still increas-
es as the number of variables increases, which may lead 
to overfitting of the model. Therefore, 2

adjR  is proposed to 
control the number of parameters in order to optimize the 
model. Mallows Cp has been proposed by Mallows and is 
often used to evaluate the superiority of different linear re-
gression models. The smaller its value, the more accurate 
the model is. S is the root value of mean squared error for 
the model, the smaller the value, the smaller the difference 
between the predicted and observed values. The formulas 
for the four indicators are as follows:

R2 = 1 – SSE / SST; (1)

2
adjR  = 1 – MSE / [SST/(n – k)], (2)

where SSE is the sum of squared errors, SST is the sum 
of squared total, MSE is the mean square error, n is the 
total number of samples and k is the number of selected 
predictors.

Mallow Cp = SSEp / MSEm – (n – 2p); (3)

S = (MSE)1/2, (4)

where SSEp is the sum of squared errors for the model un-
der consideration, p is the number of terms in the model 
(including constant) and MSEm is the mean square error 
for the model with all predictors.

The results of the optimal subset regression analysis 
are shown in Table 3 (Note: X1, X2, X3, X4, X5, X6 and 
X7 represent Na+, K+, Mg2+, Ca2+, Cl–, 2–

4SO , and –
3HCO , 

respectively.). As can be seen in the table, from Model 1 to 
Model 3, R2adj increases gradually as the number of vari-
ables increases, while its value begins to decrease when 

the number of variables increases to four or more, which 
is a signal that the model is beginning to overfit. At mean-
while, relative to Model 1 and Model 2, Model 3 has the 
highest R2 (value = 0.74), 2

adjR  (value = 0.669) and low-
est S (value = 0.15899). Thus, K+, 2–

4SO  and –
3HCO  were 

selected for the final linear fitting.

2.4.2. Model construction & residual analysis
In summary, the concentrations of K+, 2–

4SO  and 
–
3HCO  were selected as predictors for the prediction of 

δ18O. Then, the multiple linear regression was used, and 
the following equations was obtained:

δ18O = 0.3771 × (K+) – 0.022681 × ( 2–
4SO ) –  

0.007763 × ( –
3HCO ) – 8.219, R2 = 0.74. (5)

It can be seen from Figure 7 that the fitting lines (y = 
0.74x – 1.39, R2 = 0.74) have a high degree of coincidence 
with the 1:1 line (y = x), with only a slight skew. In addi-
tion, most of the water samples were distributed near the 
1:1 line and fitting line with litter deviation. The difference 
between the observed and predicted values of δ18O for 
each sample can be seen in Figure 8, and the high degree 
of similarity between the observed and predicted δ18O 
values further indicates the good fit of the models. Moreo-
ver, the residuals should be analyzed to check if the model 
violates any regression assumptions (Sun et al., 2010).

Figure 8. The difference between observed values and  
predicted values of δ18O for each sample

The residual value was calculated by subtracting the pre-
dicted value from the observed value, and the statistics re-
sults can be seen in Figure 9. The Q-Q plot of the residuals 
was often used to test whether it was normally distributed. 

Figure 7. Relationships between observed values and predicted 
values of δ18O

Figure 9. Results of the residual analysis: a – Q-Q plot of the 
residual values; b – Residual value for each sample

a) b)
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In the Q-Q plot, the presence of severely deviated points 
indicates that the model violates the assumption of normal 
distribution. Figure 9a shows that all of the points approxi-
mately form a straight line. Therefore, it can be concluded 
that the model was consistent with the least squares hypoth-
esis. Furthermore, as can be seen in Figure 9b, the maxi-
mum value of the residual was 0.239‰, and 81% of the 
samples (except sample 10 and 12) have residuals between 
–0.2‰ and 0.2‰, an indication that the strong correlations 
between observed and predicted values.

Conclusions

Based on the analyses of the major ion concentrations and 
stable H-O isotope contents of fifteen river water samples 
in Suzhou, northern Anhui Province, China, the following 
conclusions were obtained:

(1) The density distribution plot indicated that Na+ 

and –
3HCO  were the dominant cation and anion, with 

average concentrations of 308.6 mg/L and 156.2 mg/L, re-
spectively, and all of the river water samples were classified 
to be Na-HCO3 type. The mean values of δ2H and δ18O 
were –42.93‰ and –5.36‰, respectively. 

(2) Gibbs diagram, the relationship between δ2H and 
δ18O and d-excess show that evaporation is the major 
process controlling water chemistry and stable isotopes in 
river water. Moreover, the close relationship between ma-
jor ions and δ18O were determined by correlation analysis.

(3) Q-Q plot indicated that the residuals of the model 
were normally distributed. The difference between the ob-
served and predicted values for most water samples was 
between –0.2‰ and 0.2‰, suggesting the strong relation-
ships between them.
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