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Abstract. Trinitrotoluene (TNT), a commonly used explosive for military and industrial applications, can cause

serious environmental pollution. 28-day laboratory pot experiment was carried out applying bioaugmentation using

laboratory selected bacterial strains as inoculum, biostimulation with molasses and cabbage leaf extract, and

phytoremediation using rye and blue fenugreek to study the effect of these treatments on TNT removal and changes

in soil microbial community responsible for contaminant degradation. Chemical analyses revealed significant

decreases in TNT concentrations, including reduction of some of the TNT to its amino derivates during the 28-day

tests. The combination of bioaugmentation-biostimulation approach coupled with rye cultivation had the most

profound effect on TNT degradation. Although plants enhanced the total microbial community abundance, blue

fenugreek cultivation did not significantly affect the TNT degradation rate. The results from molecular analyses

suggested the survival and elevation of the introduced bacterial strains throughout the experiment.
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Introduction

The nitroaromatic explosive, 2,4,6-trinitrotoluene (TNT),

has been extensively used for over 100 years, and this

persistent toxic organic compound has resulted in soil

contamination and environmental problems at many

former explosives and ammunition plants, as well as

military areas (Stenuit, Agathos 2010). TNT has been

reported to have mutagenic and carcinogenic potential

in studies with several organisms, including bacteria

(Lachance et al. 1999), which has led environmental

agencies to declare a high priority for its removal from

soils (van Dillewijn et al. 2007).

Both bacteria and fungi have been shown to

possess the capacity to degrade TNT (Kalderis et al.

2011). Bacteria may degrade TNT under aerobic or

anaerobic conditions directly (TNT is source of carbon

and/or nitrogen) or via co-metabolism where addi-

tional substrates are needed (Rylott et al. 2011). Fungi

degrade TNT via the actions of nonspecific extracel-

lular enzymes and for production of these enzymes

growth substrates (cellulose, lignin) are needed. Con-

trary to bioremediation technologies using bacteria or

bioaugmentation, fungal bioremediation requires

an ex situ approach instead of in situ treatment (i.e.

soil is excavated, homogenised and supplemented

with nutrients) (Baldrian 2008). This limits applicabil-

ity of bioremediation of TNT by fungi in situ at a field

scale.
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Abstract. Land use (LU) land cover (LC) information at a temporal scale illustrates the physical coverage of the 
Earth’s terrestrial surface according to its use and provides the intricate information for effective planning and man-
agement activities.  LULC changes are stated as local and location specific, collectively they act as drivers of global 
environmental changes. Understanding and predicting the impact of LULC change processes requires long term 
historical restorations and projecting into the future of land cover changes at regional to global scales. The present 
study aims at quantifying spatio temporal landscape dynamics along the gradient of varying terrains presented in the 
landscape by multi-data approach (MDA). MDA incorporates multi temporal satellite imagery with demographic data 
and other additional relevant data sets. The gradient covers three different types of topographic features, planes; hilly 
terrain and coastal region to account the significant role of elevation in land cover change. The seasonality is another 
aspect to be considered in the vegetation dominated landscapes; variations are accounted using multi seasonal data. 
Spatial patterns of the various patches are identified and analysed using landscape metrics to understand the forest 
fragmentation. The prediction of likely changes in 2020 through scenario analysis has been done to account for the 
changes, considering the present growth rates and due to the proposed developmental projects. This work summarizes 
recent estimates on changes in cropland, agricultural intensification, deforestation, pasture expansion, and urbaniza-
tion as the causal factors for LULC change.

Keywords: land use land cover (LULC), environmental impact assessment, spatial analysis, remote sensing, land-
scape metrics, fragmentation, terrain gradient, simulation.
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Introduction

Land use land cover (LULC) information of a region 
depicts the status of a landscape for environmental pro-
gression and sustainable development. Land cover con-
figuration is stated as a unified reflection of the existing 
natural resources, dynamic natural processes whereas 
land use refers to the human induced changes in the land 
cover. LULC changes alter the homogeneous landscape 
into heterogeneous patches by natural processes or ant-
hropogenic processes (Mertens et al. 2000). Landscape 
fragmentation is an anthropogenic process involving 

breaking up a continuous habitat, land use type, biota or 
ecosystem (Carvalho et al. 2009), which is likely to have 
adverse effects. Land-use/cover changes also determine 
the vulnerability of places and people to climatic, eco-
nomic, or sociopolitical perturbations. When aggregated 
globally, LULC changes significantly affect central as-
pects of earth system functioning (Lambin et al. 2003). 
These changes manifest in forest fragmentation resul-
ting in habitat loss (Mertens et al. 2000; Nagendra et 
al. 2004; Mingshi et al. 2011). Human induced land use 
changes for agricultural expansions, etc. have caused lar-
ge scale deforestation leading to soil erosion, watershed 
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degradation, reduced biodiversity, and agrochemical 
pollution (World Bank 2008), an increase in impervious 
surface area and landscape fragmentations.  In forest do-
minated landscapes fragmentation issues of prominence 
seem to relate typically to deforestation and loss of forest 
cover over a period of time. It has become an essenti-
al to integrate the patterns of land cover change with the 
processes of land use change by identifying various dri-
vers of the changes. LULC change detection relies on an 
accurate interpretation of baseline conditions and changes 
in structure properties. This necessitates LULC analysis 
integrating landscape ecology theory and practice with 
other landscape science techniques. Availability of multi-
resolution temporal remote sensing (RS) data has aided 
in monitoring larger areas at various spatial, spectral and 
temporal resolutions. Remote sensing data along with 
GIS (Geographical Information Systems), GPS (Global 
positioning system) and other collateral data (spatial as 
well as statistical) help in effective LULC analysis (Ra-
machandra, Kumar 2004). Inventorying, mapping, qu-
antifying, and monitoring the physical characteristics of 
LULC has been widely recognized as a key element in 
the study of regional and global changes. The strong lin-
kages between spatial pattern and ecological process have 
been established (Gustafson 1998). Currently the appro-
aches to explore spatio temporal process of LULC have 
been vastly improved by incorporating drivers of change 
(agent based modelling) and numerous methods with the 
help of remote sensing (Liu et al. 2010). These techniques 
emphasise the integrated analyses of remote sensing with 
socio political economic parameters for better insights to 
the human dimensions of LULC. Yang et al. (2011) deri-
ves the relation of population to environmental changes; 
by incorporating population distribution data for deriving 
human pressure on the surrounding environment. Social 
data, time series remote sensing data, and thematic cove-
rages maintained within a GIS are integrated essentially 
to provide historically transformation of land conversions 
associated with the cultivation and other development 
activities in a certain landscape. Generally, gradients are 
widely used in landscape science and ecology to descri-
be spatial land use patterns (Hahs, McDonnell 2006) and 
ecosystem structure, functions in rural–urban regions 
(McDonald 2009). The gradient based studies efficiently 
capture the large-scale changes of spatiotemporal charac-
teristics and interactions of a landscape (Li et al. 2010).

Forest physiology is dependent on the photosyn-
thetic activity that plays a major role in the assessment 
of forest physiology necessitate the understanding sea-
sonal variations in the vegetation dominated landscapes. 
Satellite remote sensing in visible and near-infrared 
wavelengths is sensitive to changes in photosynthetic 
biomass and provides a means for regional mapping and 
monitoring of seasonal phenology (i.e. canopy growth 

and senescence) and growing season length for decidu-
ous vegetation (Zhou et al. 2001). During the high water 
availability period, high photosynthetic activity values 
are detected due to the relatively low temperature (in 
comparison with summer temperatures), which helps in 
better charecterisation of forests; and conversely, dur-
ing the summer, photosynthetic activity decreases as a 
result of high temperature and absence of water avail-
ability. All these variables affect the state of the for-
est reflectivity and are reflected in the varying intensity 
throughout the year (Volcania et al. 2005). The remote 
sensing data of varying seasons sheds new insight for 
better understanding of the seasonal dynamics of leaf 
and canopy (Zhang et al. 2006; Zang, Huang 2006). 
Sensitivity analyses improve accuracy through better 
estimates of seasonal changes in canopy photosynthetic 
capacity by incorporating seasonal remote sensing data 
(Waring et al. 2010).

Landscape metrics analyses through the quantifi-
cation of landscape fragmentation provide better un-
derstanding of the geometric properties of a landscape. 
These metrics are also known as spatial metrics describe 
the composition and arrangement of the various patches 
of land cover types. These are considered for dynamic 
landscape monitoring, including ongoing changes (Peng 
et al. 2010), assessing the impacts of management de-
cisions and human activities (Geri et al. 2010), sup-
porting decisions on landscape and conservation plan-
ning (Garcia et al. 2011) and to analyze landscape and 
habitats fragmentation (Zeng, Wu 2005).  Furthermore 
temporal variations in the spatial metrics would reflect 
the aggregate or cumulative effects of different dynamic 
processes (Herold et al. 2005). Unplanned development 
leads to rapid land cover changes in the region. Road 
density, population, land use, and topography affect for-
est regrowth, which results in deforestation and forest 
fragmentation (Freitas et al. 2010). Rail/road connectiv-
ity increases the accessibility of remote areas, allowing 
logging, hunting, and deforestation for new agricultural 
and pasture fields (Nagendra et al. 2003). Global, re-
gional, and national demand for agricultural products 
creates new land use demands that influence rates of de-
forestation (Onojeghuo et al. 2011). Landscape pattern 
and progress has been seen as indicators of the future 
scenario with the knowledge of temporal land use and 
land cover data. Combining empirical spatial analyses 
with scenario models will reveal important details in 
the process of LULC changes, for the future. Scenario 
analysis integrated with landscape analysis character-
izes uncertainties, test possible impacts, support stra-
tegic planning for policy formulation, and uses current 
knowledge to assess possible future conditions. Thus, in 
this regard the spatial dynamic models have become an 
inseparable aspect of a planning system.  
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1. Objective

The objective of the study includes:
 – Quantification of spatio-temporal LULC changes 
in the landscape during the last four decades using 
multi-resolution remote sensing data;

 – Assessing the pattern and process of fragmentation 
through landscape metrics;

 – Scenario analysis to visualize the growth for year 
2020 considering business as usual and develo-
pment scenarios. 

2. Study area

The study area given in Figure 1 covers a 10 km wide and 
170 km long gradient that extends from Hubli to Ankola 
which lies between long 74°15’45.64” E to 75°10’3.23” E 
and lat 14°41’35.19” N to 15°23’26.93” N and having ele-
vation of 23 m (Ankola) to 637 m (Hubli) connects Dharwad 
and Uttara Kannada districts of Karnataka state, India. The 
study gradient extent from the core of densely populated 
city Hubli (planer region) to Ankola, a narrow coastal strip 
bordering the Arabian sea and which is moderately popu-
lated coastal region passing through Sahyadri interior (the 
mountain range of Western Ghats; local name is “Arabail 
ghat”). The gradient analysis is considered to account the 
spatio temporal dynamics of the region from 1973 to 2010. 
The entire study area is composed of moist deciduous forest, 
evergreen forest, dry deciduous forest, secondary degraded 
forest and rich in biodiversity which forms an important 
corridor for the movement of elephants from Anshi-Dandeli 
wild life sanctuary. The Bedthi river basin (also called Gan-
gavali), with the catchment area of 3,574 km2 originates in 
Dharwad district and meets Arabian Sea at Gangavali village 
near Ankola presented in this region. The average rainfall 
ranges from 720 mm (plane section) to 3593 mm (coast). 
The region is well connected through large motorways NH 

63 (Nation High way No-63). However, the study region has 
also secondary roads, some paved and a large amount of un-
metal roads, used mostly for local traffic and transport of 
agricultural products to the city or to the coast. Agriculture 
and native forest are the dominant land use class in this re-
gion and also some reforestation and deforestation activities 
have altered the spatial configurations of forest fragments.

3. Data and method

3.1. remote sensing (rS) data

The RS data used in the study include Landsat MSS (1973), 
TM (1989, 2000), Landsat ETM+ (2003, 2004), IRS LISS-
IV MX (2009, 2010), and Google Earth (http://earth.go-
ogle.com). The Landsat data is cost effective, with high 
spatial resolution and freely downloadable from public do-
mains like GLCF (http://glcfapp.glcf.umd.edu:8080/esdi/
index.jsp) and USGS (http://glovis.usgs.gov/). The diffe-
rent seasonal data (summer, post monsoon) is considered to 
account the adverse effect of seasonal variation in canopy 
light interception. The summery characteristics of datasets 
used in the current study are summarized in Table 1.

Table 1. Details of remote sensing data

Year Satellite Date of 
Acquisition

Resolution 
(m)

1973 Landsat MSS 02/11/1973 57
1989 Landsat TM 19/11/1989 28.5
2000 Landsat TM 25/11/2000 30
2003 Landsat TM 01/02/2003 30

2004 Landsat 
ETM+ 22/11/2004 30

2010 IRS P6 L4 
MX – 5

3.2. Ancillary data

Ancillary data provides helpful information to assist the 
interpretation of different land use types from remotely 
sensed images. Besides remote sensing data, many other 
data sources were used in the study. The multi-data are 
used to make use of different data sets available for better 
interpretation and to improve the accuracy of the datasets. 
Frequently used ancillary data are the Survey of India to-
pographic maps at varying scales (1:50000, 1:250000). 
Topographic maps provided ground control points to rec-
tify remotely sensed images and scanned historical paper 
maps. The population data (2001, 2011 census) collected 
from the directorate of census operation is used to analyse 
the population distribution of study area.  Other ancillary 
data includes land cover maps, administration boundary 
details, transportation data (road network) and field data 
using GPS (Global Positioning System – Garmin GPS).Fig 1. Study area – Hubli Ankola landscape gradient
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3.3. Method

Figure 2 illustrates the method adopted for the analysis. RS 
data of different sensors of Landsat (a series of earth resour-
ce scanning satellites launched by the USA) were downloa-
ded from the public domain (http://glovis.usgs.gov) while 
IRS (Indian Remote Sensing Satellites) data were procu-
red from the National Remote Sensing Centre, Hyderabad 
(http://www.nrsc.gov.in). These data were preprocessed for 
atmospheric and geometric corrections to enable correct 
area measurements, precise localization and multi-source 
data integration (Jixian et al. 2007). The field investigation 
is carried out for the collection of ground control points 
(GCP’s) and training data (with attribute data) studies du-
ring pre-monsoon and post-monsoon seasons. The geo-
graphic coordinates of a land cover classes (of the training 
polygons) are determined by using pre-calibrated GAR-
MIN GPS – Global Position Systems. Historical land-co-
ver data were compiled from the forest department records 
apart from the interviews and group discussions with the 
local farmers and forest officials. Geometric correction is 
implemented by using ground control points collected from 
field using GPS. Landsat data is resampled to 30 meters, 
for comparison across multi-resolution data of Landsat sen-
sors with dissimilar spatial resolutions.

NDVI (Normalized Difference Vegetation Index) was 
computed with the temporal data for land cover analysis. 
NDVI is based on the principle of spectral difference based 
on strong vegetation absorbance in the red and strong reflec-
tance in the near-infrared part of the spectrum. Vegetation 
index differencing technique was used to analyse the amount 
of change in vegetation (green) versus non-vegetation (non-
green) with the two temporal data of 1973 and 1989 as refer-
ence. Calculation of NDVI for Multi-temporal data is ad-
vantageous in areas with rapid vegetation changes. Among 
numerous vegetation indices for land cover mapping, NDVI 
is most widely accepted and applied (Ramachandra et al. 
2009). NDVI is calculated using visible Red (0.63–0.69 
μm) and NIR (0.76–0.90 μm) bands of Landsat TM/ETM+. 
NDVI for a given pixel ranges from minus one (–1) to plus 
one (+1). NDVI was calculated using Eq. (1):

 ( )   . 
NIR RNDVI NIR R

−= +  (1)

The land use analysis was done using supervised 
classification scheme with selected training sites. Image 
classification pursues to categorize features on the im-
age based on their spectral character. Gaussian Maximum 
Likelihood classifier (GMLC) is a common, appropriate 
and efficient method in supervised classification tech-
niques by using multi-temporal “ground truth” informa-
tion with the suitable training set for classifier learning.

Supervised training areas are located in regions of 
homogeneous land use classes: built-up, water, cropland, 
grass lands (degraded forest), open space or barren land, 

deciduous forest, evergreen forest. GRASS GIS (Geo-
graphical Analysis Support System, http://ces.iisc.ernet.in/
grass) a free and open source software having the robust 
support for processing both vector and raster files is used 
for LULC analysis.  An accuracy assessment is done to as-
sess the quality of the information derived from remotely 
sensed data by a set of reference pixels. These test samples 
are then used to generate the error matrix (also referred 
as confusion matrix) kappa (κ) statistics and producer’s 
(PA) and user’s accuracies (UA) to assess the classification 
accuracies. Kappa is an accuracy statistic that permits us 
to compare two or more matrices and weighs cells in er-
ror matrix according to the magnitude of misclassification. 
Accuracy assessment with kappa statistics has been done, 
which aided in evaluating the strength of each class as well 
as the efficacy of classification technique.

In order to access the detailed LULC pattern, a study 
is carried out at macro and micro scales by considering 
the whole landscape as a single unit and sector based 

Fig. 3. Sector based divisions of study area

Fig. 2. Method for spatio temporal analysis using remote 
sensing data
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analysis. The study area has been divided in to 12 sectors/
segments as the landscape is of varying topography with 
diverse land use; each sector covers around 13 km length 
as shown in Figure 3. Landscape dynamics was analysed 
for each sector for 1973, 1989, and 2010 through land-
scape metrics using FRAGSTAT 3.3 (McGarigal et al. 
2002) to explain the spatial heterogeneity changes in the 
region. A set of significant indicators were prioritized for a 
detailed analysis of the landscape. Table 2 lists the chosen 
metrics with range and descriptions. In the regional plan-
ning, demographic aspect is one of the most significant 
aspects as decentralized planning would be effective. The 
population density is computed to understand the spatial 
dimensions in human settlements. Density gradient met-
rics computation is done using Alpha and Beta population 
density to investigate land transformation with respect to 
population in each sector. Alpha population density is the 

ratio of total population in a region to the total built-up 
area, while Beta population density is the ratio of total 
population to the total geographical area. These metrics 
have been often used as the indicators of urbanization and 
urban spread (Sudhira et al. 2004; Ramachandra et al. 
2012) and are given by:

 

Total Populationdensity  ;Total Built up Area
 α =  
   (2)

 
Total Population density .Total Geographic Area
 β =  
 

 (3)

Prediction of likely changes has been done through 
scenario analysis, using LULC change as an input. The 
model generated possible scenarios of land-use changes 
considering the current rate of LU changes and also by 
considering the likely developmental projects,  along  with  
various  indicators like deforestation and fragmentation. 

Table 2. Landscape metrics selected in the study 

Indicators Formula Range Significance

1 Number of Urban 
Patches

NPU n=
NP equals the number of patches in the 
landscape.

NPU > 0, 
without limit

Higher the value more the 
fragmentation.

2 Largest Patch 
Index (Percentage 
of built up)

1
( )  (100)n

i
Max aiLPI

A==

ai = area (m2) of patch i;
A= total landscape area.

0 ≤ LPI ≤ 100 LPI = 0 when largest patch of the patch 
type becomes increasingly smaller.
LPI = 100 when the entire landscape 
consists of a single patch. 

3 Perimeter Area 
Weighted Mean 
Ratio. PARA_AM

_ ij

ij

P
PARA AM

A
=

Pij = perimeter of patch ij;
Aij = area weighted mean of patch ij.

1 1

[ [ ]]
n

n
J j

aijAM Xij
aij= =

=∑
∑

> 0,without 
limit

PARA AM is a very useful measure of 
fragmentation; it is a measure of the 
amount of ‘edge’ for a landscape or 
class. PARA AM value increased with 
increasing patch shape complexity, 
which characterize the degree of patch 
shape complexity.

4 Area Weighted 
Mean Shape 
Index (AWMSI)

1 4

1

  

i N i
i

i i
i N

ii

P
S S

AWMSI
N S

=
=

=
=

= ×
∑

∑
where Si and Pi are the area and perimeter of 
patch i, and N is the total number of patches.

AWMSI ≥ 1, 
without limit 

AWMSI = 0 when all patches in the 
landscape are circular or square. 
AWMSI increases without limit as the 
patch shape becomes irregular. This 
index represents the shape irregularity 
of patches. The higher this value is, the 
more irregular the shapes are.

5 Area weighted 
Euclidean mean 
nearest neighbor 
distance ENN_AM

ijENN h=

hij is distance (m) from patch ij to nearest 
neighboring patch of the same type(class) 
based on shortest edge to edge distance.

ENN > 0, 
without limit

ENN approaches zero as the distance 
to the nearest neighbor decreases. 
ENN_AM is used to calculate relative 
distance between the patches of same 
class.

6 Shannon’s 
diversity index ( )

1
  . ln

m

i
SH pi pi

=
=−∑

i – patch type; 
m – number of patch type; 
pi – proportion of the landscape occupied by 
patch type i. 

Range:  
SHDI ≥ 0, 
without limit

Shannon’s diversity index is a measure 
of diversity. SHDI increases as the 
number of different patch types 
(patch richness, PR) increases or the 
proportional distribution of area among 
patch types becomes more equitable, 
or both.
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The spatial dynamic models have become an inseparable 
aspect of a planning system in this regard, model  has  
been implemented using  NetLogo (Wilensky 1999), an  
agent-based modelling environment developed by the 
Centre for Connected Learning and Computer Based 
Modeling, Northwestern University, USA, which facili-
tates encapsulation of processes through rule-based proce-
dures and offers adequate monitors and plots to visualise 
pattern, model the causes and evaluate the  consequences 
through simulation.

4. results

Land Cover Analysis: Figure 4 illustrates the spatio tem-
poral changes in the land cover, done by computing NDVI 
Table 3 explains the land cover changes, which show ve-
getation cover of 98.78% (1973) has decreased to 83.14% 
in 2010. Seasonal variation is evident in NDVI values of 
2003 and 2004. Even though drastic land cover changes 
were observed during 1973 to 1989, the changes during 
1989 to 2010 are relatively lower. In order to account the-
se changes, we have considered 1973 and 1989 as base 
years. The rate of changes from 1973 to 1989 is 7.04% 
whereas 1989 to 2000 is 1.93%. These could be due to the 
forest conservation measures due to the ban on logging 
with the implementation of the Indian Forest ACT 1978 
by the Karnataka forest department. The decline of vege-
tation during 1973 to 2010 is 15.64 %.

Table 3. Land cover analysis from 1973 to 2010

Year Vege-
tation, %

Non-
vegeta tion, 

% 

Temporal change
1973 as 

base year
1989 as 

base year
1973 98.78 1.22 – –
1989 91.74 8.26 –7.04 –
2000 89.81 10.19 –8.97 –1.93
2003 86.95 13.05 –11.83 –4.79
2004 88.38 11.62 –10.4 –3.36
2010 83.14 16.86 –15.64 –8.6

Land Use Analysis: The spatio temporal land use 
changes during 1973 to 2010 are given in the Figure 5 and 
Table 4. The urban land is increased from 0.18% (1973) 
to 0.81% (2010), the area of deciduous forest is decreased 
from 56.23% (1973) to 47.93% (2010), and the area of ever-
green forest remains same due to the forest regeneration and 
implementation of forest policies whereas agricultural land 
has increased from 25.55% to 30.31%. This illustrates the 
influence of human induced agricultural activities are major 
driving forces of the changes in forest cover in the region.

The seasonality is one of major influential factors in 
the forest based landscape study. To account the seasonal 
variation in the vegetation cover the multi-season remote 
sensing data is considered, i.e. 2003 (pre-monsoon) and 

Fig. 4. Land cover analysis through NDVI

Fig. 5. Land use analysis

Table 4. Spatio temporal land use dynamics

Year 1973 1989 2000

Category Ha % Ha % Ha %

Urban 266.46 0.18 502.87 0.35 769.61 0.53
Water 698.67 0.48 661.62 0.46 833.5 0.58
Crop 
land 36965.48 25.55 45796.59 31.65 50447.44 34.86

Deci-
duous 
forest

81366.53 56.23 76157.34 52.62 73522.03 50.81

Ever-
green 
forest

13249.41 9.16 13242.42 9.15 9872.05 6.82

Degra -
ded 
forest

8690.14 6 6086.11 4.21 5275.02 3.65

Bar ren 
land 3465.44 2.4 2255.18 1.56 3982.48 2.75
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2004 (post monsoon) as deciduous species shed their 
leaves in the pre monsoon period, which lead to the 
change in the reflection of vegetation in remote sensing 
data and it is accounted as a cropland. Further Google 
Earth (http://www.googleearth.com) is used to verify the 
data and to quantify the areas by digitising polygons from 
land cover map. The result shows around 3% area of dry 
deciduous forest is accounted as croplands. 

Fig. 6. Population density in the gradient

Year 2003 2004 2010

Cate gory Ha % Ha % Ha %

Urban 916.21 0.63 931.16 0.64 1169.82 0.81
Water 800.65 0.55 510.09 0.35 835.84 0.58
Crop 
land 52198.60 36.07 49303.58 33.98 43856.97 30.31

Deci-
duous 
forest

67018.23 46.31 71611.1 48.86 69355.54 47.93

Ever-
green 
forest

9128.59 6.32 10116.74 6.97 12709.93 8.78

Degra-
ded 
forest

8460.63 5.85 9900.46 7.09 8949.23 6.18

Barren 
land 6179.21 4.27 2329.00 2.11 7824.8 5.41

Continued Table 4 The land use classification of temporal remote sensing 
data is verified with training samples which are randomly 
chosen for assessment. The producer accuracy computed for 
each category listed in Table 5, provides the probability that 
an area on the ground that was identified as a particular suit-
ability type on the classified map. User accuracy is the prob-
ability that a point on the map classified as a particular suit-
ability category will actually be that category on the ground. 
KHAT (KAPPA statistic) summarizes overall results and 
measures difference between the actual agreements in the 
error matrix which is ranging from 87% to 94%. 

Sector-wise Land use Analysis: In order to access 
the land use at micro scale sector wise land use assess-
ment is done by using 2010 IRS data (finer spatial res-
olution of 5.8 m). The sector-wise land use pattern is 
depicted in Figure 7.

Sector 1 to 6 covers the plane section of the region; 
sector 6 to 10 covers the Sahyadri mountains/Ghats sec-
tion and sector 11, 12 covers the coastal region. Figu-
re 6 shows the population density in the region, which 
explains the human distribution in the villages, covered 
in gradient. Table 6 lists sector-wise land use while 
Table 7 lists sector-wise population with Alpha, Beta 
population densities.

Sector 1 covers the Hubli region with the dominant 
land use as cropland of 61.73%, 4.25% built-up area and 
higher population of 8, 21,906 and α Density (1384.23); 

Table 5a. Accuracy assessment (PA – Producer’s Accuracy, UA – User’s Accuracy)

Category
1973 1989 2000 2003 2004 2010

PA UA PA UA PA UA PA UA PA UA PA UA
Urban 99.01 100.00 62.69 40.83 55.04 93.02 53.35 99.38 78.23 93.02 89.18 100.00
Water 99.70 88.26 99.99 99.86 99.31 79.49 99.75 99.42 98.98 79.49 91.42 92.44
Cropland 98.09 80.05 79.60 97.29 86.50 93.84 96.65 89.52 99.47 93.84 97.58 98.46
Degraded forest 60.16 55.44 94.58 75.65 96.28 76.45 52.70 98.82 39.50 76.45 86.05 84.64
Barren land 61.77 92.21 44.19 39.36 93.39 62.50 61.31 99.45 71.31 62.50 99.93 96.96
Deciduous forest 88.53 96.13 98.88 90.61 95.59 94.63 99.93 95.55 98.72 94.63 86.49 95.26
Evergreen forest 92.29 98.62 94.78 100.00 99.71 100.00 99.99 100.00 99.84 100.00 97.86 81.39

Table 5b. Overall accuracy and Kappa

Year Overall Accuracy Kappa value

1973 87.38 0.81

1989 91.24 0.85

2000 92.47 0.87

2003 93.51 0.89

2004 94.42 0.90

2010 93.01 0.90
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β Density (55.854) values, which explains the intense ur-
banisation. Cropland (70.29%) continues to be dominant 
land use in Sector 2 along with barren lands. This sector 
has the population of 42,463. 

Sector 3 is dominated by cropland (83.24%) with a 
smaller amount of dry deciduous forest cover (2.66%). 
Population in sector 3 is 50,733 with α Density of 368.1 
and β Density of 4.09. Sector 4 has 54% of cropland, 42% 
of deciduous forest and population of 12,447. 

Fig. 7. Sector-wise land use dynamics

Table 6. Land use statistics of sector 1 to 12

Cate- 
gory

Sectors

Urban Water Cropland Degraded forest Barren land Deciduous forest Evergreen forest 

Ha % Ha % Ha % Ha % Ha % Ha % Ha %

S1 593.8 4.3 0.58 0 8620.1 61.73 1700.3 12.2 3050.5 21.8 0.0 0 0.0 0
S2 76.8 0.6 0.02 0 9015.2 70.3 840.8 6.6 2892.4 22.6 0.0 0 0.0 0
S3 137.8 1.1 1.6 0.0 10329.1 83.3 249.6 2.0 1347.4 10.9 0.0 0 0.0 0
S4 33.3 0.3 19.1 0.2 5406.6 42.6 292.4 2.3 5.0 0.1 5406.6 42.6 0.0 0
S5 1.5 0.0 1.0 0.0 1674.8 13.3 952.8 7.5 0.0 0.0 9993.8 79.2 0.0 0
S6 20.8 0.2 11.1 0.1 900.9 7.4 1677.0 13.8 0.1 0.0 9520.9 78.4 8.5 0.1
S7 2.3 0.0 12.1 0.1 601.5 5.4 1225.5 10.9 0.1 0.0 8806.2 78.5 567.2 5.1
S8 5.6 0.1 19.9 0.2 291.0 3.4 370.5 4.3 0.0 0.0 7556.8 88.0 339.9 4.0
S9 42.0 0.4 69.7 0.7 445.6 4.3 578.5 5.6 21.9 0.2 8830.3 85.1 392.6 3.8

S10 69.4 0.7 25.0 0.2 978.2 9.6 350.7 3.4 158.3 1.6 6773.7 66.3 1864.5 18.2
S11 5.6 0.0 88.7 0.6 1029.0 7.4 383.8 2.8 223.9 1.6 6088.5 43.6 6146.9 44.0
S12 181.0 1.3 587.1 4.3 3034.2 22.2 327.4 2.4 125.1 0.9 6050.9 44.2 3390.5 24.8

Sector 5 is mostly dominated by deciduous forest 
cover (79.17%) with the Density of 8229.73 and lower 
β Density (0.976). 

Sector 6 has 78.64% of moist deciduous forest cover 
with the moderate α Density (24359) being the part of 
Yellapur town (24359). 

Sector 7 rich in biodiversity is dominated by moist 
deciduous forest (78.52%) with small fraction of ever-
green (5.06%) and human population of 7517. Sector 
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8 covers moist deciduous forest (88.04%), evergreen 
(3.86%) and human population of 4789.

Sector 9 has dominant deciduous forest (85.06%) with 
evergreen forest (3.78%). Similar situation prevails in Sec-
tor 10 with deciduous (66.28%) and evergreen (18.24%) 
forests. This sector has sparse human population (2368) 
compared to all other sectors. Sector 11 has equal propor-
tion of deciduous (43.59%) and semi evergreen (44.01%) 
forests. Sector 12 covers part of Ankola town and its sub-
urbs and consists of deciduous forest (44.18%), semi ever-
green (24.75%) with the population of 59288.  

5. Spatial metrics

The spatial metrics for the year 1973, 1989, and 2010 gi-
ves the landscape status in terms of heterogeneity, diver-
sity, etc. for each sector. Figures 8 (a) to (f) depict sector-
wise metrics across three time periods.

Sector 1 with dense population shows large number 
of patches, which explains the fragmentation of region. 
11 patches in vegetation category (1973) has increased to 
4118 (2010), illustrates of receding of vegetation and ma-
jor green patches are becoming more number of patches, 
due to the fragmentation. LPI shows that largest patch is 
the cropland (68.34%) in this sector among all other land 
use classes. PARA_AM shows highest value for urban 
class, which explains the shape complexity of the region 
because of urban spread in the region and also each land 
use category is showing increase in the value from 1973 
to 2010 picturises complex shape of landscape.

 AWMSI value is increasing from 1973 to 2010 
shows the patch shapes are becoming more irregular. 
ENN_AM is decreasing prominently in case of cropland 
and urban classes because of new intermediate patches of 
same class are developing in the region. 

Sector 2 shows of increase of numbers of cropland 
patches (33 to 6904), vegetation (252 to 803). This indi-
cates the evolution of new patches during 1973 to 2010 
resulting in land use changes in the region. There is no 
urban class in this region in 1973, but new rural ag-
glomerations in 1989 due to the conversion of forest and 
croplands, which resulted in the largest patch in 2010. 
PARA_AM and AWMSI show the region is becoming 
more complex in terms of shape especially urban class 
(57.49) and ENN_AM of urban class has reduced (84.92 
to 40.08 M) during 1989 to 2010. 

Sector 3 depicts more number of patches in most land 
use classes except urban class. The urban class exhibit con-
centrated growth at Kalghatghi with new clusters. In 1973 
cropland category has largest patch, but in 2010 largest 
patch has changed to urban category. PARA_AM shows 
higher values in all categories other than urban reflecting 
the convolution of shapes and AW_MSI explains these 
shapes are becoming simpler than 1989 to 2010. ENN_AM 
values are decreasing from1973 to 2010 shows the interme-
diary patch developments with complex shapes.

In sector 4 a number of vegetation patches turns out to 
be more (321 to 2851) and has made the area fragmented due 
to cultivation from 1973 to 2010. LPI shows cropland is re-
volved to be larger patch from vegetation. PARA_AM shows 
the complexity of shape with respect to forest and AWMSI 
shows from 1973 to 2010 cropland is becoming simpler 
shape by intermediate patches development of same class. 

Sector 5 has more numbers of patches with respect to 
crop and urban classes and number of vegetation patches 
are coming down, which highlight of effective forest man-
agement from 1989 to 2010 but even though largest patch 
belongs to cropland. PARA_AM, AWMSI shows the shape 
complexity for cropland and urban classes. ENN_AM 
shows the higher value for forest patches because of in-
termediate croplands, which have the influence in distance 
between nearest neighbour patches of same class.

Sector 6 shows higher number of forest (202), ur-
ban (1588) cropland (167) patches, clearly indicates the 
fragmentation and also largest patch is crop land; rea-
son behind is the Yellapur town situated in this sector. 
PARA_AM shows urban, cropland is having complex 
shapes. Among all cropland is having more convoluted 
shape, which is revealed by AWMSI. Because of intensi-
fied growth in the region, which shows higher distance 
between the open space patches. 

Sector 7 is less fragmented compared to all sectors 
with less number of patches except urban class.  In 2010 
only new urban patches are observed in the region but still 
cropland is the largest patch because of no intermediate 
patches are present. But in terms of shape AWMSI shows 
crop land is having more convoluted shape. ENN_AM 
shows high value for the open space category because of 
no barren areas is present nearby in the region.  

Table 7. Sector-wise distribution of population and α, β 
densities

Sectors Total 
Population α Density β Density

S1 821906 1384.22 58.85
S2 42463 552.64 3.31
S3 50733 368.16 4.09
S4 12447 373.76 0.98
S5 12320 8229.79 0.98
S6 24359 1171.95 2.01
S7 7517 3282.53 0.67
S8 4789 855.57 0.56
S9 7081 168.41 0.68
S10 2368 34.14 0.23
S11 5956 1070.26 0.43
S12 59288 327.55 4.33
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Fig. 8 (a). Number of 
patches (NP)

Fig. 8 (b).  Largest patch 
index (LPI)

Fig. 8 (c). Perimeter area 
weighted mean (PARA_AM)

⇒
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Fig. 8. Landscape metrics ((a) through (f)) 
Note:  X Axis – Sectors; Y Axis – Metric value.

Fig. 8 (e). Euclidean nearest 
neighbor distance area 
weighted mean (ENN_AM)

Fig. 8 (d). Area weighted 
mean shape index (AWMSI)

Fig. 8 (f).  
Shannon’s 
diversity
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Sector 8 has more number of patches for urban which 
are isolated to each other and largest patch is cropland. 
PARA_AM explains all categories have shape complex-
ity. AWMSI reveals cropland is have more convoluted 
shape than other. ENN_AM values came down from 1973 
to 2010 due to human induced small patches.

Sector 9 is more fragmented with respect to urban 
and forest cover. In this sector among all classes crop-
land (79.7%) is largest patch. PARA_AM has high de-
gree of complexity in land scape shape and AWMSI gives 
cropland and forest cover have convoluted shapes. For-
est patches have less distance and open space is filled by 
built-up and cropland lead to higher distance of value for 
open space category due to intermediate urban patches. 

Sector 10 has more number of urban patches (1852) 
with the increase in forest fragmentation evident from the 
increase in patches from 106 to 2482. Largest patch is lo-
cated by cropland (72.63%). PARA_AM shows the com-
plexity is unanimous for all the categories and AWMSI 
shows cropland and urban has high evolvement of shape. 
Decrease in ENN_AM with all patches are distributed in 
less distance to same patch type from 1973 to 2010 indi-
cates of higher fragmentation. 

Sector 11 shows the region with more number of 
patches for urban, crop, open space categories and forest 
are comparatively less fragmented. LPI shows the forest 
(80%) is the largest patch among all other. PARA_AM 
shows all categories have higher degree of shape com-
plexity. AWMSI reveals cropland has higher convoluted 
shape. ENN_AM shows the progression less distance be-
tween the patches of same type. 

Sector 12 is the final sector covers Ankola region 
having higher degree of fragmentation from 1973 to 2010 
in all land use classes. LPI shows cropland (69.35%), ur-
ban (13.5%) are dominant patches. PARA_AM picturises 
all the land use classes have complex shapes and AWM-
SI extracts urban (25.7) cropland (21.78) has elongated 
shapes. ENN_AM shows urban; crop classes do not have 
any change in the distance and forest patches have lesser 
distances in the progression of new patches. 

Shannon’s diversity index is also referred as a land-
scape ecological security index and a measure of the di-
versity is determined by both the number of different patch 
types and the proportional distribution of area among patch 
types. This index is computed by considered landscape as 
a whole to assess the diversity with respect to each sec-
tor from 1973 to 2010 shown in Figure 8 (f). The results 
shows the higher value of diversity for sector 1, sector 4, 
sector 9, sector 10, sector 12 because of higher fragmen-
tation in the distribution of patches in terms of area with 
respect to one of land use class, especially sector 1 and 12 
are experiencing development (urban) processes. Pattern 
process analysis is undertaken to visualise pattern, evaluate 
the consequences through simulation. Population density 

map is generated to know the distribution of population 
per one square kilometer. Figure 6 shows villages between 
Yellapur and Ankola taluks that are sparsely populated 
with a population density ranging from 0 to 100 persons/
km2. This essentially helped as a base layer to project the 
scenario of growth pattern for 2020. 

Considering the rate of changes in the forest cover, 
likely changes in the region is predicted for 2020 (Fig. 9 
(a), (b)) considering the business – as usual scenario and 
likely implementation of developmental projects in the 
region. Figure 9 (a) depicts the decline of forests by 11.8 
percent by the Year 2020 considering the business as usu-
al scenario. The simulation outcome given in Figure 9 (b) 
indicated that there would be a growth of 16.23 percent 
in the region consequent to land use changes with imple-
mentation of development projects like new motor ways, 
industries and railways. This highlight intensified urban 
growth for Kalghatghi, Yellapur, Ramanguli and Sunksal 
regions with new agglomeration and it may leads to pe-
ripheral growth with higher deforestation.

conclusion

1) Spatio temporal dynamics analysis through the inte-
gration of multi temporal data offered an efficient way 
to examine forest spatial changes and fragmentation; 

2) Human induced changes shows 15.64% loss in the 
vegetation cover from 1973 to 2010; 

Fig. 9 (a). Base case scenario (2020)

Fig. 9 (b). Scenario (2020) with the proposed developmental 
activities
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3) Land use analysis shows the degradation of deci-
duous forest cover from 56.23% to 47.93% due to 
human induced changes leading to fragmentation 
in the region; 

4) The landscape metrics analysis indicates of increase 
in the number of patches in the forest dominated are-
as that highlight the fragmentation of the vegetation 
cover. LPI index indicates that crop land has become 
dominant land use in the region. PARA_AM index 
shows complexity of the region in terms of shape 
because of alterations in the land cover; 

5) These results reveal that plane region is influenced 
by anthropogenic activities because of urbanization. 
The Sahyadri interior with undulating topography 
coupled with the effective conservation policies 
show nominal land use (buildings and agriculture) 
changes. The coastal region is more fragmented due 
to over exploitation of resources due to road acces-
sibility. Thus, where densely distributed roads are 
present, forests are in peril;

6) The prediction for 2020 indicates of 11.8% decline 
in forest cover (in the business as usual scenario) and 
16.23% decline with the implementation of develo-
pmental projects and associated local land use changes; 

7) This work provides a valuable spatial insight into 
the trends in forest change and fragmentation with 
conservation implications for sustainable growth. 
Landscape analysis with incorporation of geo-
graphical and sociological perspectives, practical 
and theoretical approaches will help in tackling en-
vironmental problems.
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